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In the case of telegraphic noise F„(t), the activation rates for bistable flo~s of the type

x =f{x)+g (x)F„(t) can be calculated exactly. For a noise F„{t)of constant intensity, the

activation rates are enhanced exponentially with decreasing correlation time v = I/v.

Systems with a number of competing states of local
stability play a key role in the analysis of various
physical phenomena. '2 In a growing number of
cases, such situations occur in open systems, i.e., sys-
tems which require a continual flux of energy or
matter. Our focus will be on the one-dimensional
dynamics of an order parameter x exhibiting bistabili-

ty, i.e.,

where o. denotes an external control parameter. The
flow f(x, n) is assumed to possess three real roots
)x t,x „,x2) . We define x t ( x 2, where x

&
and x,

denote locally stable steady states and x„ is an inter-
mediate locally unstable steady state. Typical exam-
ples would be a bistable Esaki diode" with o, being
the external constant supply current, an optical bi-
stability with n being the externally injected coherent
field or the phase dynamics of externally synchro-
nized oscillators. ' In the presence of fluctuations, the
phenomenon on bistability generates a number of in-

teresting questions. A particularly important one is
the rate of decay of the metastable state. Fluctua-
tions can be of an intrinsic nature or can be imposed
externally by dealing with a noisy control parameter
a a+ F(r). If the system under consideration is

already macroscopic, the influence of intrinsic noise
plays a negligible role. 6 In what follows, we model
the noise of the control parameter by telegraphic
noise of vanishing mean F„(t),

(r) g ( l)n(f)

(F„(r)F„(s))=Dv exp( —v)r —s))

where n (r) is a Poisson counting process with

parameter v/2 and a denotes a random step with den-
sity

p, = —,f 5(a —VD v ) + 5( a + ~D v) ]

An important property of telegraphic noise F„(t) is
the approach to a Gaussian white noise ((t) in the
111Tllt v tx). %1th

lim v/2 exp —v) r) = 8( r )

Eq. (2) reduces to

lim (F„(r)F„(s)) = (((r )g(s) )= 2D 6(r —s)

where the generally state-dependent coupling g(x)
(multiplicative noise) represents the linear coupling
of e to the order parameter x in the dynamical flow.

The problem of interest can be posed as follows.
Given random noises F„(t) with different correlation

parameters v& and v2, but possessing identical spectral
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FIG. 1. Sketch of possible realizations of F„(t) for differ-
ing correlation times 7 = 1/I . The solid curve is for v& and
the dotted curve is for v2 where v2 ) v&.

Figure 1 illustrates qualitatively the random realiza-
tions of telegraphic noise for two different correlation
strengths v. The realizations change sign at random
Poisson arrival times )r&) with waiting time probability

l 1
p(r;+& —r; r) ==—,v exp —, vr—

In the presence of a fluctuating control parameter o. ,
the deterministic flow in (1) changes over into a sto-
chastic flow,

x= f(x, a)+g(x)F.(r)
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densities SF(co = 0) at frequency zero, i,e.,

SF(o) = 0) = F„,(t)F„,(0) dt

F„(t)F„(0) dt

=2D =S,(~),
what is the relationship between the corresponding
activation rates of metastable states? The system
with a smaller correlation time 1/v is subjected to
random forces with larger amplitude (see Fig. 1); this
might lead one to conclude that the rate might be

enhanced. However, the duration over which the
force is constant is decreased; because the random
force changes sign more rapidly, one might now ex-
pect that the system might not have enough time to
reach the point of instability and, consequently, the
rate might be suppressed for a larger correlation

parameter v. Thus, it is not obvious a priori which of
the two random forces will yield a smaller rate (i.e. ,
longer escape time) .

The rate of change of the probability p, (x), corre-
sponding to the stochastic flow in (4), has been stud-
ied in previous work in a different context. The
exact non-Markovian master equation reads

e. aJ 0 0p, (x) = ——j(x, t) = ——f(x, A)p, (x) —Dvg(x) d~exp —v+ —f (t —~) —g(x)p, (x)
()x Bx ()x

J
t)x

By setting the current j(x, t = ~) = 0, we readily find the normalizable stationary probability p(x) (Refs. 8 and 9)
(Z is the normalization constant),

1

-( )
Z 'lg(x)l, f'dyf(y)/[g'(y) f'(y)/D—v] ~(D 2( ) f2( ))

g '(x ) f'(x ) /D v— D
(7)

The support of p (x) is given by the Heaviside step
function expression 8( ) and the extrema (x] are
located at (the prime denotes differentiation with
respect to x)

locally unstable state x„. The resulting constant
nonequilibrium current jo will build up a total integrat-
ed probability po proportional to the escape time T, '
i.e.,

(f + 2ff'/v —f g'/vg —Dgg') ~,-= 0 (8)
Z

j pT = pp(x)dx (9)

In the following, we assume a positive "effective dif-
fusion, "

D(x) —= Dg'(x) f'(x)/v & 0—
for x C [x~,xz], thereby guaranteeing a nonzero sup-
port of p(x) over the bistable region.

