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We examine the coherence properties and photon statistics of stationary light obtained by
the superposition of nonstationary emissions occurring at random times, in accordance with

a homogeneous Poisson point process. The individual emissions are assumed to be in a
coherent, chaotic, or n state. The statistical nature of the emission times results in fluctua-

tions of the relative contributions of different emissions at a given time. This is manifested

by an additional positive term, exhibiting particlelike properties, in the normalized second-

order correlation function. Thus, the photon-counting variance is increased. For coherent

emissions, interference between the randomly delayed emissions produces additional wave-

like noise. In the limit when the emissions overlap strongly, the field exhibits the correla-
tion properties of chaotic light, regardless of the statistics of the individual emissions. In
the opposite limit, when emissions seldom overlap, the light intensity is describable by a
shot-noise stochastic process, and the detected photocounts show an enhanced particlelike

noise, which has its largest value when the counting time is long. In that limit, the photo-
counts obey the Neyman type-A and generalized Polya-Aeppli distributions, when the indi-

vidual emissions are coherent and chaotic, respectively. When the individual emissions cor-
respond to the n state, the Poisson emission times result in bunching which reduces or elim-

inates the inherent antibunching associated with the n state.

I. INTRODUCTION

Since 1956, when Hanbury-Brown and Twiss ob-
served correlation in the fluctuations of two pho-
toelectric currents induced by thermal light' and by
starlight, the coherence properties of optical fields
have been studied intensively, from both a theoreti-
cal and an experimental point of view. The usu-
al kinds of light that have been investigated are
chaotic (thermal) light, coherent (laser) light, and
mixtures of both. More recently, the fluctuation
properties of antibunched light have received con-
siderable attention.

Fluctuations in the overall number of active radi-
ators in a source of light can be an important deter-
minant of its coherence properties, as pointed out
by Forrester, '+' and discussed by Loudon. '+ '

This effect is of central importance for scattered
light, where the number of active radiators is a sto-

chastic quantity. " Such fluctuations also play a
role in the generation of antibunched resonance
fluorescence, as discussed by Carmichael et al. , ' '
Jakeman et al. ,

' and Mandel et al. '
In this paper, we examine the coherence and fluc-

tuation properties of optical fields when the times
of emission of the individual radiators are describ-
able by a homogeneous Poisson process. In particu-
lar, we calculate the first- and second-order field
correlation functions for such light in the frame-
work of semiclassical theory and quantum electro-
dynamics. The mean and variance of the photon
count are also obtained. In certain limits, expres-
sions for the photon-counting distributions are de-
rived. We consider in detail a number of special
cases, including individual atomic emissions
modeled by coherent, chaotic, and number-state
descriptions.

Our model is expected to play an important role
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FIG. 1. Schematic representation of E(t) for nonsta-
tionary coherent emissions occurring at the Poisson times

itk j.

field is

(E(t))=p, f ep(t)dt=0,

and the mean value of the intensity is

(I(t)) =p f h(t)dt,

where

in a number of diverse applications. Consider, for
example, the light emitted when a stream of ener-

getic electrons impinges on a radioluminescent ma-

terial. If the times at which the electrons strike the
material occur in accordance with the Poisson pro-
cess, this randomness will be imparted to the emit-
ted optical field. This effect will be particularly
evident when the electron current is low (its fluctua-
tions are then the largest). These fluctuations are in
addition to those intrinsic to the optical field. '

In previous work, ' ' we presented a semiclassi-
cal analysis of phenomena similar to those
described above, under the assumption that the irra-
diance could be modeled as shot noise. In this pa-
per, we provide a more complete analysis of this
class of processes when the optical field, rather than
the irradiance, is modeled as a shot-noise process.
Thus, intrinsic field as well as intensity fluctuations
are incorporated into our model.

II. SEMICLASSICAL MODEL

A. Coherent emissions

Consider an optical field composed of a sequence
of independent pulses centered around random
times (tk). Let each pulse correspond to a quasi-
monochromatic field represented by a deterministic,
time-decaying, bandpass, complex analytic signal
eo(t). The complex analytic signal of the total field
is then the sum

E(t)= g ep(t —tk },
k

where the [ tk J are assumed to be realizations of a
homogeneous Poisson point process of rate p, (see
Fig. 1). The field E(t) can be regarded as a station-
ary shot-noise process produced by a linear filter
having a complex impulse response function Ep(t).
We are interested in determining the statistics of the
field E(t) and its corresponding intensity (irradi-
ance) I(t)=

i
E(t)

i

By use of the properties of shot-noise process-
es, ' ' it can be shown that the mean value of the

h (t)=
I
Ep(t)

I
(4)

The function h (t} is decaying and real, and

represents the intensity of an individual pulse. In
deriving Eq. (2), we have used the fact that Ep(t) is a
bandpass (narrow-band) function.

1. Field correlations

2. Intensity correlations

Again by use of the properties of a squared shot-

noise process, ' we readily determine the normal-

ized intensity (second-order) correlation function

The correlation function of the field Gvv'(r} can
also be determined through the use of the properties
of shot-noise processes. ' Thus,

G"'(r) = (E*(t)E(t+r))

=jM, f e' (pt)ep(t+r)dt, (5)

which is associated with a normalized (first-order)
correlation function

Gviv(r) f e p(t)ep(t+r)dt
G"'(0) f i

ep(t)
i
'dt

The optical field has a power spectral density deter-
mined by

s(tp)=p
i
Fp(tp)

i

where Fp(tp) is the Fourier transform of ep(t) The.
power spectral density is determined completely by
the shape of the decaying individual pulses. For ex-
ample, if

Ep(t) ~ exp( jtppt )exp( t /rz ), t )—0
and zero otherwise, S(tp} displays a Lorentzian
spectrum centered about coo. It can also be shown
that

(E(t)E(t+r)) =0.



