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A model is presented for the dynamical evolution of superfluorescence from an optically

pumped three-level system. The full propagation, transverse, and diffraction effects are tak-
en into account. With the use of a previously developed algorithm, a computational simula-

tion was constructed from this model and results are presented and discussed. In particular,
it is shown that the injected coherent pump-pulse initial characteristics, such as on-axis

area, temporal and radial width and shape, can have significant deterministic effects on the
superfluorescent pulse delay time, peak intensity, temporal width, and shape. Thus, by

specifying certain initial properties of the injected pump pulse, the superfluorescent pulse
can be shaped and altered. The results predict the conditions under which an injected light

pulse of a given frequency can be used to generate, shape, and control a second light pulse of
a different frequency via a nonlinear medium, thus demonstrating a new aspect of the
phenomenon of light control by light.

I. INTRODUCTION

Superfluorescence' is the phenomenon whereby a
collection of atoms or molecules is prepared initially
in a state of complete inversion and then allowed to
undergo relaxation by collective, spontaneous decay.
Since Dicke's initial work, there has been a
preponderance of theoretical and experimental work
dealing with this process.

With the exception of the more recent work of
Bowden and Sung, all theoretical treatments have
dealt exclusively with the relaxation process from a
prepared states of complete inversion in a two-level
manifold of atomic energy levels and thus do not
consider the dynamical effects of the pumping pro-
cess. Yet, all reported experimental work ' has
utilized optical pumping on a minimum manifold of
three atomic or molecular energy levels by laser
pulse injection into the nonlinear medium, which
subsequently superfluoresces.

It was pointed out by Bowden and Sung that for
a system otherwise satisfying the conditions for su-
perfluorescent (SF) emission, unless the characteris-
tic super-radiance time' ~z is much greater than the
pump-pulse temporal duration ~&, i.e., ~~ &&~z, the
process of coherent optical pumping on a three-level
system can have dramatic effects on the SF. This is
a condition which has not been realized over the full

range of reported data.
In this paper, we present calculational results and

analysis for the effects of coherent pump dynamics,
propagation, transverse, and diffraction effects on
SF emission from an optically pumped three-level
system. The full, nonlinear, copropagational aspects
of the injected pump pulse, together with the SF
which evolves, are explicitly treated in the calcula-
tion. Not only do our results relate strongly to pre-
vious calculations and experimental results in SF,
but we introduce and demonstrate a new concept in
nonlinear light-matter interactions, which we call
light control by light. We show how characteristics
of the SF can be controlled by specifying certain
characteristics of the injection pulse in the regime
'Tp ) 'Tg.

In Sec. II, the model upon which the calculation
is based is presented, and the algorithm used in the
simulation is outlined. Results of the calculation are
presented and discussed in Sec. III. Section IV is
used to summarize the results and cite implications
and to discuss future work.

II. MODEL FOR THREE-LEVEL
SUPERFLUORESCENCE

The model upon which the calculation is based is
composed of a collection of identical three-level
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atoms, each having the energy-level scheme shown
in Fig. 1. The 1~3 transition is induced by a
coherent electromagnetic field injection pulse of fre-
quency coo nearly tuned to the indicated transition.
The properties of this pumping pulse are specified
initially in terms of the initial and boundary condi-
tions. The transition 3+ 2 evolves by spontaneous
emission at frequency u. It is assumed that the
energy-level spacing is such that e3 & e2 »e1 so that
the fields at frequencies coo and co can be treated by
separate wave equations. The energy levels 2~1 are
not coupled radiatively due to parity considerations.

Further, we neglect spontaneous relaxation in the
3~1 transition, and spontaneous relaxation in the
3~2 transition is simulated by the choice of a small,
but nonzero, initial transverse polarization" charac-
terized by the parameter (('io-10 . Our results do
not depend upon nominal variations of this parame-

ter. The initial condition is chosen consistent with
the particular choice of Po (see the Appendix} with
nearly all the population in the ground state and the
initial values of the other atomic variables chosen
consistently ' according to the initial equilibrium

properties of the system. ' The full statistical treat-
ment of the quantum initiation process with result-
ing temporal fluctuations will be presented in a fu-
ture development. Thus, the results presented here
are to be regarded as expectation values or ensemble
averages.

