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The equations of motion for an inhomogeneously broadened laser operating off reso-
nance in the neighborhood of threshold are solved. It is shown that the effects of detun-

ing cannot be described just by a frequency-dependent laser pump parameter, but that the
laser characteristics are modified in other ways also. The relative intensity fluctuations
and the correlation time of the laser are calculated as a function of mean intensity and

frequency, and it is shown that both are affected by detuning. These theoretical con-
clusions are then confirmed quantitatively by direct photoelectric counting and two-time
correlation measurements of a He:Ne laser.

I. INTRODUCTION

The behavior of a laser in which the medium is
inhomogeneously broadened and the cavity is de-
tuned from resonance, was already discussed in the
classic paper of Lamb. ' This first treatment was
semiclassical, but fully quantum-mechanical treat-
ments were presented shortly afterwards. ' How-
ever, although full solutions of the equations of
motion, including various correlation functions of
the laser field, were ultimately derived, ' most
subsquent treatments seem to have been limited
largely to the on-resonance behavior of the laser.

It is well known that the effect of detuning an
inhomogeneously broadened laser generally is to
lower the gain (except for a possible Lamb dip}, as
fewer active atoms contribute to the laser action.
Indeed, in many experimental investigations of
inhomogeneously broadened lasers near threshold it
has been common practice to control the working
point, or the pump parameter, by varying the
cavity tuning. However, detuning the laser has a
more significant effect on the properties of the
emitted light than is commonly supposed.
Although detuning does reduce the pump
parameter, it also causes other explicitly
frequency-dependent changes in the light, as we

have recently demonstrated. The frequency
dependence of the optical properties seems to have
been largely ignored in the past. Often, the laser
working point was varied by detuning, but the
magnitude of the detuning was not even stated,
and the experimental results were presented simply
as a function of laser light intensity or pump
parameter. Similar remarks apply to the
correlation functions of the laser field, which also
depend explicitly on the detuning in addition to
depending on the pump parameter.

In the following we derive the Fokker-Planck
equation for a single-made laser off resonance, in
order to exhibit the frequency dependence explicit-
ly. We show that if one integrates over all phases
and focuses on the amplitude or the intensity of
the laser field, the equation of motion can be cast
into the same form as on resonance, provided the
light intensity, the pump parameter, and the time
are all scaled appropriately. This leads to simple
predictions of how the relative intensity Auctua-
tions and the two-time intensity correlation func-
tion of the laser should vary with detuning. Final-
ly, we confirm these predictions by direct pho-
toelectric counting and correlation measurements
on a He:Ne laser that is operated at various work-
ing points in the neighborhood of threshold.

II. EQUATIONS OF MOTION

We consider a single-mode laser in which the active medium is a set of gas atoms, with the laser levels
having energy separation %coo. We assume that the medium is Doppler broadened to a width ku, which is
generally larger than the natural atomic linewidth y for transitions between the laser levels. The cavity is
tuned to a frequency ~ that may differ from coo, and we introduce the parameters Aced =—co —coo,

g
—=h,co/y, p—=y/ku
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to descibe the relative detuning, and the ratio of the natural to the inhomogeneous linewidth.
Our starting point is the semiclassical equation of motion for the laser field E(r, t) at position r at time t

within the cavity. If we write

E(r, t)=U(r) S'(t)e '"'+c.c. , (2)

where U( r) is the cavity mode function, and S'(t) is a slowly varying, dimensionless, complex amplitude,

then, provided the laser is not operating too far above threshold, S'(t) obeys the Lamb equation of motion'

S'={A C —B( S—'( )S'. {3)

(4)

Z(y) is a complex function in general, but it becomes purely imaginary for real argument y, and it is of or-
der unity for y && 1. It is shown in the Appendix, with the help of results derived in Ref. 2, that for small

p, i.e., for relatively large inhomogeneous broadening,

The pammeters A, C, and B are gain, loss, and saturation coefficients, and they are all real on resonance
when N =No. However, when the laser is detuned from resonance, A and B have to be replaced by more

complicated coefficients A and B that are complex in general, and depend on the detuning ~ or g. The
new coefficients can be related to the old ones with the help of the plasma dispersion function Z(y) of com-

plex argument y, ' defined by

Z{y)=i+me" (1 erfy)—.