362 SALEH, STOLER, AND TEICH 27

where

tt(r)= f h(t(h(ter(C(/ f ht(t)dt,

f h (t)dt f h'(t)dt (10)
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is a time representing the characteristic decay width
of a single pulse. For ~=0 we obtain the normal-
ized mean square of the intensity fluctuations

&I )/&I) =g' '(0)=2+1/It, rp . (lla)

With the comparison of Eq. (8) and the result for
chaotic light,

g (r}=1+~g ( r) ~'

it is clear that shot-noise coherent light exhibits
chaotic fluctuations, manifested by the first two
terms on the right-hand side of Eq. (8), together
with particlelike fluctuations manifested by the
third term. This latter contribution is directly pro-
portional to g(r}, the normalized autocorrelation
function of the intensity of an individual pulse. It
is also seen to be inversely proportional to pr&, the
average number of flashes (pulses} per lifetime of a
flash. This third term is therefore significant when

p~z && 1, i.e., when the flashes are sparse and do not
frequently overlap. This result is similar to that ob-
tained by Loudon. +

On the other hand, when p~z &&1, i.e., when the
pulses overlap strongly,

0.1 1.0
P* T~z&

l0

FIG. 2. Dependence of the degrees-of-freedom param-

eters M and M on the ratio P = Tlr~ for exponentially

decaying coherent emissions. Dashed lines represent uni-

ty slope.

3. Photon-count mean and variance

Let n be the number of photoelectrons released by
such light in the time interval [0,T]. The statistics
of n may be determined frym the statistics of the
integrated intensity W= I(t)dt, through the use

0
of the usual techniques. The mean value of n is

given by

when N was assumed to have a Poisson
distribution. '+ ""' Interpreting pvz as the aver-

age number of independent contributions at a given

time, i.e., letting &N) =pr~, we see that Eq. {1la}
reproduces Eq. (11b). This is not surprising in view

of the strong underlying similarity between the two

models.

g (r)~ 1+ ~g {r)
~ &n )= & W) =T&I(t))=IjaT, (12)

g'2'(0) =2+ 1/&N ) (11b)

as in the case of chaotic light. ' This limit arises
because the Poisson arrival times lead to interfer-
ence between the coherent pulse trains.

Earlier studies" on the fluctuations of light com-

posed of a random number N of waves, having con-
stant amplitude and statistically independent, uni-

formly distributed phases, led to the result

where

a= h tdt (13)

is the integrated intensity of a single pulse. Without
loss of generality, we have assumed that the quan-

tum efficiency of detection is unity. The effects of
nonunity quantum efficiency may be easily includ-
ed.2' The variance of n is determined by use of '6 ~o

var(n}=&n)+var(W)=&n)+ f f [g (t~ —t()—1]dt(dt2 .&n ) (2) (14)

Using Eq. {8},we obtain
(16)

var(n)= 1+ &n)+ —&n)',
M

where

(15)
Tf (1 r/T)rt(r)dr . — (17)
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e parameter M is the degrees of freedom ' ' for
a chaotic field with first-order correlation function
g"'(r },whereas the parameter M is the degrees of
freedom for shot-noise-intensity light. ' ' The
dependence of M and M on the ratio P =T/r~ is il-

lustrated in Fig. 2 for the case when

ep(r}=(2a/~~)' e ~e ', t &0

=0, elsewhere .

The quantities M and M are then given by'

M=2P /(e 2~+2P —1)

as for the Neyman type-A distribution which

characterizes shot-noise light. ' Intermediate values

of T/~~ correspond to light in which the chaotic
and the shot-noise behavior are mixed.

4. Photon-counting distribution

In general, it is difficult to determine the proba-

bility distribution of the intensity I(t). In certain

limits this is possible, however.
In the limit p~& &&1, viz. , when pulses do not

overlap, we can write Eq. (1}in the form

and

M = 2P/(e ~+2P —1) (20)

I(t)= g Ip(t —t» )
k

var(n) =(1+a}(n), (22)
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with P =T/rz. When T «rz, M = 1 and

M=~z/T&&1. As T/~z increases, M increases

while M decreases. In the limit T &&~&,

M= T/~p &&1 and M=1.
The ratio T/~~ affects the count variance

dramatically. For T «~z,
var(n)= (n )+(n )', (21)

as for the Bose-Einstein distribution, which charac-
terizes a single-mode chaotic field. For T p&~z,

where

lp(t)=
~
ep(r)

~

In this case l(t) itself becomes a shot-noise process.
Its statistics are then well known, ' ' as are the cor-
responding photon-counting statistics which form a
shot-noise-driven doubly stochastic Poisson point
process (SNDP}, and have been recently studied in

great detail. ' ' In Fig. 3, we present a plot of the
theoretical photon-counting distribution p (n ) versus

the count number n. The solid curve represents the
Neyman type-A, which is the limiting counting dis-

tribution for the SNDP when 13=T/r~ &&1. The
dashed curve is the Poisson, which is the appropri-
ate counting distribution for the SNDP in the limit

P«1. In both cases, the overall mean count

(n ) =10. For the Neyman type-A, the multiplica-
tion parameter a =5. Counting statistics for arbi-

trary P, as well as time statistics and multifold
statistics, are displayed in Ref. 17.