We use the electric-dipole and rotating-wave ap-
proximations and couple the atomic dipole moments
to classical field amplitudes which are determined
from Maxwell's equations. The Hamiltonian which
describes the field-matter interaction for this system
comprising N atoms is

3 N ~ N

4 =A' g g eiR' ' —g [—Q'J'Ri)'exp[ i (co—t kr—j)] Q'i R—g'exp[i (cot k. ri }—]]
r=1 j=1

rj rr
j=1

Icoi|"Rsi'exp[ —i (coot —ko rj )]—coi(' R if'exp[i(cot —ko rj )] I .
2 .j=1

(2.1)

The first term on the right-hand side (rhs} of Eq.
(2.1) is the free atomic system Hamiltonian with
atomic level spacings e,z, r=1,2,3; j =1,2, . . . , N.
The second term on the rhs describes the interaction
of the atomic system with the fluorescence field as-
sociated with the 3~2 transition, whereas the last
term on the right in (2.1} describes the interaction
between the atomic system and the coherent pump-
ing field. The fluorescence field and the pumping
field have amplitudes Q'i' and co'i(", respectively, in
terms of Rabi frequency, at the position of the jth
atom, rj. The respective wave vectors of the two
fields are k and ko, and the carrier frequencies are co

/
V

V

FIG. 1. Model three-level atomic system and electric
field tunings under consideration. For the results report-

ed here, the injected pulse is tuned to the 1~3 transition.

and coo. It is assumed that the electromagnetic field
amplitudes vary insignificantly over the atomic di-
mensions and that all of the atoms remain fixed dur-

ing the time frame of the dynamical evolution of the
system.

The atomic variables in (2.1) are the canonical
operators~ Rki/' which obey the Lie algebra defined

by the commutation rules'

[Rij &Rlk ]=Rik5lj~mn Ij 5ikgmn ~ (2.2}
(m) (s) m (m)

where i,j=1,2,3; nni= 1, ,2. . . , N. The Rabi rates
Q' 1' and coiii" are given in terms of the electric field

amplitudes E'~' and Esi', respectively, and the ma-

trix elements of the transition dipole moments ups'

and u~&,
'

by

E(j) (j)
g(j) (2.3a)

fi

j() 3 i (2.3b)
fi

where we have considered only one linear polariza-
tion for the two fields and propagation in the posi-
tive z direction.

It is convenient to canonically transform (2.1) to
remove the rapid time variations at the carrier fre-

quencies co and coo and the rapid spatial variations

due to the wave vectors k and k . We assume that
the field envelopes O'J' and toit' vary much more

slowly than the periods co
' and coo, respectively.

In the transformed representation, we are thus deal-
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ing with slowly varying field amplitudes and atomic
operators. The desired unitary transformation U,

such that

where

lt,,'~'(t) =empt —kp rj, (2.6a)

~,=U~U-',
is given by

(2.4)
}{ji"(t)=[(cop—a))t —(kp —k) rj] . (2.6b)

U(t) = g exp[ilL, ', '(t)R 3'3 ] exp[i}LS"(t)R$3'],

(2.5)
I

If (2.5) is applied to (2.1) and the commutation rules

{2.2} are used, we get for the canonically
transformed Hamiltonian A z,

~ N N

r —iit' g 6' 'R 33 +i)l g 5' 'R33 ——g {O' 'R gp' —O' 'R33 }——g (p3tI"R fj' —pili' 'R I3 }
j=1 j=1 j=l j=1

(2.7)

where

=&33 —oi 5 =ePz+pi —pioi(j) ( ) (j) ( )

The equations of motion for the atomic variables are calculated from (2.7) according to

(2.{))

(2.9)

By imposing the canonical transformation defined by (2.5} we, in fact, transformed to a slowly varying opera-

tor representation which is consistent with the slowly varying envelope approximation to be imposed later on in

the Maxwell's equations coupled to the hierarchy of first-order equations (2.9).
If (2.7) is used in (2.9},the following hierarchy of coupled nonlinear equations of motion is obtained for the

atomic variables:

R,",'= , (O—~'—Rg'+O"J'Rg,') , {~g—'R—3i'+~„"''RI3') r~~(R33—
' R",,'),—

R i'i~ =+—,(~i't"R 3i'+~a"'R i3') —r ~ {R
't'i" —R'i'i'»

'P

~ ~

R 33' —— i5'J'R gp' ———,O"'J'(R 33 —R 3'3') —, p)a' 'R 'f'z' —yx—R33,

R i3
—— i O'J'R i2+——,(O' 'R i3+p3i['R32 } 1 iR t3, —

Ri3 = i5 JR t3 ———,O'I'Ri3+ , cog (Rg ——Rt'j )—yiRi3 ~

(2.10a)

(2.10b}

(2.10c}

(2.10d)

(2.10e)

(2.10fl

In Eqs. (2.10), we have added phenomenological re-
laxation y~~ and dephasing y& and taken these to be
uniform, i.e., the same parameters for each transi-
tion. For the diagonal terms R~$' the equilibrium
values are designed as Rkk', the same for all atoms.

