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Coupled spin-lattice solitary ~aves in a compressible classical Heisenberg chain
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The equation for solitary waves in the continuum limit of a classical compressible Heisenberg
chain is treated rigorously. It is proven that infinitely many coupled spin-lattice solitary ~aves
exist. An explicit formula for the behavior of spin angles and lattice distortion is obtained. As
an example of the general behavior, a particular case is ~orked out explicitly. The motion of
spin and lattice coordinates is obtained rigorously in terms of a few well-defined integrals that

are calculated numerically. The relevant solitary wave parameters —the speed, spin-precession

rate, total energy, and total magnetization —are also obtained rigorously.

Solitary waves are a topic of much current interest.
In particular, a lot of work has been devoted to the
study of magnetic solitary ~aves in one-dimensional
classical magnets. ' Much less attention has been paid
to the investigation of coupled spin-lattice solitary
waves in compressible magnets.

In an earlier paper, we have derived coupled equa-
tions for displacement and spin motion in a continu-
um version of the compressible classical Heisenberg
chain. Assuming solitary-eave solutions, it was pos-
sible to decouple the equations for lattice distortions
and spins. %e argued that the equations did not ad-
mit of the very simple solitary waves found by
Cieplak and Turski in a different —and, in our

opinion, wrong2 —analysis. Ho~ever, at that time we
were unable to give the solutions to our equations.

An important step forward has been made by Ma-
gyari, 4 who sho~ed how to decouple in a simple way
our two equations for the angular spin coordinates.
He also obtained solutions in the small coupling lim-

it, but the question of a more general solution
remained open, In this paper we will exactly prove
the existence of infinitely many solitary waves.
Moreover, it will be sho~n how to obtain the solu-
tions, to almost any desired accuracy, by numerically
carrying out a few integrals.

In Ref. 2 we started from the model Hamilto-
nlan
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S(x, t) =(sin&cos&P, sinesing, cos8)

e(x, r) = e(u), y(x, r) =y(u) + Qr,

7t(x, r) = —'x+ f(u),

{2a)

Then we took the continuum hmit [x; rt(x, r) and

S, S(x, r) ] and assumed solitary waves of the form'

z'+ V(z) =0,
y =(3c/~)(1-z)/(iV+2),

(5a)

(5h)

where 2 =J+t /a, 8=E /2( rItc cx) (Q Wrac ),
z =cos8, y = $ sin 8, and a prime denotes derivation
8/Bu. Magyari' showed that [Eats. (41) and (4c)],
with the boundary conditions (3), are equivalent to

p =x —ct (2d) where

~here c is the solitary-wave velocity. Kith the boun-
dary conditions

f'( —~) =0, S'( —~) =0 S'(—~) =1 (3)

we obtained the equations

(mc' —u) f' = —(S')',
2

(4a)

W (z'+y') (1 —z') + —,
' 8(z'+y')'

—2n(1 —z)(1 —z')'=0, (4h)

[A (1 —z') +8(z'+y') ]y —c(1 —z) (1 —z') =0,
(4c)

c2 &4A 0
A' ~—2480

(7a)

{7h)

In order to have solitary-wave solutions, Magyari
argues that there is the supplementary condition that
the equation V(z) =0 must have at least one simple

V(z) =(9c'/A')(1 —z)'( iV+2) '

+ (3/38) {1—W) (1 —z')

&= [1+12(8n/~') (1 —z) ]'~',

and ~here the parameters must obey the restrictions
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root zo 6 [—1, +I). We will now prove that, if the
conditions (7) are satisfied, there always exists a
unique zo. This then establishes the general proof of
the existence of solitary waves. Equation (Sa) can be
rewritten as

8'is confined to the domain

1 ~ W ( (a+4)'~l if 8 )0;
(a +4)»'( W ~1 if 8 (0

(I la)

(i lb)

+ (u —uo)
l

8'(u) W( W+2)
g

~~"ol (W-i)(W+I)'~'Q(W)»' '

We will now prove that the equation Q( W) =0
has exactly one simple root 8'0 W 1 in the allo~ed
domain (11). It is easily verified that this is
equivalent to the existence of one zo. From Eqs. (9)
and (10), it follows that

Q(W) =—W4 —4W 3+ aW l+b(W+1), (9a)

a =2480/Az —3

b =4(a +4) —y

y =278cl/A'

(9c)

In the following, we consider only the dynamic case
c ~0. The static case t." =0 has been considered by
Magyari. ' The conditions (7) then become

a & —3 and 0 & y & —,(a +3) if 8 & 0;
—4~a & —3 and 0) y &

z
(a+3) if 8 &0. (10b)

Q(1) (0 and Q(0) )0 if 8 & 0 .