In the opposite limit, ps~ && 1, E(t}approaches a
complex Gaussian process, characteristic of a
chaotic field. Properties of the intensity fluctua-
tions of chaotic light have been studied extensive-

ly. The photon statistics ' ' ' ' are we]]

described by the negative-binomial distribution.

B. Chaotic emissions

10 I 5 20 25 30
NUMBER OF COUNTS ( n )

FIG. 3. Photon-counting distribution p (n) vs count
number n for the SNDP. Solid curve represents the Ney-
man type-A counting distribution ( (n ) =10,a =5) which

arises in the limit T/~~&&1. Dashed curve represents
the Poisson counting distribution ((n ) =10) which arises
in the limit TIr~ && 1.

We now consider an optical field composed of a
sequence of independent flashes of light, emitted at
random times I t» I, in accordance with a homogene-
ous Poisson process of rate p. We assume that each
flash of light is a realization of a time-decaying
chaotic optical field. We let eo(t) be the complex
analytic signal of the optical field of the flash emit-

ted at t =0 and take it to be a nonstationary, com-
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plex Gaussian, circularly symmetric, random pro-
cess. We write the total field as

E(t)= g Ek(t t—k),
k

(23)

where the ek(t} are statistically independent realiza-
tions of the process ep(t). Equation (23) indicates
that the field E(t) is a shot-noise process, obtained
when a Poisson-distributed random series of im-
pulses is passed through a random linear filter, with
a complex-Gaussian impulse response function (see
Fig. 4).

The correlation functions of light described by
this model can be determined by appropriate
averaging over the fluctuations of the field, for the

I

( (
ep(t)

)
') —=It(t) .

The field correlation function is

(ep (t)Ep(t+r) )=R(t,r),

(24)

(25)

where, of course, h (t}=R(t,O). By using the
Gaussian property of the field, we can expand its
higher-order moments so that, e.g.,

individual flashes, and over the fluctuations of their
times of occurrence. Let us first write some of the
statistical moments of the field produced by a single
flash. Because of circular symmetry, the mean
value of ep{t) vanishes. The mean intensity is as-
sumed to be a decaying function of time,

(Cp(t] )Ep(ti)Ep(ti}Ep(t4)) =R(ti, ti —ti )R(ti, t4 t )i+R—(t it4 —ti)R(t3ati t3) (26)

1. Field correlations

We are now in a position to determine the correlation functions of the total field (which is stationary) by us-

ing Eqs. (24) and (25) and the properties of Poisson processes. ' ' This readily gives the average intensity

(I(t))=p I R(t,O)dt=p f h(t)dt,

the first-order correlation function of the field

G'"(r)=(E'(t)E(t+r)) =p, J R{t,r)dt,

and the normalized first-order correlation function

g"'(r )= f R (t,r )dt I R (t,O)dt .

(28)

(29)

2. Intensity correlations

The intensity correlation function is

6"'(r)= (I(t)I(t+r) ) =p'
r

f R(t 0)dt + I R(t r)dt

+p I R(t,O)R(t+r, O)dt+ f ~lR(t, r)
~

dt (30}

whereas its normalized version is

g"'(r}=&+~g"'(r} ~'

+ [rt(r)+g(r)],1
(3&)

where

PTp
I lala. . Ila.aaJllllluA i„l~&4laa I//all. .

(I(('"' l & I&a'P'(lt~(a"' la(ill"' (Il&YW""

f h (t)h(t+r)dt
r}(r)=

h2(t)dt

J ~R(t r) ~'dt

J IR{t,»
I

'« ' (32)

FIG. 4. Schematic representation of E(t) for nonsta-
tionary chaotic emissions occurring at the Poisson times

(tk I



27 COHERENCE AND PHOTON STATISTICS FOR OPTICAL. . . 365

f h (t)dt
Tp co ~ (33)

h ~(t)dt

This is to be compared with the expression for ordi-
nary chaotic light

g Iz)

SHOT- NOISE CHAOTIC LIGHT

From Eq. (31) we see that the quantity g(2'(r) for
shot-naise chaotic light is larger than that for
chaotic light by a term which is inversely propor-
tional ta the number of flashes per flash lifetime

p~z. This corresponds to an additional bunching
comprised of one contribution dependent on the
shape of the pulse [rt (r )], as for shot-noise coherent
light, and another dependent on the spectral praper-
ties of the field [g(r)]. This latter contribution is,
of course, absent from shot-noise coherent light.

The normalized mean square of the intensity
fluctuations is as follows:

I~
I/p zli + ~

O

zp zp

FIG. 5. Intensity correlation function g' '(~) vs r
(solid curve) for shot-noise chaotic light with exponential
pulse decay and Lorentzian spectrum. Note that
g' '(0)=2(1+1/p~ ) and g' '(ao)=1. Dashed curves
represent the various contributions to g' '(~) as indicated
in Eq. (40).

Tll'&—

(I )/(I ) =g' '(0) =2(1+1/prp) . (34) g"'(r) =(1+e ')

This is to be compared with ordinary chaotic light,
for which g' '(0}=2, and with shot-noise coherent
light, for which g' '(0)=2+II@,r~ Again, . for

p~~ &&1, the results reduce to those for ordinary
chaotic light.

An interesting special case is that in which the
correlation function of the light for individual

pulses factors into the form

1 —2~/~ —2&/~~+ (e ~+e ') .
P1p

The intensity correlation function g' '(r) is illus-
trated as the solid curve in Fig. 5. The individual
contributions in Eq. (40) are shown as dashed
curves. The Gaussian-Markovian condition, in
which ep(t) satisfies the stochastic differential equa-
tian

R(t, r)=h(t)g(r) .