We shall treat the Eqs. (2.10) from this point as
c-number equations, i.e., expectation values. Fur-
ther, we assume that all the atoms have identical
energy-level structure and also, we drop the atomic
labels j, so it is taken implicitly that the atomic and
field variables depend upon the spacial coordinates
x, y, and z, as well as the time t.

It is convenient to introduce a new set of real vari-
ables in terms of the old ones. We let

Wkl Rkk Rll s k )1 (2.11a)

Rkl ———,( Ukl+i Vkl), k ~1 (2.11b)

0 =X+iY,
cop =Xp+i Yp,

(2.11c)

(2.11d)

where X, Y, Xp, and Yp are real variables.
If the transformation (2.11} is applied to (2.10},

the resulting equations of motion for the real vari-
ables [ IV~, Ust, V~] are

IV3i =
2 [X3U$ —YV3$ J

—[Xp U3i —Yp V3i I

y(( ( W31 W31 ) (2.12a)

1

IV32 = —[XU33—YV33 J
—

2 [XpU3i —Yp V3i

—y)|(W —W3"), (2.12b)

where Ukl, Vkl, and Wkl are real variables, and

Ukl Ulk s ~kl ~1k'
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1

U32 +'5~32+X~32 —
2 (Xp U12 —Yp ~12)

—Xi U32 {2.12c)
1

Vs 2 =—5U3z —YW32 + i (Xo V2] + Yo U2] )

ized radial coordinate p=r/r&, where r is the radial
distance and rz is a characteristic spatial width. In
(2.14), re ——zg,]rz, where g,]rz is the on-axis effec-

tive gain

'2
—rj.~32

1

U3] = IV3] i (XU2] + YVg] )+XOW3]

(2.12d)

geff p
=

P 932
N P31"

nAc
T2 (2.15)

1

V3] ——+6U3] ——,(XVz] —YUi] }—Yo W3]

(2.12e}

(2.12f)

where N is the atomic number density (assumed
longitudinally homogeneous), and n is the index of
refraction assumed identical for each transition
wavelength. The quantity

U2] ———5']+ i (XU3] —YV3])
1+ {—0 32 Yo—V3z) ri—U2»

I
V2] ——+5U2]+ ~ {XV3]+YU3i)

1——,(XoV32+ Yo Ui2) —) i V2] .

(2.12g)

(2.1211)

In obtaining Eqs. (2.12), we have made use of the
invariant trR =I

I=R I ]' +R gj' +R g3' (2.13)

It is noted that I=O is satisfied identically in
(2.10a}—(2.10c) for y~{ 0. For y~~+0, the condi-
tion (2.13) together with (2.10a)—(2.10c) constitutes
the statement of conservation of atomic density, i.e.,
particle number.

Equations (2.12) are coupled to Maxwell's equa-
tions through the polarizations associated with each
transition field. It is easily determined that the
Maxwell's equations in dimensionless form in the
rotating-wave and slowly varying envelope approxi-
mations can be written in the following form:

I'

—Xp

N(r}
Np

(2.16)

governs the relative radial population density distri-
bution for active atoms. This could have variation,
say, for an atomic beam. Equations (2.14) are writ-
ten in the retarded time ~ frame where

7 =t —1lZ/C .

27Tfp

P 1
~p geff

P$

(2.17}

It is seen from (2.14) that for sufficiently large
Fresnel number W the corrections due to transverse
effects become negligible. The gain-length Fresnel
numbers W are related to the usual Fresnel numbers
F=2m.r&/ALf where L is the length of the medium,
by

From this point on, the dot in Eqs. (2.12) is taken to
be 8/B~. Finally, the first factors on the first terms
on the lhs in (2.14) are the reciprocals of the "gain-
length" Fresnel numbers defined by

P /F=g, ffL, (2.18)

—1 2
—X

aF$ VP Y +
9$

Y
X

—U32

(2.14a)

(2.14b)

where the variables X Y Xp Yp are the same as
those defined in (2.11c) and {2.11d), but in units of
yz. In the above equations, we have assumed
cylindrical symmetry, thus

1a a
V =—

p Bp Bp

The first term on the left-hand side in (2.14a) and
(2.14b) accounts for transverse effects with normal-

i.e., the total gains of the medium. In the computa-
tions, diffraction is explicitly taken into account by
the boundary condition that p=p, „corresponds to
completely absorbing wa11s.

