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Sine-Gordon solitons: Particles obeying relativistic dynamics
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We define a dynamical variable associated with the position of a particle representing the
sine-Gordon soliton. Simple relativistic dynamic equations for this particle under the influ-

ence of forces are derived, including the case of dissipation. The Auctuation-dissipation
theorem for this particle is obtained as well as some results on steady-state velocities and

slowing of the thermalization time for ultrarelativistic solitons.

There has recently been a substantial amount of
interest in the motion of solitonlike excitations in
nonlinear systems under the action of various pertur-
bations. ' In specific situations, such as the sine-
Gordon systems, these effects may be treated either
numerically, by perturbation theory or similar
approximations ' for small disturbances,
or by energy-balance and steady-state considera-
tions. " In many types of situations, it has been
found that the solitons behave like particles driven

by external forces (including dissipative and
Langevin-type' ones}.'" " Theoretical deriva-
tions of such behavior have tended to be rather cir-
cumspect, ' and consequently their validity has at
times been questioned. In particular, apparent non-
Newtonian effects have been noted in the accelera-
tion of solitons, as well as a seeming disagreement
between their "inertial" and "rest" masses. '
When the velocities approach the speed of light for
the model, the solitons in the sine-Gordon chain also
exhibit relativistic-type effects with some modifi-
cations in the dissipative case."

In this paper we confirm the expectation that sol-
itons behave like particles. We directly address this
question by making a heuristically obvious defini-
tion of the coordinate Q associated with the motion
of the soliton in space. The conjugate momentum P
is found, and the relativistic-type kinematics is set
up. The way in which external forces in the under-

lying sine-Gordon equation are translated to those
acting upon the particle is clarified. The basic
Newton's second law P =Fis obtained under general
conditions (including dissipation, noise, uniform,
and local perturbations) and, as a result, many of the
properties which have previously been derived ap-
proximately and sometimes rather laboriously for
soliton dynamics may be simply and exactly derived.
The apparent non-Newtonian behavior is explained
as well as the "mass paradox. " ' We believe that we
presented here a direct, simple, and powerful
method for treating soliton dynamics. As typical
simple applications we derive the slowing down of
the "thermalizaiion" time for ultrarelativistic soli-
tons, the Langevin equation for relativistic solitons,
and the terminal steady-state velocity as a function
of an external uniform force in the presence of dissi-
pation. We also discuss the scattering of the soliton
by a localized force.

We consider the general sine-Gordon equation for
a classical field 0,

0„—8~+sin8=P (x, t) —60, .

In appropriate dimensionless units, 6 is a viscosity
and P is an external driving force, which may in-
clude Langevin' -type noise terms appropriate, say,
to a temperature T.' ' We start with the kinemat-
ics of a free soliton (6=0, W=O). The appropriate
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Lagrangian density W is given by'

~= —,8t ——,8„—(1—cos8) .

For a soliton traveling with a velority v such that
tan(8/4) =e ~" ""the energy is given by'

E=f [—,8, + —,8„+(I —cos8)]dx =muy,

where mo ——8 in these units and y=—(1—v )

One would like to define a particlelike coordi-
nate'6 associated with the soliton, which for a free
soliton should have the same mass and energy and
moving with the same velocity v, as the soliton,
Consider the form of 8„;it is positive, symmetrical-

ly peaked around the center of the soliton, and has a
width comparable with that assoriated with the
latter. Furthermore, its integral over all x is 8 con-
served quantity for a single soliton. %'e are thus led
to view 8„/2m as the spatial distribution for the soli-
ton. We therefore define the coordinate Q by

(4)

with 8 velocity given then by

The canonical momentum conjugate to Q (using
H=—BW/88, =8, which is the momentum density
conjugate to 8) is

P= f IIg„dx . (6)

It is straightforward to check that P and Q satisfy
the relation [Q,P]ps ——I, (where PB means Poisson
bracket), as long as f g„dx =2m.

For the free soliton we obtain

Q=QO+ut, Q=u, P=moyu

using Eqs. (4)—(6) and the rdation 8,= —ug„. Ob-
viously, the energy of this particle is equal to
m =moy as in Eq. (3).

Next we consider the effects of forces on the par-
ticle. From Eq. (6)

P =f 8gg 8~dx (g)

+to
where the term g„,g, dx = —,8,

~

vanishes

under the assumption that at x~+ 0o, 8, vanishes.
This assumption 18 soIIlctlIDcs violated llkc ln situa-
tions where the force depends on time, but Eq. (8) is
still valid Rs long 88 8t bchavcs slIn

llally at x = + 00.
UslQg Eq. (1) without dlsslpatlon (6 =0) wc find,

for a force P (x, t) satisfying the above assumption,

P= f W(x, t)g„dx=F, (9)

where again the surface terms vanish. In the partic-
ular case of a force uniform in space W(t),
P=2mP (t). Thus the force driving the particle is
2m times the force operating on the field 8. In cases
where P=mv (see below) and for v ~g1 this yields
v=2m%/mo. This result has been viewed as 8
paradox ' —the inertial mass being different from
the rest mass. However, it is simply due to the rela-
tion between W and the force F driving the parti-
cle."