Equations (28)—(32) then yield

(35)

(36)

dep(t) =(I/r, }Ep(t)dt+dw(t),

where w(t) is a Wiener process, provides a special
case of the above example in which ~, =rz.

f h (t}h(t+r)dt
2){r)=

h'(t)dt

g(r)= ~g(r) ~'= ~g"'(r) ~',
g(2)(r) 1+ i

g(()(r)
(

2

(37)

(38)

3. Photon-count mean and variance

var(n) = I+a +1 1
(n&+ —(n)2,

M

The mean and variance of the number of pho-
toelectrons in the counting time T may be deter-
mined through the use of Eqs. (12) and (14). Substi-
tuting Eq. (31}into Eq. (14), we obtain

T

A specific example is that of exponentially decaying
pulses with Lorenzian spectrum (41)

—2&/z —r/vh{t}= e ~, g(r)=e
7p

(39) where M and M are given by Eqs. (16) and (17),
respectively, and

where 1/r, is the
spectral

bandwidth. This corre-
sponds to g(~)=e ~ and

Tf (1 r/T)g(r)dr .—
0

(42)
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Again, the parameter M is the degrees of freedom

for chaotic or wave-fluctuation noise, & is the de-

grees of freedom for the particle fluctuation noise,

and &~ is a mixed degrees-of-freedom parameter.
For emission in which the spectrum is Lorentzi-

an, and the envelope is decaying exponentially [i.e.,
when Eqs. (35}and (39}are satisfied], we obtain

C
O.

o 0.1

tO

tg.I-
CO

O

cnv a IO

o ~ 5
M ~ I

OSe ~ i ~
1

i ~ I g 1
~ i I i I i ~ s i

I
I I ~ I

I
yls

M=28 /(e +28—1), 8=T/r,

M =2P/(e ~+2P —1), P =T/r~

28——/(e +28 —1), 8=T/r, .

(43)

(45}

z
I-
R
0

O.OI

The parameters M and M~ are determined by the
spectrum, whereas M is determined by the pulse en-

velope. However, the dependence of M and M~ on

T/7 p and T/v;, respectively, are similar, both being

opposite to the dependence of M on T/r, . When

T/v; is large, M is large and M~ ——l, so that

var(n) = I+a 1+ 1
(46)

(47}

When T/r~ is also large, var(n)=(1+2a)(n),
which should be compared with Eq. {22). When
both T/~, and T/~~ are small, additional particle
fluctuations are cut apart and chaotic behavior re-
sults, so that

var{n}=(n)+(n)

I i I i i I i i i & I i i I i I i i i i I

0 S IO IS 20 25 30

NUMBER OF COUNTS (n)

FIG. 6. Generalized Polya-Aeppli photon-counting
distribution p(n) vs n. Solid curve represents a special
case, the simple Polya-Aeppli, for which M =1
((n}=10, a=5}. Dashed curve represents the Bose-
Einstein counting distribution ((a ) =10) which arises in

the limit of very short counting time.

distribution, which has the moment-generating
function

(e '")=exp I [1—a(e '—1)] —1}a

The special case of a simple Polya-Aeppli distribu-
tion (M = 1) is illustrated in Fig. 6.

4. Photon-counting distribution

The intensity probability distribution and the
photon statistics for light described by this model
are difficult to determine. One limit in which the
photon-counting statistics can be approximated is
that of sparse pulses (ps~ &&1). The light intensity
can then be written as

I(t)= QIk{t tk), —
k

where Ik represents the intensity of a nonstationary
chaotic light pulse. If the counting time T is much
larger than ~~, then we have a Poisson-distributed
number of pulses.

If the pulses are assumed to have rectangular pro-
files, and if the field is assumed to be chaotic, the
number of photons in a single pulse will be approxi-
mately described by the negative-binomial distribu-
jon 6,20, 22, 26 It has been previously shown2s that

the number of photons in an exponentially decaying
pulse of Lorentzian spectrum may also be well ap-
proximated by the negative-binomial distribution.
The total number of collected photons must then
follow the generalized Polya-Aeppli' ' counting

III. QUANTUM-ELECTRODYNAMIC
MODEL

In this section we develop a quantum-mechanical
model for the optical field with features analogous
to those of the semiclassical model described earlier.
Consider an optical field generated by a sequence of
emissions, at random times I ta}, in accordance with
a homogeneous Poisson point process. The
positive-frequency part ' of the field, which is now
an operator, may be written as the sum

E+(t)= QEk+(t ta), — (49}
k

where Eg,+(t), the positive-frequency part of the
field for the kth emission, is itself composed of a
number of modes

Ek+(t) = g ct(t)a~ t . (50)
I

Here, a~I is the annihilation operator for the lth
mode and the kth emission. The time dependence
of each mode is determined by the coefficients cI(t),
which are chosen such that the field of a single
emission is nonstationary (time decaying).