The initial conditions are chosen to establish a
small, but nonzero transverse polarization for the
3~2 transition with almost the entire population in
the ground state. This requires the specification of
two small dimensionless parameters e-10 for the
ground-state initial population deficit, and 5-10
for the tipping angle for the initial transverse polari-
zation for the 3+ 2 transition. The derivation for
the initia1 values for the various matrix elements is
presented in the Appendix, and the results are given
by (A22), (A23), and (A28)—(A33).
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III. CALCULATION RESULTS AND ANALYSIS 4.0-

Calculational methods developed earlier' and dis-
cussed elsewhere' ' were applied to the model
presented in Sec. II to compute the effects on SF
pulse evolution for various initial conditions for the
injected (pump) pulse. The results presented here
demonstrate many facets of the control and shaping
of the SF signal by control of the input signal initial
characteristics. The material parameters chosen for
these calculations are arbitrary, but correspond
roughly to those for optically pumped metal vapors
in the regime ~z & vq.

Thus, although the simulation inherently yields
numerically accurate results for particular experi-
mental design, the results reported here must be tak-
en as qualitative. Our main purpose here is to
demonstrate and analyze specific correlations be-
tween the initial and boundary conditions associated
with the injected pump pulse and characteristics of
the SF pulse which evolve. In many of the cases
which follow, rules are established through the
analysis which can be used to predict quantitative
results for any particular experimental conditions.
Our choice of particular initial and boundary condi-
tions has been motivated in part by processes which
may have been operative in experiments which have
been reported ' and in part by the feasibility of
experimental selection or specification. In connec-
tion with the latter, we demonstrate the control of
one light signal by another via a nonlinear medium,
thus imparting nonlinear information transfer and
pulse shaping of the SF from specific initial and
boundary conditions associated with the pump injec-
tion signal.

Figure 2 shows results of the numerical calcula-
tion for the transverse integrated intensity profiles
for the copropagating SF and injected pulses at a
penetration depth of z=5.3 cm in the nonlinear
medium. These profiles correspond to what would
be observed with a wide aperture, fast, energy detec-
tor. The pumping pulses are labeled by capital
letters, and the corresponding SF pulses are labeled
by the corresponding lower case letters. Each set of
curves represents a different initial on-axis area for
the pump pulse, i.e., curve A is the reshaped pump
pulse at z=5.3 cm which had its initial on-axis area
specified as 8& ——m., and curve a is the resulting SF
pulse which has evolved. All other parameters are
identical for each set of pulses. The initial condi-
tions for the atomic medium is that nearly all the
population is in the ground state e& at ~=0, and a
small, but nonzero macroscopic polarization exists
between levels e3 and ez. These two conditions are
specified by two parameters e and 5, respectively,
and we have chosen 5=a=10 3 self-consistently as

3.5-

3.0-
VJ
I

z 25
D

tt: I 2.0-
IXI-
e 1.5-
a:

1.0-

0.5-

0.0
0.0 2.0 4.0 8.0

r (nsec)
10.0 12.0

FIG. 2. Radially integrated normalized intensity pro-
files for the SF and injected pulse at z=5.3-cm penetra-
tion depth for three different values for the initial on-axis
injection pulse area 8~. The SF pulses are indicated by a,
b, and c, whereas the corresponding injected pump pulses
are labeled A, B, and C. The injected pulses are initially
Gaussian in r and v with widths (FWHM) r0 ——0.24 cm
and r~ =4 nsec, respectively. The level spacings are such
that (e3—e~)/(e3 —e2) =126.6. The effective gain for the
pump transition go=17 cm ' and that for the SF transi-
tion g, =291.7 cm '. The gain-length Fresnel numbers
for the two transitions are &~=16800 and W, =2278.
The relaxation and dephasing times are taken as identical
for all transitions and are given as T~ ——80 nsec and

T& ——70 nsec, respectively. The injected pulse initial on-
axis areas are (A) 8~ =~, (B) 8~ =2m, and (C) 8~ =3m.

specified in the Appendix. These initial conditions
are uniform for the atomic medium and are the
same for all results reported here. Notice that we

have neglected spontaneous relaxation in the pump
transition 1~3 relative to the SF transition 3~2.
This is justified owing to our choice of relative oscil-
lator strengths (see Fig. 2 caption}.