The relation P =mv was obtained for free solitons
Rnd Inay, soInctlIDcs and with appropriate

modificat-

ionn, be generalized to situations where transients are
Qot important. If the force F is switched on at t =0,
there is a transient time, inversely proportional to 6,
in which the soliton form is distorted and therefore
P&mv. The non-Newtonian effects of Ref. 6 are
just this transient. %'hile for v &~1, v&F/mo (in
f8ct, v 0 t ), Eq. (9) which ls thc correct formu18-
tion of Newton's law is valid.

%C now add the effect of a finite dissipation 6,
which changes Eq. (9) to

P= —OP+I' . (10)

Thus for I'" =0, P decays with 8 time constant 6
Using the relations P=mv (valid for slow changes
and for velocities that are not too high, sce below),
E =m, we find u = Guly and —E= Gu E Th—e.
velocity decay of ultrarelativistic solitons is extreme-
ly slow. These results can also be obtained by 8
direct calculation of dE/dt, using Eq. (3). They had
been derived by perturbation theory in Refs. 3—5
and are clearly seen in the numerical simulations of
Rcf. 13. (In fact, this 18 thc lcason why thc fast soll-
tons have not thcrmalized in these calculations, a
fact which is of importance vis-i-vis the long-tiIne
dynamics. '

)

For an external force which depends only on time
one can directly show that

dE dE=F(t)Q or =Q .
dt

In view of Eqs. (9)—(11), one might be tempted to
conclude that the SOHton behaves exactly like a point
particle. This is of course incorrect, because the re-
lationship between E and p (or between p and v) has
Qot bccn shown to rcIDRIQ E =p +mo, 88 lt would
be for a free soliton. In fact, as the soliton is ac-
celerated other degrees of freedom may get exrited
so that only part of the energy and momentum im-
parted to the system according to Eqs. (9)—(11) re-
sides in the bare soliton. These matters have been
lnvcstlgated Using pcrtulbatlon theory, ' and lt
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(R (t)R (t+r) ) =2GTmoy5(r), (12)

which is the appropriate fluctuation-dissipation
theorem' for the particle considered here. In deriv-

ing (12) a coarse-grained O„has to be assumed. At
long times, the particle will diffuse with a diffusion
coefficient given in this limit by kT/(moG).

Thus if interaction with a heat bath is assumed
for the above sine-Gordon problem, an effective heat
bath at the same temperature is obtained for the par-
ticle, which will reach thermal equilibrium and per-
form diffusive motion after a thermalization time
given by the discussion following Eq. (10). If in-
teractions among the solitons and antisolitons can be
neglected, this justifies the assumption that this gas

remains to be seen whether our approach can also be
used to discuss them.

For a "relativistic" soliton with a small but finite
dissipation G, it has been found that the Lorentz-

type contraction of its spatial width by a factor y is
valid only as long as y«1/G. "' ' For y& 1/G
the width saturates at a value proportional to G.
Thus the last relation in Eq. (7) between P and v is
modified P= moy, ~fv, where y,ff~y for y(G ' and

f ff tx G for y & G '. y,ff—y for the case of no dissi-
pation. The case of a large G has been treated in
Refs. 19 and 20. We emphasize that Eq. (10) is
unaffected by this.

In dissipative systems one should also consider
the effect of Langevin-type noise terms, where
W(x, t) has an uncorrelated Gaussian white-noise
part r(x, t) satisfying (r(x', t')r(x, t)) =2GT
&5(x —x')5(t —t') (T is the temperature measured
in the appropriate units). The Lang evin force
operating on the particle is shown in the limit
kT «moc to satisfy

will get into the appropriate equilibrium for the
Boltzmann gas. Of course, to get the complete pic-
ture one has also to include the nucleation and an-
nihilation of kink-antikink pairs, ' which is not con-
tained in our treatment.

In the presence of a uniform force W in Eq. (1)
and a finite G, the soliton will reach a steady-state
terminal velocity vo, given in terms of ~ by
&=may, rtGvo/2m, in agreement, whenever y,ff—y,
with the energy-balance equation result.

For an external force localized in space and con-
stant in time, a (x)„ the soliton experiences a local-
ized force given by (7). In the case of a spatial range
of W much larger than the width of the soliton
in the presence of the force this yields
F(Q)=2m&(x=Q). This is now a straightforward
classical one-dimensional scattering problem for the
particle.

To summarize, we have established the kinematics
and dynamics of the classical relativistic particle as-
sociated with the sine-Gordon soliton under the in-
fluence of external forces. This should facilitate the
treatment of many further interesting problems'
such as perturbations in the parameters of the equa-
tion, periodic forces, and particle interactions.
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