A=A
Zi(p+i rip) iZ„(p+i rip)

Z (p} Zi(p)

=A I 1 —ri p [1—2p/ i Z(p) i +2p ——,v) p +O(p )]

[2i'Qp/IZ(p}—l][1—p~Z(p) (
—ii}p +i}p [Z(p) ~+O(p )] j, (6)

Zi(p+i i}p)

Zi{p}

1

+0( )+i —p[1 2p/ I
Z

I l +O( ')
1~q~ 1+g 1+2p/

~
Z(p)

~

—2p

Here Z, (y) and Z&{y) stand for the real and imaginary parts of Z(y}. When the detuning i} is zero, both
coefficient A and B become real and equal to A and B, respectively.

The semiclassical equation of motion (3), or the more general version that holds off resonance, does not
contain the effects of spontaneous atomic emission. Spontaneous emission contributions are, of course, in-

cluded automatically in a fully quantized treatment of the laser. ' However, it has been shown that one can
incorporate these effects to a good approximation in a semiclassical treatment by introducing quantum noise
trims into the equation of motion. The equation then takes the form

S'=(A C B~ S—'
~

')—S'+q, (g)

(q'(t i )q(ti ) ) =4S[Z;(p+i rip)/Z&(p)]5 (t i —ti ),
where S represents the strength of the random process q(t) on resonance. The factor Z;(p+iqp)/Z;(p) has
been introduced in order to ensure that the strength of the quantum noise, which is related to the spontane-
ous emission rate, has the same dependence on frequency g as the stimulated emission rate, which is
represented by the real part of A. The ratio of the stimulated to the spontaneous emission probabilities then

where q(t) is a complex random process representing the spontaneous emission fluctuations, which is gen-

erally taken to be Gaussian and of zero mean. If the lifetime for spontaneous emission is short compared
with the time in which the laser amplitude S'(t) is changing, and this is generally the case for a "good" reso-
nator cavity, then q(t) may be regarded as effectively 5 correlated. We shall therefore write for the correla-
tion function of q(t)
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does not change with cavity frequency.
Because of the quantum fluctuations introduced by q (t), the laser field is no longer deterministic, but be-

comes a random variable with a certain probability density p(S', t}. At this stage it becoines more convenient
to regard the field amplitude as a two-dimensional real vector 8' with components I'i, 8'~, which are the
real and imaginary parts of the complex amplitude S'. Corresponding to the Langevin equation of motion
for S'(t), p(S', t) obeys a Fokker-Planck equation. If we introduce new dimensionless variables S' 'g', t'~ de-

fined by

S':(S/B—)'~ S' ',
t= (SB—) ' t,
q =S'~4B "4q'

A C= (S—B}' a,
in terms of which

(q '{t i }q (t2 ) ) =4[Z (p+i rip)/Z (p)]5(t i t2 ),—
then the Fokker-Planck equation takes the simple form

ap a z;(p+irl p}
(~;p)+at, , as, ' z,(p), , as,'.

For simplicity we have dropped the primes on the new variables with the understanding that we shall be
dealing with these dimensionless, scaled variables from now on. From Eqs. (5},{7},and (8} the two-
component drift vector M is given by

(10)

(12)

Ca—
SB

Zg (p+i rip)

Z;(p)

I+ —,i) 2 Zt(p+i rip) At B(
+O(pi) S' S'i — — S' S'2,

{13}

C0—
&SB

Z;(p+i rip)

Z;(p)