These results clearly indicate the coherence effect
of the initial pump-pulse area on the SF signal
which evolves. Notice that the peak intensity of the
SF pulses increases monatonically with initial on-
axis area for the pump pulse. This is caused by
self-focusing due to transverse coupling and propa-
gation. For instance, a 2~-injection pulse would
generate a very small SF response compared to an
initial m.-injection pulse for these conditions at rela-
tively small penetration z, or for the corresponding
case in one spatial dimension. Even so, the peak SF
intensity is approximately proportional to the square
of the pump-pulse initial on-axis area, whereas the
delay time v~ between the pump-pulse peak and the
corresponding SF pulse peak is very nearly inversely
proportional to the input pulse area. The temporal
SF pulse width at full width at half maximum
(FWHM) r, is approximately invariant with respect
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to the injection pulse area.
Since the average values of ~~ and the peak SF in-

tensity are important quantities for interpreting ex-
perimental results with theories of SF' ", the
manner in which the pump-pulse coherence and ini-
tial on-axis area affects these quantities is seen to be
of extreme importance in any analysis.

Figure 3 shows the effect upon the SF pulse of
variation in the intitial temporal width at half max-
imum intensity for the pumping pulse. As the ini-
tial temporal width of the injected pulse ~ becomes
smaller, the SF delay time ~D increases, whereas the
peak SF intensity decreases, and the SF temporal
width v; remains very closely fixed.

It is clear from these results that there exists an
approximate linear relationship between the time de-
lay v~, between the peak SF intensity and the corre-
sponding pump-pulse intensity, and the initial tem-
poral width ~z of the pump pulse.

This linear relationship is shown in Fig. 4, where
the time delay ~D is plotted versus the corresponding
pump-pulse initial temporal width, from Fig. 3.
These results generate the following empirical for-
mula for ~z as a function of ~~:

&D 0 375'rR [»(4ir i/0) ]

where

41 a 7'J (}—g l4yi —1)1p, (3.1)

4.0-

35-

30-

2.5-

1.0-

0.5-

0.0
0.0 2.0 6.0 8.0 10.0 12.0

7' (nsec)

FIG. 3. Radially integrated normalized intensity pro-
files for the SF and injected pulses at z=5.3-cm penetra-
tion depth for five different values for the initial temporal
width of the injected pulse. The initial on-axis area of the
injected pulse is 8~=m, and the pump transition and SF
effective gains are go=17.5 cm ' and g, =641.7 cm
respectively. All other parameters except for the Fresnel
numbers are the same as those for Fig. 2. The injected
pulse initial temporal widths at half maximum are (A)

w~ =4 nsec, (B) v~ =3.3 nsec, (C) ~~ =2.9 nscc, (D) g~ =2.5
nsec, and (E) ~~ =2.2 nsec.

Tp

(nsec)

0 1 2 3 4 5
r

&
(nsec)

FIG. 4. Delay time v& of the SF peak intensity from
the corresponding pump-pulse peak intensity vs the
pump-pulse initial full temporal width at half maximum
intensity vz according to Fig. 3.

2T2
+R

fs~
(3.2}

is the characteristic superfluorescence time, ' and
(()0 is a parameter adjusted to give a best fit to the
calculational results. For the case treated here,
1g =41 psec, T2 70 nsec, ——and (()e ——10, and the
Fresnel number F= 1.47.

The relation (3.1} is at least in qualitative agree-
ment with the analytical prediction made in Ref.
4(b), Eq. (5.1), based upon mean-field theory. The
first term in (3.1) was chosen to conform with the
quantum-mechanical SF initiation result. ' The
quantity $0 can be interpreted as the "effective tip-
ping angle" for an equivalent m.-initial impulse exci-
tation, i.e., for ~& ~0, which initiates subsequent su-
perfluorescence. It is to be noted that the value for
$0 is dependent upon our choice of 5 (see the Ap-
pendix}; however, rD varies less than 25% for
order-of-magnitude changes in 5 for ~5

~

(10
The choice of 5 is simply an artificial way of insti-
gating the semiclassical numerical calculation, and
reasonable variations in its value do not strongly af-
fect the results. The physical parameter is, then, $0,
which, interpreted on the basis of (3.1), is generated
through the dynamics caused by the pumping pro-
cess and represents quantum SF initiation. The full
statistical treatment for three-level superfluorescence
with pump dynamics included will be presented in
another publication.

These results emphasize the importance of the ini-
tiating pulse characteristics in SF pulse evolution,
and the effect of SF pulse narrowing with approxi-
mate pulse shape invariance by increasing the initial
temporal width of the injected pulse. It is em-
phasized that all other parameters, including the ini-
tial value for the injected pulse on-axis area, are
identical among these sets of curves.