We wish to determine the first- and second-order
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correlation functions of the field. ' We shall first
calculate these functions, conditioned on a given
realization of the emission times {tk j, by using the
relations

emissions are identical), we obtain

G"'(r, r+r
~ {rk j)=g"(r)$'(r+r),

G"'(t r+r
I {rk j) I@'(r) I'I g(r+r) I'

(54)

G"'(r,r+r
~

{rk j)=tr[pE (r)E+(r+r)], (51) (55)

G"'(r,r+r
~ {tk j }

=tr[pE (t)E (t+r)E+(t+r)E+(t)],
(52)

where p is the density operator of the field and
E (t) is the operator representing the negative-

frequency part of the field. We shall then average
Eqs. (51) and (52) over the fluctuations of {tk j to fi-
nally obtain the correlation functions

where

g'(t) = g ep(t tk),—
k

Ep(i) = g abaci(r) .
I

(56)

(57)

Equation (56) has the same form as Eq. (1); the re-

sult of averaging Eqs. (54) and (55), as specified in

Eq. (53), should therefore be identical to the classi-
cal results [See Eqs. (5), (6), and (8)—(11)].

G"'( )=(G"'(r,t+r
~

{& j)), j=1,2 (53)

where ( ) represents the classical ensemble average
over the fluctuations of {tkj. The aforementioned
classical ensemble average can be thought of as re-

flecting an indeterminacy of the initial state of the
emitter which can be described by a suitable initial
density operator for the combined matter-field sys-
tem. The problem cannot be pursued further unless

p is specified. We therefore consider three cases
below.

A. Coherent state

Assuming that the system is in a coherent state

i=
I {akij && {ak,, i j I

and choosing akI ——al (i.e., the state of different
I

B. Thermal state

Let the system be in a thermal (chaotic} state
described in terms of the P representation ' as

p f ~( {ak 1 j }
l
{ak i j & & {ak l j I g d'ak l

k, l

(58)

with

~({akim j)= II (1/en')exp( 1 akim I
/nl) .

k, l
(59}

Note that the average occupation numbers n~ are in-

dependent of k (i.e., emissions are assumed to be
statistically identical}. This results in

G"'(r, r+r
~

{rk j)= QR(r rk, r), —
k

G"'(r,r+r
~

{rkj)=G"'(r,r
~

{rkj)G'"(r+r,r+r
~

{rk j)+ {
G'"(r,r+r

~
{rkj){'

= QR(t tk, O) QR(t+r —tk, O)+ QR(t—tk,r)—
k k k

(60)

(61)

where

R(t, r) =tr[pEk (t)Ek+(t+r)]

= g n(c("(t}ci(t+r) .
I

After averaging over {tk j by using the known prop-
erties of shot noise, we reproduce Eqs. (27)—(33),
which were obtained in the semiclassical model;
here R(t, r) is given by Eq. (62). The function
R(t,~) can be thought of as the correlation function

I

of a single emission. If a single emission is also a
single mode, then the summations in Eqs. (50) and
(62) collapse to one term, for example, lp. The
first-order correlation function [Eq. (28)] is then

simply an autocorrelation of the amplitude

G"'(r) =pn~ f ci'(t)ci (t+r)dt . (63)

The functions q(t) and g(t}, which determine the
second-order optical correlation [Eq. (31)],are simi-
larly determined in terms of cI (t).
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C. Number state

Finally, we consider a state which does not have a
classical analog —the number state (Fock state }

(64)

We further assume that nk h =n( (independent of k}.
Equation (51) gives

G' '(t, t+r
I jtk) )= QR(t —tk&T),

k

where

R (h, r )= g nhch'(h)ch(h+ r ),
l

and Eq. (52) yields

(65}

(66)

G' '(t&t+r
I [tk) )= QR(t —tk, O) QR(t+r tk, O—}+ QR(t ts&r—) —QR((t tk, T}—,

k k k k

where

R i(t, r) = g (nl +nl }
I
c((t)ch(t+r }

I

l

When the Poisson times of occurrences are averaged out, we have

G"'(r) =p f R(t,r)dt,

G' '(r)=p f R(t, O)dt +p, f R(t, r)dt +p f R(t,O)R(t+T, O)dt
L

+((h f IR(t, r)
I

dt p f —Ri(t, r)dt .

{67}

{68)

(69)

(70)

f R(t, r)dk
g(i)(r ) f R(t, O)dk

g"'(r)=1+ Ig'"(r) I'

+ [rt(r)+g(r) —g(r)],1

PTp

(71)

(72)

where Tt(r), g(r), and r~ are determined from
R(t,r ) by the use of Eqs. (32), (33), and where

f R, (t,r)dt
g(T) = (73)

IR(t,O) I'dh

The normalized first- and second-order correlation
functions are then

1
(1—1/neo) ~g(2)(0) (75)

PVp

This is to be contrasted with the result
g' '(0}=1—Ilnho for simple n-state light with
n =nlo

In Sec. II we demonstrated that coherent pulses
of light [for each of which g' '(r)=1] emitted at
random (Poisson) times, in the limit of dense emis-

sion, manifest chaotic behavior for which

g (2 )
(T ) 1 + I

( ( )(,}
I

2

Here, too Eq. (72) shows that antibunched pulses of
light [for each of which g(2)(r}&1], in the same
limit (p, r~ && 1), manifest identical chaotic behavior.

It is interesting to observe that g' '(r) for the
shot-noise n state, Eq. (72), is identical to g' '(T ) for
shot-noise thermal light, Eq. (31), except for the
fifth term in Eq. (72), which is negative. For r =0,

g' '(0)=2+ [2—g(0)],
PTp

(74)

where g(0) can be determined from Eqs. (73), (68),
and (66). For the example in which the individual
emissions are single modes I=I(), g(0) = I+1/nho,
and

D. Comparison of results

We conclude that in the limit of dense emissions
at random times, we cannot distinguish between
thermal, coherent, and antibunched n-state light by
means of the second-order correlation function.
The shot-noise fluctuations are such that all exhibit
chaotic behavior in this limit. This result expresses
a fundamental difficulty in attempts to generate an-
tibunched light by excitations at random times, as
pointed out by Jakeman et al. '

In the opposite limit, however, when pulses sel-
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dom overlap (prz « I), the intensity correlation
functions for the three states are given by

g' '(r)= [i)(r)], coherent
P7p

1 [r)(r)+g(r)], thermal
PTp

1
[7/(T)+g(r) —g(r)] number .