1+—,7] ~ Zt(p+irip)
+O(p ) O' S'i+

I+ri Z& p

B;
(14)B

We have written A;, B; for the real and the imaginary parts of A and B, which are given explicitly by Eqs.
(6) and (7), respectively. The parameter a is the dimensionless laser pump parameter on resonance, which is
proportional to the difference between the gain and the loss on resonance. It can be shown that in the
neighborhood of threshold

A/(SB)' 2=CI(SB}' =v nno, .

where no is the absolute photon number present in the laser cavity at threshold (A =C}and on resonance
(g=0). This allows us to express the pump parameter in the form

a =v nno(A —C}/C,

(15)

{16)

from which we can readily estimate the largest value of a for which our treatment is appropriate. If we
take the third-order equation of motion (8) to be adequate so long as the gain A does not exceed the loss C
by more than about 1%, and if no is of order 10000 (Ref. 8), then a is limited to values below about 100.

III. STEADY-STATE SOLUTION

The Fokker-Planck equation (12}is more complicated than the corresponding equation on resonance, for
which the drift vector simplifies to
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(17)

—J3fJp+
Z;(p+i rip)

z(p) ag;
= '=0, j=1,2

and integrating the resulting equation, we readily obtain the steady-state solution p, ($') of Eq. (12). With

the help of Eqs. (13) and (14}this takes the form

Wi ——(a —8' }g'i, j=1,2 .

Moreover, M given by Eqs. (13) and (14) does not satisfy the so-called potential condition. Nevertheless, it

is not difficult to obtain the steady-state solution in general. If we proceed in the usual way, by equating

the probability current to zero,

1

1 Z(p) 2 1 1+Kg
p, ( 8') =const exp —a ~~no ' —1 g —— +O(p ) g'

2 Z;(p+h)p) 4 1+2)2
(18)

(19)

It is interesting to observe that the imaginary contributions A;, 8; to AP play no role here, because these

terms have opposite signs in Eqs. (13) and (14) and effectively cancel. As the solution depends only on the

light intensity I= 8', and not on the separate components of 8', it is easier to work with the probability

density 9', (I) of I, which can be put in the compact form

9', (I)=const e

The modified variables I and a are related to I and a by

I(1+ ( ~2)l/2/(1+ 2)1/2

z;(p)a:a~—nno
Z;(p+i2)p)

2

1+—,q2

(20}

=Ia virn02) —p [1—2p/~Z(p) ~+2p + —,ri p + ]I(1+2) )' /(1+ —,2) )' (21)

and the modified variables I and a coincide with I and a, respectively, on resonance. a may be looked on as

an "effective" pump parameter for the modified intensity I. Equation (21) follows from the previous line

with the help of Eq. (A10). However, we note that detuning not only affects a, but also the scale factor as-

sociated with the light intensity. The effect of detuning therefore cannot be accounted for entirely in terms

of a change of effective pump parameter. Whereas a generally falls below u for moderate values of a as g
increases from zero, the opposite may happen at first when a is large, because of the factor
(1+2)2))/2/(I + ri2))/2. This b—ehavior can be regarded as a vestigial Lamb dip, and it does not occur in the

neighborhood of threshold.
The probability distribution 9', (I) given by Eq. (19}has a well-known structure for a laser operating in

the threshold region, ' and we readily obtain from it

(I)= l + 2
' 1/2

2 (1/4)a
0+

1+ 2 ri V ir(1+erf —,a)
(22)

((~)2) 2ae
—()/4)a 4 —()/2)a

2
2—

~n(1+erf —,a) n (1+erf—,a }2

2~
—( &/4)a

a+
i/ir (1+erf—,a)

2

(23)

=F[(I)(1+—2)')' '/(1+ 2)')' '] (24)

where F(x) is a monotonic, transcendental function defined by Eqs. (22) —(24). Equation (24) imphes that
the relationship between ((EEI) )/(I ) and (I) varies with detuning 2), and is not a unique relationship, as
has sometimes been assumed. Figure 1 shows some curves relating the relative intensity fluctuations of the
light intensity to (I) for two different detunings 2i. The rms intensity fluctuations are always of order (I)
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FIG. 1. Variation of the relative intensity fluctuations ({hI) )/(I ) with mean intensity (I}on and off resonance.
The full curves are theoretical and the experimental results are shown superimposed. Where the standard deviations
are larger than the spot size, they are indicated.

well below threshold, and close to zero well above threshold, as the state of the laser field changes from the
thermal to the coherent. But it will be seen that when g is of order 1 or greater, the effect of detuning is
clearly significant and should not be ignored.