The initial radial width ro of the injected pulse
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was varied and the effect upon the SF pulse evolu-
tion is shown in Fig. 5. There is clearly indicated an
optimum value for rp for which the SF peak intensi-
ty is a maximum and the SF temporal width ~, is a
minimum. If the relation (2.18) is used in conjunc-
tion with the values of the parameters given in Fig.
5 and its caption, it is seen that optimization occurs
for a value for the conventional Fresnel number F,
for the SF transition F, = l. Thus from (2.18) and
F,=1,we have

specified by W, is given by

Kg-
27TP p

Then, from (2.17),
gs

S
Kg

(3.4)

(3.5)

is the effective gain g, to loss ~, ratio. From the
condition (3.3),

~s gs max (3.3) —1z,„=(~, ), (3.6)

for the gain-length Fresnel number. Since F, -1/z,
the implication is that Eq. (3.3) gives the penetration
depth z,„at which the SF peak intensity reaches a
maximum in terms of the ratio W, /g, . Since this
takes both transverse and diffraction explicitly into
account as well as propagation, this is indeed a pro-
found statement.

Further insight into the implication of (3.3}can be
obtained by considering a one-spacial dimension

analogy. If the linear field loss is taken to be entire-

ly due to diffraction, then the one-dimensional linear
loss a corresponding to the two-dimensional case

4.0-

35-

3.0-

i.e., z,„ is the penetration depth at which the SF
peak intensity is a maximum and corresponds to one
effective diffraction length, as defined by (3.4). Car-
rying the one-dimensional analogy one step further,
(3.5) used in (2.18) gives

F=(Kz) (3.7)

From (3.5) and (3.7) we have exhibited the signifi-
cance of the Fresnel numbers W and F in terms of
diffraction loss, i.e., P can be thought of as gain to
loss ratio, Eq. (3.5), whereas F can correspondingly
be thought of as the reciprocal of the strength of the
diffraction loss, Eq. (3.7).

The effect on SF pulse evolution of variation of
the initial radial shape of the initiating pulse is
shown in Fig. 6. The shape parameter v is defined
in terms of the initial condition for the pump transi-
tion field amplitude coR(r):

Ch

Z 2.5- cos (r}=coii (0)exp[ (r Irz )"] . — (3.8)

z I 2.0-
KI-
g 1.5
K

1.0-

0.5-

0.0
0.0 2.0 4.0 6.0

7' (nsec)
8.0

I

10.0 12.0

FIG. 5. Radially integrated normalized intensity pro-

files for the SF and injected pulses at z=5.3-cm penetra-

tion depth for seven different values for the injected pulse

initial radial width at half maximum ro. The initial on-

axis area 8~ of the injection pulse is 8~ =2m", the SF effec-
tive gain g, =758.3 cm ', and the pump transition effec-
tive gain go=14.6 cm '. All other parameters are the
same as for Fig. 2. The initial radial widths at half max-
imum for the injected pulses are (a) r0 ——0.57 cm, (b)

r0 ——0.43 cm, (c) r0 ——0.24 cm, (d) r0 ——0.18 cm, (e) r0 ——0.15

cm, (f) r0 ——0.11 cm, and (g) r0 ——0.09 cm. The corre-

sponding geometrical Fresnel numbers are (a) F,=8.46,
(b) F, =4.79, (c) F,=1.47, (d) F, =0.85, (e) F,=0.57, (f)

F, =0.35, and (g) F,=0.21.

Thus for v=2, the initial amplitude of the injected
pulse is radially Gaussian, whereas for v=4, it is ra-
dially super-Gaussian. We see from the results
presented in Fig. 6 that as the initial radial shape of
the injected pulse becomes broader, i.e., larger values
for v, the peak intensity of the SF pulse generated
becomes larger, and the width ~, and delay time ~z,
diminish. It is emphasized that all other parame-
ters, including the initial values for the radial and
temporal widths are invariant among these sets of
curves.

Thus if the initial radial shape of the injected
pulse is modulated from one injection to the next,
the SF temporal width and delay time v~ are corre-
spondingly modulated as well as the SF peak inten-
sity. Correspondingly, the coherence and initial ra-
dial shape of the pump pulse cannot, with validity,
be ignored in interpretation of SF experiments in
terms of ~, and ~&.

Whereas the initial an-axis area for the pumping
pulse was 8~ =2m. for the results shown in Fig. 6, the
identical conditions and parameters were imposed,
but the initial on-axis pump-pulse area was changed
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in the following edge of the pump pulse, whereas the
variation in density, Fig. 16, affects the whole pump
pulse. This contrast has an analogy as an inhomo-
geneous, Fig. 15, as opposed to a homogeneous, Fig.
16, effect on the pump pulse. This effect might be
used for the purposes of pulse shaping under suit-
able conditions.