P7p

(76)

The differences are obviously measurable. In par-
ticular, for ~=0,

g(2)(p)
P7p

2

coherent

thermal (77)
PVp

2
[I —g(0)/2], number .

JM7p

IV. EXAMPLES OF THE GENERATION

OF SHOT-NOISE LIGHT

A. Radiation by a classical shot-noise
current distribution

j(t)= g jp(t —tk)
k

(80)

where the [tk] are random times, and jp(t) is a
deterministic function,

cc (t}=ga p(t —tk)
k

where

(81)

a p(t)= f jp(t')l (t')dt' . (82}

Consider a current distribution j (t) radiating a
field described by the state

~

qI(t}). It is known
that if

~

%(0)) is the vacuum state, then at time t
the field is in a coherent state

~

% (t})=e'~'"
~
[a (t) I ),

where a (t) is a linear combination of j (t'),
t'= [0,t],

a (t) = Ij (t')y (t')dt', (79)

y~(t) and 4(t) being some functions of time. ' If
the current distribution is stochastic, then the radi-
ated field is no longer coherent. In particular, if
j(t) is the shot-noise process

If the radiated field is written in the usual form

E+(t)=i g (%co~/2)'~ a~(t)e (83)

then the conditional first- and second-order correla-
tion functions, given a realization of times ftkI,
inay be cast in the form of Eqs. (54) and (55) with

ep(t)=i g(irico /2)' a p(t)e (84)

The result is shot-noise coherent light which ha!
been studied in Secs. II and III, and whose correla-
tion functions are given by Eqs. (6}and (8).

B. Interaction between radiation and matter
in the presence of a classical

shot-noise driving force

In this example we consider fluctuations of radia.
tion from an atomic system driven by a classical
force which fluctuates in accordance with a shot-

noise process. To begin, we assume that the optica1
field is a single mode, harmonic oscillator of fre-

quency co, . The field is coupled to a radiator, a sin-

gle atom which is also represented by a harmonic
oscillator, of frequency cob. The atom is excited b)
a driving force F(t) which is a random sequence o)

impulses following a Poisson point process. Thi

driving force results in random excitations of thi

atom, and hence the radiation of random flashes oI

light.
The Hamiltonian of the overall system may b

written as a sum

H=co, a a+cobb b+p(a b+ab )

+g(b+b )F(t) (85)

of the Hamiltonians of the field and atom (a and b

being their lowering ' operators, respectively}, a
Hamiltonian of atom-field interaction in the dipole
approximation (p being the coefficient of coupling),
and a Hamiltonian for the interaction between the
driving force and atom (g being the coefficient of
coupling). The driving force is treated classically,
and can be thought of as a sequence of exciting par-
ticles which impinge on the atom at random.

The dynamics of the system can be determined by
solving the Heisenberg equations for the operators
a(t} and b(t). We have undertaken this by applying
a transformation which decouples the system, solv-
ing the decoupled equations, and transforming back
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to the original operators. The derivation is present-
ed in Appendix A. The results are

a(t) =D(t)a+C(t)b+g(t), (86)

where D(t) and C(t) are the time-decaying func-
tions given in Appendix A, and g(t) is related to
the driving force by

P(t) =ig f F(t')C(t t')Ct—' . (87)

If the driving force is a random process of Poisson
impulses

F(t)= g 5(t —tb),
k

then the function P(t) is a shot-noise process'

P(t)=ig+C(t —tb) .
k

{88}

(89)

We can now write the positive-frequency part of the
optical field as

E+(t}cc D(t)a +C(t)b +f(t) . (90)

This is the field radiated when a sequence of im-
pulses drives a single atom interacting with a single
field mode.

If we assume that we have, instead, a large num-
ber of atoms and that each incoming impulse in-
teracts with a different atom, we can rewrite Eq.
(90) in the form

E+{t)~D{t)a+g C(t —tb)bb+g(t),
k

(91)

f(t)=i ggtCt(t tb) . —
k, l

(93)

where bk is the lowering operator of the harmonic
oscillator representing the kth atom.

We can, furthermore, allow the field to be mul-
timode by writing

E+(t) ~ QDt(t)at+ g Ct(t tk)bb t+Q(t), —
l k, l

(92}

Here a~ represents the lowering operator of the lth
field mode and bkl the lowering operator of an
atom which is driven by the kth impulse to interact
with the 1th field mode. The functions Ct(t) and
Dt(t) are obtained from C(t) and D(t} by replacing
e and co~ with m, l and cobl and by multiplication
with the normalization constants +to,t and Qcobt)
respectively. We readily observe that the second
term of E+(t) in Eq. (92) is identical to the field
described by Eqs. {49) and (50), except that bk t re-
places ak l. We note that if the initial state of the
field is the vacuum state, the first term of Eq. (92}
does not contribute to the first- and second-order
correlation functions, and we can ignore it. To ex-
amine the effect of the third term, we consider two
examples.

1. Coherent emissions

Let the field modes and atoms initially be in
coherent states

~
[a,t] ) and

~
Iabk t] ), respectively.

Conditioned on a given driving force [deterministic
g(t}], it can be shown (see Appendix B) that the
field remains in a coherent state.