Hence, in both cases, there is at least one root 8'0 in
the domain (11). Let us now show that this is the
only one. From Q( Wo) =0 it follows that

b = Wol ( Wol +4 Wo —a ) /( Wo +1) (13)

Extracting the factor ( W —Wo) and choosing
W(0) = Wo, Eq. (8) becomes

Q(1) &0 and lim Q( W) = —~ if 8 )0; (12a)

~ ~o ( W-I)( W+I)'~'~ W- W, ~»'P( W)'~'

behaves in the domain (11). First consider 8 & 0.
Then (9c), (10a), and (13) yield

a & ao= Wo' +4 Wo+( Wo+5)( Wo+I)/(2 Wo+I)

(16)

Now kt carl be sllowtl that, lf (16) is fulfilled, P( W)
is strictly positive for 8' ~1. It is also easy to show
that Wo' —4 ( ao, so that it is possible to fulfill (1 la)
and (16) at the same time. From Eqs. (9d) and
(10a) and the explicit expression of 8, it follows that

8 PQpg=3 1 0 3
23m

This is compatible with (16) if a ( ao. Since ao &9

(17)

Here we used Eq. (9d) and the equality sgn(8)
= sgn( Wo —W). We must now investigate how the
remaining third-order polynomial

P( W) = W'+( W, +4) W'

+( Wo2 +4Wo —a)[ W+ Wo/( Wo+I)]

for all 8 0 & 1, this will be fulfilled for physical
values of the model parameters. If 8 & 0, it is trivial
that P( W) )0 if W )0. This completes the proof
of the existence of a unique 8'0 compatible with Eq.
(11), and at the same time the existence of solitary
waves.

Thus we arrive at the following recipe: Choose
8'0 & 0, 8'0 W 1. Then choose a such that
max( Wo' —4, a ) ( a & ao if Wo ) 1, and such that
—4~a & 8'02 —4 if 0 & 8"0&1. The local magneti-
zation z(u) then follows from Eq. (14), with

' ]./2

W= I+ (i-z)a+3
2

(ig)

Although z cannot be expressed in terms of elemen-
tary functions of u, if W & I the integral (14) is

readily carried out numerically since the integrand
has no singularities except at 8'0, which is removed
by a change of integration variable. If 8' 1, the in-
tegral diverges logarithmically, assuring the exponen-
tial approach of z to 1 as u +~. The behavior of
the precession angle $ is found from Eqs. (5), (6),
and (14) as

y(u) = u+41(u)

lV() W( Wz+3 W —a —1)
(
W- W, (»'( W+I)'~'P( W)'~'(a+4 —W')
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Thus, by Eq. (2b), the precession is made up of a
constant prcccsslon 0 t, 8 term llncar ln Q 8nd 8 pure
solitary-wave contribution P(u). The solitary-wave
contribution f(u) to the displacement rt is found
from Eq. (4a) to be

1/2 1/2

f(u) - —, sgn(e)F(u)2

fPtC —e

F(u) = Jt g( W) dW+sgn(u) Jt g( W) dW,

(201 )

W( W+2)
~
W- W, ~»'( W+I)»'F( W)»'

Q(u) and F(u), in contradistinction with z(u), can
be sho~n to be kink solitary ~aves.

As 8n example, wc dcplct ln Flg. 1 thc local mag-
netization (a), the precession angle (b), and the dis-
tortion function (c), for the choice of parameters

W0=2, a =3. Scaling the independent variable u by
v = (3c/SA ) u, the graphs are independent of the
model parameters o/, ~, J, and m Therefore the
width of the solitary wave is inversely proportional to
its speed c. It can be shown that this is a general
property of Eqs. (14), (19), and (20). When the soli-
tary wave passes, the spins dip down to m/2 (zo ——0).
At the same time and in the same restricted region,
the angle P, apart from the constant precession Qr
and tile linear term cu/2A, increases by approximate-
ly rr/3 5rad. . In the same region the lattice is locally

cxpandcd ol' compressed depending ofl thc sign of &,

The results of Fig. 1 are qualitatively characteristic of
aII solutions to the equations. In Fig. 1(a) it is
shown that the local magnetization behaves very
much like tanh2v in this particular case, Magyari's
result to order a would yield~ tanh2(43/2w). There-
fore it is to be expected that a perturbation approach
has to take into account many orders of e to repro-
duce our result. The velocity c and the constant pre-
ccsslon rate 0 of thc wave I'cad

c' = u/(m —27m'/323')

0 =27c'/642

The total energy reads

0.394c02

,
C —CH

where cH = (n/m)»' denotes the harmonic lattice fre-
quency. The total magnetization is given by

M= 1 —z du =5.4583 c

FIG. 1. (a)—(c) Behavior of the coupled spin-lattice soli-
tary wave as a function of v = (3c/SA)(x —ct) for the par-
ticular choice of parameters 8 0 =2, a =3: (a) local z mag-
netization (dots show how tanh2v behaves); (b) spin preces-
sion around the z axis; (c} lattice expansion. The functions

P and Fare def&ned in Eqs. (18) and (19}.

In summary, we have shown that the compressible
chain described by Hamiltonian (1) bears infinitely
many coupled solitary ~aves of spin and lattice devia-
tions. Equations (5) with the conditions (7) were
proven to be completely integrable in terms of soli-
t8ry waves. By means of slITlplc function 8Aalysls we
have sho~n how to find the complete set of solutions
in terms of well-defined simple intcgrals. With the
help of an example we have sho~n the general quali-
tative behavior of spins and lattice. It was possible to
obtain all quantities relevant to the solutions,

Some interesting but probably very difficult ques-
tions remain to be answered. Apart from the solu-
tions of the form (2) we have concentrated on in this
paper, the general equations resulting from Hamil-
tonian (1) in the continuum limit [Eqs. (4) of Ref. 2)
also have as solutions pure lattice waves and pure
spin ~aves. Arc there still other solutions~ Also,
how arc the solitary waves influenced by mutual in-
teractions~ In particular, are there multisoliton solu-
tions~ It would also be interesting to investigate the
quantum-mechanical version of the problem.
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