Shown in Fig. 17 is the transverse integrated SF
pulse intensity versus retarded time r (curve 2) to-
gether with the transverse integrated pump-pulse in-
tensity versus r (curve 1) for a gain and propagation
depth chosen so that the pulses temporally overlap.
Under these conditions the two pulses strongly in-
teract with each other via the nonlinear medium,
and the two-photon processes (resonant, coherent
Raman —RCR), which transfer populations directly
between levels eq and e&, make strong contributions
to the mutual pulse development. The importance
of the RCR in SF dynamical evolution in an optical-
ly pumped three-level system was pointed out for
the first time in Ref. 4. Indeed, the SF pulse evolu-
tion demonstrated here has greater nonlinearity than
SF in a two-level system which has been prepared
initially by an impulse excitation. What is remark-
able is that this is an example where the SF pulse
temporal width ~, is much less than the pump width

~& even though the two pulses temporally overlap,
i.e., the SF process gets started late and terminates
early with respect to the pump time duration.
Pulses of this type have been observed in COz-
pumped CH3F.

The remaining figures are isometric representa-
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0.5-

tions of pump-pulse and SF pulse copropagation and
interaction via the nonlinear medium. These figures
exhibit details of the dynamic mutual pulse reshap-

ing, self-focusing and defocusing during SF buildup.
The pulse intensities as functions of the radial

coordinate p and retarded time ~ are presented in
Figs. 18 and 19 for two different penetrations z=4.4
cm and z=5.3 cm, respectively, into the high gain
medium. The injected pulse is initially radially and
temporally Gaussian. Both the pump pulse and the
SF pulse are seen to exhibit considerable self-
defocusing with ringing following the main SF peak.
At the larger penetration, Fig. 19, a large postpulse
appears in both the pump and SF pulse propagation.
This is due to energy feedback from the SF to the
pump transition. The postpulses overlap, and so the
two-photon RCR effects are active and quite signifi-
cant in the dynamic evolution and coupling between

the pump and SF pulses. This effect is due entirely
to the coherence in the dynamical evolution of the
system.

Portrayed in Figs. 20 and 21 are isometric repre-
sentations for the radial and temporal dependence of
the copropagating injected and SF pulses for two
different initial shape distributions for the pump
pulse. In the first case, Fig. 20, the initial temporal
distribution of the injected pulse is Gaussian,
whereas the initial radial distribution is character-
ized by the parameter v=3, Eq. (3.8). It is observed
that the injected pulse has undergone considerable
reshaping, due to propagation, to a more Gaussian
radial distribution, and the SF pulse exhibits strong
self-defocusing in the wings of the tail region. In
the second case, Fig. 21, the initial radial distribu-
tion of the injected pulse is Gaussian, whereas the
initial temporal distribution is half-Gaussian, with
the sharp temporal cutoff on the following temporal
half-section of the pulse. The SF pulse rises ex-
tremely sharply, in comparison to the other cases
analyzed, and tapers off with strong self-defocusing
indicated in the wings of the pulse tail. Pump
pulses of this type are generated using a plasma
switch' and the corresponding SF pulses with steep
rise have been observed.

IV. CONCLUSIONS

0.0
0.0 4.0 6.0 8.0

r (nsec)
10.0 12.0

FIG. 17. Radially integrated intensity profiles, in units
of Rabi frequency, for the SF (2) and injected pulse (1) at
a penetration depth of z=5.3 cm. The effective gain for
the pump transition and the SF transition are go=17
cm ' and g, =641.7 cm ', respectively. The initial on-
axis area for the injected pulse is e~ =n.. All other param-
eters are the same as for Fig. 2.

The effects presented here clearly demonstrate the
coherence and deterministic effects on SF pulse evo-
lution of injection pump-pulse characteristics and
conditions in the regime ~z ~ v~. It is suggested that
effects of the type discussed here may have in fact
been operative in SF experiments and their results
which were published earlier. ' The pump pulse
was taken as purely coherent in these calculations.
To determine whether or not effects of the nature
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FIG. 18. Pululse intensity I as a function of the radial coordinat d t ded
'

jected pump pulse is in the upper left, and the SF pulse, which is enerated i
e p an re ar time ~ at penetration z=4.4 cm.p

' = . cm. Thein-"

same as for Fig. 3(A).
e pu se, w ic is generated, is in the lower right. The parameters are the

reported here are indeed operative in a given experi-
ment, it is crucial to determine the degree of coher-
ence of the pumping process as well as its temporal
duration.