Equation (21}offers an interesting possibility for determining the absolute photon number at threshold nc
from values of the effective pump parameter a for various detunings g. a can be obtained from measure-
ments of the mean light intensity with the help of Eq. (22). The method is interesting in that it requires no
absolute but only relative intensity measurements, and its effectiveness has recently been demonstrated.

IV. TIME-DEPENDENT SOLUTION

As the drift vector given by Eqs. (13}and (14}does not satisfy the potential condition aW&/aS'z
=aW2/aS't, we shall not attempt to solve the Fokker-Planck equation (12) in general. However, most pho-
toelectric measurements relate only to the light intensity I(t}—= S' (t), and the solution of the general time-
dependent problem for I(t) turns to be no more difficult than for the laser on resonance. It is convenient to
transform Eq. (12}to polar coordinates by putting

8 ) =r cos8,

8'2 ——r sin8 .

The joint probability density P(r, 8, t) is then related to p(S'&, S'2,t) by

P(r, 8,t) =rp(r cos8, r sin8, t) .

With the help of the transformations

a/ae, =cos8a/ar —(sin8/r)B/88,

a/ae, =sin8a/ar+(cos8/r)a/a8,

a'/as', +a'/as', =a'/a" +(I/. )(a/a. )+(I/")(a/a8'},
we readily obtain from Eq. (12)

(25)

(26}

(27)
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1 dP(r, 8,t)
r Bt

1/2 .
Zs(p+igp) l+ z &

Z;(p) 1+rt t}r r

1/2

a —r
1+q2

P(r, 8,t)

Ag

r v'SS
4, aP(r, 8, t) Z(p+tnp) a' 1 a 1 a' P(r, 8,t)

(28)8 Q8 Z;(p} gr r Br r2 $82 r+——+—

(29)

We now integrate each term with respect to 8 over
the whole range 0 to 2~, and put

2%f d8P(r, 8,t)=P(—r, t) .

Then the integrals of t}P(r,8,t)/M and
a'P(r, 8, )t/a 8' vanish, and with the help of the
rescaled variables

d2$ —O(r)/dr + Vp(r, a)f p(RP —~mph('mo(+~

with the potential Vp(r~) given by

Vp(r, a)= —1/4r +a+( ~ a 2)r—
1.--~ 1 ~—2ar + 4r

(3&)

(36)

Z;(p) 1+q
Z;(p+irlp} 1+

(30)

the equation (28} reduces to

W'(r-, t) a
Bt Br

+———P(r, t} .a
r Br

(31)

This is exactly the same equation in the variables

r,t,a as the laser obeys on resonance, when, needless
to say, r,t~ coincide with r, t,a. The time-
dependent solution can therefore be obtained in ex-
actly the same manner, and, of course, has already
been found.

The steady-state solution P, (r) of Eq. (31}is ob-
tained immediately if we equate the probability
current to zero

These are the same eigenfunctions and eigenvalues

that one encounters in the solution of the laser

problem on resonance. The only difference is that
the general solution of the two-dimensional
Fokker-Planck equation leads to a two-dimensional

array of eigenfunctions gm„(r) and eigenvalues
A,~„,whereas in our case the second suffix is zero
because we have suppressed the phase of the solu-

tion. The lowest eigenvalue ~=0, and the lowest

eigenfunction gz&(r}=+P,(r), so that
P(r,t)~P, (F) in the long-time limit.

