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Squeezed states and intensity fluctuations in degenerate parametric oscillation
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The relationship between the squeezing and photon-number fluctuations in the output of
a degenerate parametric oscillator is investigated. The addition of a second driving field at
the idler frequency allows the direction of the squeezing to be changed. The squeezing may

appear in the amplified quadrature. Photon antibunching or bunching may occur depend-

ing on whether the quadrature carrying the coherent excitation is squeezed.

I. INTRODUCTION

In a recent paper' we investigated the amount of
squeezing that could be obtained in the output of a
degenerate parametric oscillator. In this paper we
wish to investigate the relationship between the
photon-number fluctuations and the squeezing in
the output of the device. By including an additional
driving field at the idler frequency in a model
which includes depletion of the pump mode we are
able to change the sign of the squeeze parameter
and hence transfer the squeezing from one quadra-
ture to the other. The output field may show pho-
ton antibunching or photon bunching depending on
whether the quadrature carrying the coherent exci-
tation is squeezed or not. The addition of a second
driving field allows the amplified quadrature to be
squeezed.

II. PHOTON-NUMBER FLUCTUATIONS
IN SQUEEZED STATES

A large number of references to squeezed states
and their properties are given in Ref. 1. We shall
briefly describe a few of the properties relevant to
this paper. The squeezed states of a single mode are
defined by

~a,e)=exp(aa —a a)f

Xexp[ —,e'a ——,e(a ) ] ~0),

where a= re'~ is the complex squeeze parameter and
a is the complex amplitude of the state. The vari-
ances in the quadratures of the complex field

[Xi———,(a+a ), X2 ——(I/2i)(a —a )] are

The photon-number correlations are character-
ized by the second-order correlation function
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For a squeezed state with
~
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(the coherent excitation in Xi) g' '(0) is approxi-

mately given by

g'2'(0) =1+ (e ~'—1) .
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For the case of a pure imaginary {i.e., the coherent
excitation in X2}we find
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where

Y=
&2 coshr sinhr

P=ae' .

Equations (4) and (5) together with Eqs. (2) show

that photon antibunching [g'~'(0}& 1] occurs when-

ever the quadrature component carrying the
coherent excitation is squeezed. Changing the sign
of r (i.e., the "direction" of squeezing} takes us from
a region of photon antibunching to a region of pho-
ton bunching [g' '(0) & 1].

The photon-number distribution for a squeezed
state is given by Yuen' '.

~)——4e

~2K
2 4

for the squeeze parameter chosen real (8=0).

(2)

H„(Y) is the Hermite polynomial.
In Fig. 1 we have plotted P(n) for r &0, clearly

showing the reduced number fluctuations obtained
in this case in comparison with the Poisson distri-
bution of a coherent state.
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cavity damping. This system is described by the

following Hamiltonian:
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FIG. 1. Photon-number distribution P(N) vs photon
number for a coherent state ~a) ( ———) and a
squeezed state ~a, r) ( ). a=7andr=0. 5.

III. QUANTUM STATISTICS
OF DEGENERATE PARAMETRIC

OSCILLATION

We consider a degenerate parametric oscillator
where a pump mode at frequency 2' interacts with

an idler mode at frequency co via a nonlinear crystal
with a second-order optical susceptibility. The non-

linear crystal is placed within a Fabry-Perot inter-

ferometer and both modes are driven externally
with coherent fields. The modes suffer losses due to

+t@E ttte 2ittt—t Eett e2itttt}

+(t2I I'I+t21I'I)+(t22I'2+t22I 2},

where a1 and a2 are the boson operators for the
idler and pump modes, respectively, K is the cou-

pling for the interaction and is chosen real. I 1 and

I 2 are heat-bath operators which represent cavity
losses and e1 and e2 are proportional to coherent
driving-field amplitudes. This model includes de-

pletion of the pump mode and has been analyzed in

detail in Ref. 3.
The following Fokker-Planck equation for the

complex P distribution P(a,at t) of the idler mode

may be derived in the limit where the pump mode
has high cavity losses and may be eliminated adia-

batically:

BP(a,a t, t) 8 a.
l 1a +1
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P(a,at, t) . (8)

y1 and y2 are the damping constants for the idler and pump modes, respectively.
Linearizing Eq. (8) about the deterministic steady-state ao we find the approximate steady-state solution

P(a,a )=N expI2(a —aII)(a —ao}—t2[{a—aII) +{a—aII} ]I, (9)

where
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We shall hold the pump field amplitude e2 fixed

This distribution has the same form as the complex
P representation for a pure squeezed state with the

squeezing given by the parameter a.
The variances in X1 and X2 follow directly,

the threshold for parametric oscillation, and vary

the idler amplitude e1. Initially the quadrature X2
is squeezed. As e1 is increased the sign of a will

change when
' 1/2

2l 132

K

At this point the variances ~1——~2——4. For e1
2 2

greater than e1 the quadrature X2 is squeezed.
The results of the linearized analysis are con-

firmed by an exact analysis. The exact steady-state
solution to Eq. (9) together with all the moments of
the distribution are given in Ref. 3. In Fig. 2 we
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FIG. 2. (X~), hX&, LIXED, and g (0) vs e& for sub-

second harmonic generation e2 ——eq ——5.0, y~
——1.0,

y2 ——100, x=20.0.

comes less than unity (photon antibunching). Thus
the output of the degenerate parametric oscillator
shows behavior qualitatively similar to the ideal
squeezed state discussed in Sec. II.

The linearized analysis predicts that the change
in the sign of the squeeze parameter should occur at
ei I——/V 2 for the parameters chosen here and that
at this point ~~——~2——4. These predictions

agree well with the exact result.
We also see that the quadrature carrying the

squeezing, is amplified when ei & I/v 2. This con-
trasts with the result obtained for pure subharmonic
generation (1) where the squeezed quadrature ampli-
tude was not amplified. The addition of the extra
field thus permits squeezing in a quadrature with
significant amplitude.

plot the results for M'i, M'z, and g'2'(0) with e2
held fixed equal to ez. For the parameters chosen
here (a) is real. At ei ——0 the component carrying
the excitation (Xi) is not squeezed, X2, however, is
squeezed. The photon-correlation function g' '(0)
is greater than unity reflecting the enhanced ampli-
tude fluctuations. As e& is increased beyond ei the
squeezing changes from the imaginary to the real
components of the complex amplitude and g' '0 be-
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