Furthermore, and perhaps of greater importance,
we have demonstrated the control and shaping of
the SF pulse which evolves by specification of par-

ticular initial characteristics and conditions for the
pumping pulse which is injected into the nonlinear
medium to initiate SF emission. These manifesta-
tions and others of the same class we call the control
of light by light via a nonlinear medium. This
phenomenon constitutes a method for nonlinear in-
formation encoding, or information transfer, from

FIG. 19. Pulse intensity I as a function of the radial coordinate d ta ded
'

jected pump pulse is in the upper left, and the SF ulse which is en
p an re r time v at penetration z=5.3 cm. Thpe

' = . cm. The in-

, an e p se, w ic is generated, is in the lower right. The parameters are the
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FIG. 20. Pulse intensity I as a function of the radial coordinate p and retarded time r at penetration z=5.3 cm. The in-

jected pump pulse is in the upper left, and the SF pulse, which is generated, is in the lower right. The parameters are the

same as for Fig. 14(b) except that the initial on-axis area for the injected pump pulse is 8~=3m. and the initial radial shape

parameter is v=3 (see text).

the injection pulse initial characteristics to corre-
sponding SF pulse characteristics which evolve due
to propagation and interaction in the nonlinear
medium.

Work is now in progress to incorporate the effects
of quantum statistics of the SF spontaneous relaxa-
tion process. We are in the process of further
determination and analysis of the nonlinear interac-

I
i
I

l

FIG. 21. Pulse intensity I as a function of the radial coordinate p and retarded time ~ at penetration z=5.3 cm. The in-

jected pump pulse is in the upper left, and the SF pulse, which is generated, is in the lower right. The parameters are the
same as for Fig. 6(B) except that the initial on-axis area for the injected pulse is 8~ =3m., and the initial temporal shape of
the injected pulse is half-Gaussian with the sharp temporal cutoff on the following, i.e., increasing v; side of the pumping
pulse.
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tion between two copropagating pulses resonantly,
as well as nonresonantly, interacting by a nonlinear
medium.
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1

Rp = —,Wp2,

and initially,

BAz.
]cd'. )& at

The condition (A14) in (A13) gives

(A14}

APPENDIX

Wg2 ——Np —N2,

Wg) ——Np —Ni .

(Al)

{A2)

We must choose the initial conditions self-
consistently. We wish to establish a small, but
nonzero, uniform initial transverse polarization 5 for
the 3++2 transition. For self-consistency, this corre-
sponds to initial population depletion e of the
ground-state population, consistent with (2.13) and
Eqs. (2.10).

In terms of initial population numbers Nk,

ia
Ag ————R2g .

K
(A15)

(A16)

(A17)

Using (A15) and (A14) to eliminate the field am-
plitude Ar from Eqs. (A10)—(A13), we get

a
Rpi ——— RpiRp2

2K

2a
R i2

—— R ipRgp,
K

a
Rg2

K

We choose

N) ——1 —e,
e small and positive and impose the ansatz

U32 p sin5 sin]}}, ,

V32 —p sin5 cosP,

{A3}

(A4)

(AS)

Dividing (A17) by (A16),

dR)g Rip= —4
dRg) R2)

Integrating (A19},
2 & 2R)3 4R(2,

(A19)

(A20)

and let

p =e, N2/N3 (+ 1 . (A6)

The condition (A6} means essentially that Ni-e
and N2-0. Equations (Al}, (A4), and (AS) under
condition (A6) become

where the constant of integration has been set equal
to zero. Thus

Ris ———Ri2 .
2

(A21)

In terms of the real variables defined by (2.11b), and
using (A21), we get

U32 e5 sin]I}, ,

Vii e5 cos4I,-,

Wq2-e cos5 .

(A7}

(Ag)

(A9)

Our uniform initial conditions are just the condi-
tions which led to the linearized mean-field equa-
tions in the small fIuorescence signal regime of Ref.
4, Eqs. (4.14c)—(4.140. Initially, the pump field
amplitude co~ ——0, and these equations of motion be-
come

U2) ———2Vg2

V2)
——2U

From the initial conditions (A1)—(A6),

Wg2 =cosy = —1+2@ .

Thus

g=cos '(2E' —1),

(A22)

(A23)

(A24)

(A25)

R ig = —&a/2AyR )2

R qq
———2&aAz.R~,

R i2
———2saAz Rg,

(A 10)

(A11)

(A12)

Ui] sing sin{{}z-]}sing&

V» ——sing cosP~ =i}coQz .

We have, therefore, using (A9),

(A26)

(A27)
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W3) ——2e —1,

U32 ——e5 sin(b, =0,

V3z
——e5 cog, =&5,

(A28)

(A29)

(A30)

(A31)

U» ——rl sin(b~,

V3t ——rl coQz

(A32)

(A33)

with ri given by (A25) and (()z chosen arbitrarily.

since we must choose the phase P, such that
sing, =0. We have
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