The Green function of the Fokker-Planck equa-

tion is a special case of the general solution (34),
and we can use it to calculate any two-time corre-
lation function. If we proceed exactly as for the
laser on resonance, we obtain formally the same

expression for two-time intensity correlation func-

tion in the steady state '

(Mt t )Ll(t+ r ) )

=((dd)2) g Mm(a)e, (37)

y(a r)+1/r- —a/aqP, (r-—)=0

and integrate, and it yields

P, (r )=const re

(32}

(33)

with the coefficients M (a} given by

M (a)=
~ f drr P~(r, a)P (r,a)

~

. (38)

which is equivalent to Eq. (19). The general time-

dependent solution is obtained by writing ' '

P(r, t)= g c '}/'P, (r)f~(r)e (34)

where the coefficients c are determined by the in-
itial conditions, and the g~(r) and A, p are eigen-
functions and eigenvalues of the Schrodinger equa-
tion '6

In the neighborhood of threshold the series is usu-

ally dominated by the first term, and the correla-
tion function is approximately exponential.

Despite the formal structural identity between

this solution and that for the laser on resonance,

Eq. (37) implies that the shape of the correlation
function is different on and off resonance, and so
is the intensity correlation time. The difference ar-
ises, in part, because the scale factor [Eq. (30)] that
relates 7 to the measured time ~ depends on detun-
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ing, and, in part, because the effective pump
parameter a also varies with the detuning. It is
convenient to define a normalized correlation func-
tion

A(r) = (M(t)hZ(r+r) )/(I )', (39)

which is independent of the scale of I or I, and an
effective intensity correlation time T, by'

-=f. (40

From Eq. (37) we find that the rescaled time T, is
given by

T, = g M~(rT)/}I, ,(a)

so that with the help of Eq. (30},

Z(p) 1+&2 '~ ~ M~(a)
Tc ~ 1 2 ~Z;(p+it)p) 1+—t}2,A, (rT)

(41}

The ratio Z; (p)/Z;(p+i t)p) is derived in the Ap-
pendix and is shown to be of the form [cf. Eq.
(A 10}]

Z;(p)IZ;(p+i t)p) =1+rt p [1—2p/ I Z(p)
~
+2p + —,t) p +0(p )], (42)
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while a is given by Eq. (21}. The dependence of
the effective correlation time T, on detuning and
on the mean light intensity (I) can therefore be
calculated from Eqs. (41) and (22).

The calculation is greatly simplified by the table
of eigenvalues A, „and coefficients M~ provided
by Hempstead and Lax. With the help of these
numbecs we have calculated the relation between

T, and the mean light intensity (I) for a laser on
resonance, and for one detuned by one natural
linewidth (t) =1). The results are shown by the
two curves in Fig. 2. The maximum of the corre-
lation time always occurs just above the threshold,
and this is related to the slowing down of fluctua-
tions near the phase transition. Detuning evidently
lengthens T„and moreover its effect on T, is

somewhat larger than on the relative intensity fluc-
tuations ((M )/(I), although both are increased.

V. EXPERIMENTAL

These theoretical conclusions have been put to
the experimental test by photoelectric counting and
two-time correlation measurements of a He:Ne
laser. Figure 3 shows an outline of the apparatus.
The plasma tube is located inside a 20.5-cm long
optical cavity, whose axial mode spacing of 730
MHz is large enough to ensure that only one mode
is excited up to the largest detuning. The output
mirror has about 99% reflectivity and the other,
flat mirror is mounted on a piezoelectric cylinder
that allows the cavity frequency to be varied. The
mirror mounts and the mounts for the plasma tube
and aperture are attached to an invar base, and the
whole laser is enclosed in a Plexiglass box to en-
sure acoustic isolation. It is found that once ther-
mal equilibrium has been established the cavity res-
onance is normally quite stable, and the frequency
drift is usually no more than a few MHz in the
course of a measurement.