In the special case in which abk l
——0, anal =0, i.e.,

at t =0, neither the field nor the atoms are excited
and we obtain the first- and second-order condition-
al correlation functions of Eqs. (54) and (55) with
8'{t}=g(t). Averaging over the times I tb [ results
in correlation functions reproducing Eqs. (5)—(11),
with eo(t) = gt ct(t)

2. Mixture of coherent and thermal emissions

In this example we assume that at t =0 the field
is in its ground state, while the atom is in a thermal
state with a density operator as in Eqs. (58) and
(59). Through the use of Eq. (91},we can determine
the conditional correlations

G (t&t+r
~ t tb] ) = QR(t tb)r)+f'(t)p(t+—r) )

k
(94)

G' '(t)t+r
~
Its[)= QR(t —tk, 0)QR(t+r tb)0)+ QR{t —tb)r}—

k k k

+
~
p(t)

~ ~
g(t+r)

~
+2Re g(t)rp'(t+r) QR(t —tb)

k
(95)

where R(t, r) is given by Eq. (62).
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Averaging over the fluctuations of the times Irk I, and using Eqs. (92) and (62), we finally obtain

6'"(r}=p,f R(r, r)dr+a f eo(t)eo(r+r)dt,

G'"(r)=p f R(i,o}dr + f ~R(r, r) ~'Ch+ f h(r)dr + f eo(r)eo(r+r)dr
I

+2Re f e,(t)eo(t+r)dt f &(r,O)«

(96)

+p f" z(t,o)z(r+r, o)cr+ f" ~z(t, r)~'cr+ f" i(r)a(r+~)cr

+ f eo(t+r)e, (r)R(r, o)dh (97)

where

eo(t) = i g g~c—~(r), &(r)=
~
eo(i)

~

',
I

ands as before~

R(r, r )= g n&c&'(r)c&(r+ r } .
I

(99)

V. CONCLUSION

Vfe have investigated the coherence properties
and photon statistics of light generated by a random
number of radiators emitting at random times, in
accordance with a homogeneous Poisson point pro-
cess. We have shown that such underlying random-
ness of the emission times imparts additional fluc-
tuations to the radiated field. When the optical
field at a given time is a result of contributions
from a large average number of radiators, the light
becomes chaotic, whether the individual emissions

The first-order correlation function is the sum of
contributions of a thermal part and a coherent part.
By examining Eqs. (98) and (99}, we see that the
thermal part dominates if the average occupation
number of the atoms n~ is much greater than

~ gI ~,
the coefficient of couphng between the driving force
and the atoms. In this case, we have a thermal field
with underlying shot-noise fluctuations as discussed
in Sec. IIIB. The second-order correlation function
is given by Eq. (97). It is the sum of two contribu-
tions. The first dominates for dense emission (large
p). It appears to be the sum of two interacting ef-
fects. The underlying shot noise has "thermalized"
the originally coherent component. The second
term of Eq. (97), which contains components pro-
portional to p, dominates at low-density emission.
It contains contributions from the two fields as well
as from an interference term.

are themselves coherent or chaotic. This is a conse-
quence of the central limit theorem. When the
average number of radiators contributing to the op-
tical field at a certain time is not large, the devia-
tions from chaotic behavior have been calculated.
These deviations are characterized by an increase in
the normalized second-order correlation function,
which corresponds to an increase in the variance of
the number of photons counted in a fixed time in-
terval, and to additional photon bunching.

The excess variance is proportional to the mean
number of photons, indicating that these excess
fluetuations are particlelike in nature. Further-
more, we have shown that the corresponding excess
fluctuations of the number of photons in a given
time interval are enhanced by an increase of the
time interval. This is unlike the excess noise due to
wave fluctuations, which are known to be averaged
by an increase in the counting time.

It has also been shown that, when the lifetime of
the individual emissions is so short, or when their
rate is so low, that overlap is unlikely, no interemis-
sion interferenee takes place, and the light intensity
is described by a shot-noise stochastic process. The
photons are then described by the shot-noise-driven
doubly stochastic Poisson point process, which also
exhibits excess bunching of a particlelike nature. If
counted over a counting time longer than the life-
time of a single emission, the excess fluctuations
due to random emission times exhibit themselves
fully. In this case, when each single emission is
coherent, and when it is chaotic, the photons are
described by the Neyman type-A and the general-
ized Polya-Aeppli counting distributions, respec-
tively.

We have also formulated a general quantum-
electrodynamie model for an optical field generated
by a sequence of emissions at random times. This
enabled us to examine the effect. of random emis-
sion times in cases when the emissions cannot be
described classically. For example, when the indivi-
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dual emissions are in the highly antibunched Fock
state, we find that the randomness of the emission
times results in particlelike bunching which quickly
overpowers the inherent quantum-mechanical anti-
bunching, as the rate of emissions increases and the
emissions overlap. In the limit of a large number of
overlapping emissions, the second-order correlation
function eventually exhibits the usual (bunched)
chaotic behavior. The important role played by the
randomness in the number of radiators for the ob-
servation of antibunched light in resonance fluores-
cence is well recognized. '

While the analysis presented in this paper has
been limited to the more common statistical models
which individual emissions may satisfy (coherent,
chaotic, coherent-chaotic mixture), other statistical
models may be analyzed through the use of the
same methods.