The forward rate, r:x ~ x2, defined as the inverse
of the escape time T of the metastable state x& at low
noise D (without this assumption the problem of es-
cape is not well defined anyhow), can be evaluated
for the general non-Markovian master equation in the
following way. We inject particles at the locally stable
state x ~ and remove them the moment they reach the

I

1 D "~
( ) d

"v [1+g(f/g)'/v]
2T 2 -~ " p[g —f /Dv]

Solving for the nonequilibrium probability po by set-
ting j (x, ~) = jo, one finds the exact expression

1 t

(x) o "tl+g(f g)' ~l
d -( )

P (g' f'IDv) y—
(10)

If one takes into account that a particle reaching the
unstable state x„has equal probability to either fall
back or to continue on into the new locally stable
state at x 2, one obtains by virtue of (9) the exact
rate r,

This is the main result of this paper. Equation (11)
can be simplified considerably under the following
general conditions. For the sake of clarity we assume
additive noise with g (x) = const = g. Moreover, the
correlation rate v entering (11) is subject to the ine-
qualities

g v & f (x)/D, v & 2f'(x), x C [x~,x2]—
(12)

I

thereby guaranteeing that p (x) has a nonvanishing
support over the bistable region [x ~, x2] with the ex-
trema [x],f(1+2f'/v) ~„-=0, being the deterministic
steady states [x] = {x~,x„,x2]. With low noise, i.e. ,

D ~ Q/5, Q = —
/) "f(y)/g'dy, and the fact that the

Z)
maxima of p(x ~) and 1/p(x„) are strongly peaked, it

is justified to approximate the integrals in (11) by the
method of steepest descent. The rate r(v) then



ACTIVATION RATES IN BISTABLE SYSTEMS IN THE PRESENCE. . .

(x,[x„[}"'
r(v) = "

exp[ —A4(v)/D]
27r(1+ [ X„f/v)

where the Arrhenius factor 64&(v) is given by

A4(v) =—
2 2 dy"t g' —f'(y)/vD

A physical interpretation of the results in Eqs. (13)
can be visualized as follows'0: If one considers the
mean-squared displacement 0-

y over a time scale T of
the escape time in zero force field, i.e.,

'1 1

07= p„(5) dS
0

= 2DT[ 1 —(1 —exp —v T)/v T]

& Atp(v=~) = Q which with v T » 1 reduces to

XI= —f'(xl) & 0, A.„=—f'(x„) & ()

For a more general multiplicative noise g(x)F„(t),
g'(x) ) 0, the corresponding simplification reads

(),~)t„~) '"r(v) = "
exp[ hats(v)—/D]2tr(l+ X„v)

54g(v) = — —
2 2

dy'f(y)
g'(y) f'(y )/»—
f(y) d
g'(y)

In conclusion, when the noise intensity S&{~=0)
is constant, the rates are exponentially enhanced with

decreasing correlation time r = 1/v and this is in-

dependent of the specific form of the nonlinear bi-
stable flow f (x, o.) and independent of whether the
random noise is additive or multiplicative. The con-
clusion remains true for the reverse transition from
x2 xl, the equations are only subjected to the trivi-
al replacement xl x2. Our result approaches the
well-known Smoluchowski rate r„'3 in the limit
v ~ (i.e., Gaussian white noise). Because

and the prefactors also increase with decreasing
correlation time v, the rates are maximal in the
Smoluchowskl 11ITllt.

one observes that D,rf is enhanced for decreasing
correlation time v. Thus, over a time scale T, the
"particle" is more likely to be pushed forward for a
smaller correlation time of the random noise, yielding
a rate enhancement or equivalently a smaller escape
time.

All of the above calculations can be carried through
for more general telegraphic noise in which a is a
random variable of vanishing mean with density

p, & 0. For random forces F(t) of finite correlation,
which are not of telegraphic type, it is not possible to
derive a closed, exact master equation for the order
parameter x of a truly bistable flow. " In particular,
for Gaussian noise F(t) with a correlation given by

(2), one is unable to derive exact expressions for ac-
tivation rates. " ' lt should be noted also that a cal-
culation of the activated escape according to Eq. (9),
which follows the reasoning advocated by the authors
of Ref, 2, carries through in the present situation,
Eq. (6), with memory and nonlocal transition proba-
bilities; a direct evaluation of the escape time via the
concept of the mean first passage time is complicated
by the fact that integral operators, as well as nonlocal
boundary conditions which account for the zero back-
flow of probability into the domain of attraction,
must be considered. "

Finally, we point out that the discussed "intrinsic
enhancement" of the activation rates should be dis-
tinguished from an "external enhancement" of ac-
tivation rates induced by additional parametric
noise. " "
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