0.02- —IO

0.2 0.4 0.6 I

I I I I I I I I

2 4 6 8

FIG. 2. Variation of the intensity correlation time T,
with mean intensity (I) on and off resonance. The full
curves are theoretical and the experimental results are
shown superimposed. Where the standard deviations
are larger than the spot size, they are indicated.
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In order to control the working point of the
laser, or the pump parameter a, a variable loss ele-

ment in the form of a piezoelectrically driven knife
edge is inserted into the beam. Its displacement by
a few microns can change the working point from
a =—10 below threshold to a =10 above threshold.
The movable knife edge together with a monitor
phototube and control amplifier are made part of a
feedback loop, which allows the pump parameter

to be controlled and held constant in the range
a =—10 to 10. The main laser output beam passes

through a red filter, an attenuator if necessary, and

then falls either on a single photomultiplier, or it is

split into two with the aid of a beam splitter and

strikes two photomultipliers. The former arrange-

ment is used in photon counting measurements,

and the latter in two-time correlation measure-

ments. In both cases the photomultiplier pulses
are amplified and converted to standard form by
discriminators.

In the photon counting experiments the number

n of pulses registered in a standard interval of or-

der 1 @sec is counted by a sealer. This number is
then transferred to a computer memory, and the

cycle is repeated at intervals of several hundred

@sec. The counting interval is made sufficiently
short compared with the intensity correlation time
of the light, to ensure that the light intensity is ef-

fectively constant during the interval. After many

thousands of such counting cycles the number of
times that n counts are registered provides a mea-

sure of the probability p (n) that n photoelectric

pulses are produced in a standard measurement in-

terval. After correction for background counts and

dead-time effects, the probability p (n) can be used

to determine the moments of n. In particular, the
mean of n is related to the mean light intensity

(» by

( )= (I), (43)

where a is a scale constant, and

(n(n —1)) =a'(I~),
so that

(n(n 1))/(n) ——1=((M) )/(I)'. (44)

The constant a that relates the number of pho-
toelectric counts to the dimensionless light intensi-

ty is the only unkown, and the only adjustable
parameter in these experiments. As indicated by
Eq. (44), the relative intensity fluctuations do not
depend on a.

The background counting rate, which is attribut-

able partly to photomultiplier dark current and

partly to stray light from the gas discharge tube,
was measured separately after effectively extin-

guishing the laser. This can be achieved either by
insertion of a piece of glass into the cavity, or by
very large cavity detuning. The background count-

ing rate was never more than about 10% of the to-
tal counting rate, and usually very much less, and

it varied only by about 1 or 2%%uo as the working

point of the laser was varied. The counting dead

time was determined essentially by the discrimina-

tor pulse width; it was measured electronically and

found to be 26 nsec. The procedure for making

background and dead-time corrections has already

been described several times, " ' and will not be
repeated here.

In the photoelectric correlation measurements
the laser output beam is split into two, as shown in

Fig. 3, and the two beams fall on two photodetec-
tors. The standardized output pulses are fed to the
start and the stop inputs of a digital correlator, '

that registers the number of stop pulses n(r„) arriv-

ing within a resolution interval 5~ after a delay

~, =r5~ following the start pulse. The numbers

n(r, ) are accumulated in 256 memory channels la-

beled r =0 to 255. After many repetitions the
average (n(r, ) ) provides a measure of the proba-
bility that a photoelectric pulse appears in an inter-
val v; to r, +Sr following a start pulse, and this is
proportional to the intensity correlation function
(I(t)I(t+r„) l More pre.cisely, at sufficently low

start rates'

(n(r)) =N, &,&r[1+Hi82A(r)], (45)

where N, is the number of times the correlator is
initiated by start pulses, R2 is the average counting
rate at the stop input, and A,(r) is the normalized
intensity correlation function defined by Eq. (39).
1 —8) and 1 —82 are the fractions of the photoelec-
tric counting rates in the start and stop channels
contributed by background. Details of other
corrections which are applicable to the correlator
data at high counting rates are given in Ref. 14.