Spatial effects have also not been considered here.
These effects may be included by assigning posi-
tions to the radiators, and by making the radiated
field a function of position as well as time. By as-
suming that the positions of the radiators in the
source volume, and their emission times, are ran-
dom points in four-dimensional time-position space,
in accordance with a 4D Poisson point process, we
may proceed to determine the temporal and spatial
coherence properties of the radiated field through
the use of generalizations of the methods employed
in this paper.
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where

Ho co,——a a+cobb b+p(a b+ab }

and

H, =g(b+b )F(t) .
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We shall determine the two normal modes of the
Hamiltonian Ho. Both of these normal modes will

be driven by the external force F{t).
Defining a pair of lowering operators, a and b',

by means of the relation

a a P a
A A (A4)
b /& b'

and substituting Eq. (A4) into Hp& we determine
the quantities a,P,y, 5, such that Ho is uncoupled
in the new variables a,b'. The condition for decou-

pling is given by

booby'5+ro, a'p+p(a'5+py') =0 . (A5)

I
&

I

'+
I & I

'=1

I y I

'+ 151'=1,
a*y+P'5 =0 .

(A6)

(A7)

In terms of the primed operators, Ho becomes

Ho ——Q,a' a +Qbb' b', {A8)

The necessity for the commutation relations
among the various operators a,a,b,b to be
preserved, i.e., to be satisfied also by the operators,
a,a', b', b', leads to the constraints
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i y i
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+2p«(a'y),

IIb b I
5

I
'+~.

I & I

'+ 2p «(&'5 )
(A9)

APPENDIX A: SOLUTION OP THE
HEISENBERG EQUATIONS

OF MOTION

In this appendix, we outline the solution of the
Heisenberg equation of motion for the field opera-
tor a(t), for the system described by the Hamiltoni-
an in Eq. (85). We do the calculation in two stages.
First we ignore the external driving force F(t) that
is coupled to the atomic oscillator in Eq. (85). We
write the Hamiltonian as P =sine,

P

y =—sin8 e'", (A 1 1)

The external driver part of the Hamiltonian be-
comes

H~ ——[g(ya +y'a' )+g(5b'+5'b' )]F(t) .
(A10)

Therefore, both normal modes are driven by the
external force, as previously stated. The parameters
a,P,y, 5 may be found by solving Eqs. (A5) —(A7).
We can satisfy Eqs. (A6) and (A7) identically with
the choice

a =cosO,

H=Hp+Hi, (Al) 5 —cos ge'"
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Substituting this into Eq. (A5}, and recalling that
we take co, to be real and Nb=tt)bp —it, we get two
equations that determine 8 and u,

tan(28) =2p cos(tt )/( toso —to, ),
sin(28) =—2p sin(tt)/I' .

(A12)

We solve the dynamical problem in terms of the
primed operators, and transform the solution back
to the original variables. The Heisenberg equation
of motion for the operator a (t) is

i =[a,H]=Q, tt +gy'F(t) .
di

(A13)

This is the equation for a forced harmonic oscillator
whose solution is easily arrived at and is given by

a (t) =[tt (0)+P,(t)]e

where (A14}

ttt, (t)= igy' f F—(t')e ' dt'.

The equation for b'(t}, and its solution, follow in

similar fashion. The result is

b'(t) =[b'(0)+Ps(t)]e

with (A15)

D(t)=e ' cos 8+e sini8, (A17)

C(t) =sin8 cos8 e '"(e —e ' ), (A18)

f(t) =ttp, (t)cos8 e ' +ttts(t)sin8 e

(A19)

Substituting from Eqs. (A14) and (A15) in Eq.
(A19) and using Eqs. (All) and (A18}, we obtain
Eq. (87).

pb(t)= ig5' f—F(t')e ' dt'.

Using Eq. (A4), and its inverse, as well as Eqs.
(Al 1), (A14), and (A15), we finally obtain Eq. (86),

a(t) =D(t)a+ C(t)b+ P(t), (A16)

where

APPENDIX B: PERMANENCE OF THE
COHERENT STATE

z, =a'p, +y*pb,
zb' P }ua+5 isb

(B2}

From Eq. (Bl) we see that the initial coherent
state of the (a,b) modes implies that the (a,b'}
modes are also initially in a coherent state. It only
remains to show that the Hamiltonian H =Hp+H~
given in Eq. (Al) will cause the initially coherent
state to evolve into states that are also coherent.
This need not be done explicitly here because H,
when written in terms of (a', b'), is of the form that
is known to preserve the coherence of a coherent in-
itial state. The only effect of such Hamiltonians on
coherent states is to cause the complex amplitude of
the state to evolve in time. In fact, it evolves in
time the way the complex amplitude of the corre-
sponding classical system does. A discussion of this
class of Hamiltonians and related issues has been
presented elsewhere. '

We prove here that if the field and atom of the
quantum system described by the Hamiltonian of
Eq. (85) are in coherent states initially, then they
will remain in coherent states (not necessarily the
same ones) at all later times. This result rests on
the fact that the relation between the operators
(a™,b'), defined in Appendix A, and (a,b ) is a linear
one. This leads to the result that the ground state
for the (a', b'} modes, i.e& ~0), 8 ~0)b, is also
the ground state for the (a,b ) modes.

The coherent states can be written in the form of
the Weyl operator D;(a)=exp(aa —a'tt) acting
on the ground state

~
0), . Since the (a,b) modes,

and the (a,b'} modes, share a common ground
state and since the generator of the Weyl operator is
linear in the raising and lowering operators, it fol-
lows that the product of two Weyl operators in the
(a,b') basis is equal to a product of two Weyl
operators in the (a,b ) basis, i.e.,

e ( o'} s (es'}=D,"(pa }Ds (ps } i (Bl)
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