The same basic measurement procedure was fol-
lowed in both the photon counting and in the two-
time correlation experiments. The cavity frequen-
cy was first adjusted to line center, as indicated by
the fact that the laser output intensity was a max-
imum. The working point of the laser was set at
some level, the feedback loop was closed, and mea-
surements were made. The laser was then detuned

by 260 MHz from line center, corresponding to
one natural linewidth at a plasma tube pressure of
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3.5 torr, ' and the measurement was repeated. The
detuning was performed by changing the voltage
across a calibrated piezoelectric crystal. The work-

ing point of the laser was then readjusted to vari-
ous different levels in the neighborhood of thresh-
old, and measurements were carried out on reso-
nance and off resonance each time.

0.6—
I

0.5

0.4

0.3

VI. EXPERIMENTAL RESULTS 0.2

The experimental values of ((IxI) )/(I ) and

(I) are shown superimposed on the theoretical
curves in Fig. 1. For this purpose the scale con-
stant a in Eq. (43) was chosen for best fit with the
data on resonance. a is the only adjustable param-
eter in these results, and variation of n corresponds
to a translation of the data points along the loga-
rithmic (I) axis. It will be seen that there is gen-
erally good agreement between theory and experi-
ment, except for the two somewhat high points at
(I)=1.5. This may be the result of a frequency
drift in the course of the measurement brought
about by some thermal disturbance. Such a fre-
quency drift would cause the dispersion of the
light intensity to be larger than expected.

A typical form of the normalized correlation
function derived from the correlation measure-
ments is shown in Fig. 4. As in all cases, it is ap-
proximately exponential, and the effective correla-
tion time T, can be extracted by a least-squares
procedure. The results of a determination of T,
for each mean light intensity (I) on and off reso-
nance are shown superimposed on the theoretical
curves in Fig. 2. Fitting of the data involves two
adjustable scale constants, one for the light intensi-

ty (I), and one that converts measured values of
T, to the dimensionless values given by Eq. (41).
We have used a double logarithmic plot to facili-
tate the curve fitting. With one or two exceptions
which may again be connected with thermal distur-
bances, there is generally reasonable agreement be-

tween theory and experiment.

O. l—

I I I I I I I I

0 20 40 60 80 (00 I20 140 160 I80
&(p.sec)

FIG. 4. Results of a two-time correlation measure-
ment. The laser was operated on resonance near the
threshold with (I)=1. The full curve is the best fitting
exponential. function.

relationships are frequency dependent. The
frequency-dependent characteristics should evident-

ly be taken into account whenever the working
point of a laser is varied by detuning.
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APPENDIX: FREQUENCY DEPENDENCE OF
THE GAIN AND SATURATION COEFFICIENTS

We start from the relations given in Refs. 1 and
2 for the frequency dependence of the gain coeffi-
cient A and the saturation coefficient 8, which are
complex functions of frequencies in general. The
dependence on detuning g is expressible in terms
of the plasma dispersion function Z(y} of complex
argument y [Eq. (4}] in the form2

A o(:Z(p+igp), (A1)

VII. CONCLUSIONS

It follows that the effect of detuning an inhomo-
geneously broadended laser is to change its charac-
teristics in a way that goes beyond a change of the
effective pump parameter. Although the laser
theory predicts definite relationships between the
mean light intensity (I), the relative fluctuations
((ItI) )III), and the correlation time T„ these

Z(p+i rip) dZ(p+i rip)

p+i gp d(p+igp)

iZ, (p+i rip) iZ;(p+i rip)+ +
gp P

(A2)

Z„(y) and Z;(y) stand for the real and the ima-
ginary parts of Z(y), and we observe that for real

p, Z(p) =iZ;(p), and Z, (p) =0. Now
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Z(p+i qp) =Z,{p+irip)+ized(p+i rip)

Zq(p+i rip)

Zi(p)

Z,(p+iqp)
Zi(p)

A=A
Z;(p+i rip) iz, (p+i rip)

Z{p) Z(p)

where A is the gain coefficient on resonance
(q =0).

We proceed in a similar manner for B. From
Eq. (4},

{A3}

and the expression in large parentheses becomes
unity when i)=0. It follows from Eq. {Al) that
we must have

dz(y)ldy =2yZ(y) 2i—,

so that

(A4)

g tx:
Z(p+igp) dZ(p+igp) iZ, (p+igp) iZ~(p+igp)+ +

p+igp d(p+igp) gp P

ized(p+igp}+Z, (p+iqp}
1

.
} {1 . }..Z, . iz, (p~irip} iZ;(p+igp}(1 i'�}—— {1gig }jiz(p+igp}+Z, (p+igp} j +2i +

i'(p+igp} 2p i, Z„(P+ii)P} 1 1 Z, (P+&gP}
~ 1+ 1+—

P Z((P+ifip} Z, (p+iI)P} 1+'9' i) Z (P+igp}

Z,(p+igp} 1 Z, (p+igp}i —i) — . + i g+
Z;(p+igp} 1+i)i Z~(p+iqp}

(p) Z (p+ pgp) 1+ 2 Q 2p Z&(p+ tpp) /2g —p=2i', 1+ . +
p Z&(p) 1+ p

' Z; (P+iPP) ( 1+P')Z&(P+iqP)

gZ, (p+igp) . 2 Z, (p+~9p)—p~ 1+ —t'g p 1—
Zf(p+igp) gZ;(p+igp)

1

Z, (p tg+p)
1+g gZ, (p+tgp)

(A5)

In order to detenu. ine the effect of a small detuning such that qp & 1, we now use the definition (4} to
make a Taylor series expansion of Z(p+irip) about p. We then find that

Z(p+i gp) =Z(p)+i rip
dZ(y)

dp

(ihip) d'Z(y)
2t gfy .r=p

+ 0 ~ ~

=Z(p){1+2irip ri p 2g p— 2ir—i p + 2
—g p )+2rip+2iriip3 gp +P—(—5}

=z{p}f 1 —e'p'[1 —2P/I z(p)
~
+2P ——i) p ]J

+2qpl1 —p I ZV» I
', g'P'+g'P'

I
z(—p-}

I ]+o{p'

The real and imaginary parts of Z(p+i qp) are therefore given by

Z (P+'&P)=2'tip~1 P I Z{p}I &ri P'+'ri P'
(
Z(p—) ( ]+0(p'),

z (p+i9P)= I z(p} I (1—0 P ~1 —P~ I z(P} I + P —Y~ i P ]]+o(P'}
{A6}
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Both square brackets contain polynomials in g and p that tend to unity as p~0.
We now insert Eq. (A6) in Eq. (A5), and obtain after some manipulation

1

.Z;(p) 2p, Z;(p+ ihip) I+ 2 ri
3 . 2Bcr2i ' 1+, ,

—2p 2 +O(p ) ir—i 2+p +O(p )1+g' (A7)

We observe that the term in curly braces becomes 1 when g =0, and that the factor outside the braces is in-
dependent of g. The term in braces therefore describes the frequency dependence of B, and it follows from
Eqs. (A2) and (A7) that

1 2 1

Z;(p+irip) 1+ 2 r/B=B iri —
2 +p +O(p')

Z;(p) 1+vi 2 1+ri

with the ratio Z;(p+irip)IZ;(p) given by Eq. (A6). Also from Eqs. (A3) and (A6) we have

A=A 1 —gp 1—Z2 &P 2 ' 2 2

Z(p
+2p ——gp+. . .

(Ag)

Z(p
pIZ(p) I

', q p+—q -p
I
Z(p) /+ ~ ~ ~ (A9)

z,.(p+i.qp) ~
z(p)

~

= I+a'p' 1 — +2p'+
2 n'p'+O(p') (Alo)
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