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A modification of the Burkhardt, Konya, Coulson, and March (BKCM) procedure [Phys.
Rev. A 24, 2906 (1981)], enabling an estimation of electron momentum density exclusively
from the knowledge of an atomic electron density, has been presented. A known value of the
electronic energy has been employed as a constraint in effecting this modification without loss of
simplicity of the BKCM procedure. These electron momentum densities are seen to be more
physical than their unmodified counterparts.

I. INTRODUCTION

In a recent article, Gadre and Pathak! have demon-
strated, by means of certain semiclassical relation-
ships, that it is possible to extract reasonable esti-
mates of the atomic electron momentum density
Xx(P), starting from a coordinate-space atomic elec-
tron density p( T'). The procedure described in Ref.
1 hinges on the earlier studies by Burkhardt,?
Kdnya,? and Coulson and March* (abbreviated as the
BKCM procedure). For a given spherically sym-
metric, strictly monotone decreasing atomic electron
density p(r), the direct BKCM scheme that enables
one to estimate the momentum density X(p) is based
on the semiclassical relationship (in a.u.)

p(r)=p*(nN/3=? , 1)

p(r) being the maximum momentum of an atomic
electron at a distance r from the nucleus. A reverse
transformation effecting X(p) — p(r), starting from a
monotone decreasing X(p), was also discussed in de-
tail in Ref. 1, which is dictated by an analogous re-
ciprocal relationship

x(p) =r’(p)/3m? . (2)

The transformations (1) and (2) are a consequence
of the phase-space considerations which, in turn, are
based upon the uncertainty relations (in a.u.)
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Note that these relations are inequalities, not equations
and they are only true in an order-of-magnitude
sense. However, when used as equations, they lead
to the well-known Thomas-Fermi statistical atomic
model wherein the BKCM transformations become
exact. As an approximate procedure, the BKCM
scheme qualifies to be a useful one,! especially within
the realm of the density functional (DF) formalism®
where, for electronic systems in their ground states,
the electron density p( 7) is endowed with a status of
a basic variable with no explicit reference to the
ground-state many-particle wave function. Within
DF, in principle, an exact transformation to obtain
x(P) from the knowledge of p( T") was developed by
Lam and Platzman.® However, in practice, one is re-
stricted to their so-termed locally averaged method®
(LAM) which was shown to be exactly identical to
the direct BKCM procedure for spherically sym-
metric, monotone decreasing, densities p(r).” In-
cidentally, the advantage of the BKCM technique
over LAM is that the former is analytically simpler
and enables one to transform from X(p) —p(r) in a
straightforward manner. It is easily observed that the
transformations (1) and (2) preserve the normaliza-
tion, i.e.,

j; p(Namrtdr= J; x(p)dmp?dp

Admittedly, the kinetic energy estimated from the
momentum density X(p) derived from an application
of the direct BKCM technique does not match the
exact kinetic energy 7. However, in the work of Ref.
1, it has been proven that (p?/2) extracted from the
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X(p) obtained by the direct BKCM procedure equals
a definite ingredient of the kinetic energy, namely,
the zeroth-order Thomas-Fermi contribution T, for
atomic systems, i.e.,

(p*2) EJ;”X(p)Zﬂ'p4 dp
=T30—(3n2)2/3fp5/3(r) dr=T, . (4)

Another artifact of the BKCM procedure is that the
X(p) obtained is monotone decreasing with a singu-
larity at the origin; this last characteristic is obviously
unphysical. Also, while most atoms actually show a
monotonic decreasing X(p), there are instances such
as the halogens and the inert elements for which this
is not found to hold well.}~1° Further, the x(p) ob-
tained from the BKCM technique is cut off at a finite
value of the momentum! and, as such, the atom has
a finite boundary in momentum space.

In this article, an attempt has been made to obtain
more physical momentum densities with a modifica-
tion of the direct BKCM procedure. An endeavor has
been made to answer the question: Given the exper-
imental or a good theoretical (e.g., near Hartree-
Fock) spherically averaged density p(r) and the cor-
responding total energy E, what can one say about
the best possible estimate of the momentum density

X(p)? Thus the known value of the kinetic energy T
J

res 4m [3m2

fp(r) dr=4m ﬁ f’_o p"(r)rzdr=—3£ T
(3—-n)/n

4_77_ _3772 l 3/n no pree

=4z |3m o+ [

The integrated term vanishes for atomic densities
(and finite, positive n) yielding

(3-n)/n o
fp(r) dr=§ ] j; X" p)ampdp
(8)

which, in order that the normalization is preserved,
demands uniquely that n =3 (note: the normaliza-
tion requirement is independent of any positive, fixed
value of « for a given atomic system). The freedom
offered in the choice of a shall be exploited to con-
strain the resultant kinetic energy to its known value.
Thus the modified BKCM equations yield

372

p(r)=§i7 3(r) (6a)
X(p)=-§%r3(p) , (7a)

which define the constrained-BKCM ( C-BKCM)
transformations. With these relationships, the con-
nection

—-m/3

©

(P™ caxem=a™™>{p™) Bkcm

is obvious, so that the kinetic energies are linked

BRIEF REPORTS

3329

[ T =—E by the virial theorem for the given density
p(r)] serves as an additional constraint. Thus the
x(p) must satisfy

(p*/2) Ej;mx(p)ZTrp“dp-—-T=-—E . ©)

Section II demonstrates that this can be incorporated
upon a modification of the BKCM procedure.

II. CONSTRAINED BKCM (C-BKCM) SCHEME

To introduce Eq. (5) as a constraint, the flexibility
in the relations (3) could be harnessed. This may be
brought about through a modification of the relation-
ships (1) and (2) without losing the inherent simpli-
city of the BKCM transformations. One therefore
has to answer the question: What are the more gen-
eral, yet simple, transformations that would preserve
the normalization and also lead to the known total
kinetic energy? For this purpose, consider the
transformations

[+3

p(r) = = p"(r) 6)
a_ n
X(p) =551 ©
With these, one has
(3=n)/n
p=0
] S avemopr
X3/ p) npn! dpl )
I
through
<P2/2>C.BKCM=01_2/3 T, . (10)
Therefore, by setting
a=(Ty/ D" , an

{p*/2) becomes equal to T, the actual known kinetic
energy. Substitution of this value of «, less than
unity, back into Eqs. (6a) and (7a) fully defines the
C-BKCM technique, which (a) ensures the normali-
zation, (b) engenders the correct total kinetic energy,
and (c) renders the BKCM procedure atom depen-
dent. Thus, by the virtue of these attributes, the C-
BKCM scheme is expected to yield more physcial
X(p)’s as compared to those derived through the ap-
plication of the direct unmodified BKCM procedure.
The next section demonstrates this with the help of
the numerical tests carried out.

III. NUMERICAL TESTS AND DISCUSSION

In the spirit of purely testing the usefulness of C-
BKCM transformation, the atoms Z =3—36 were
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TABLE I. Atomic (p~!) and (p) expectation values for a few cases within the BKCM, con-
strained BKCM schemes, compared with their Hartree-Fock counterparts. (See text for further de-

tails.)
(™ (au) (p) (au)

Atom BKCM C-BKCM HF BKCM C-BKCM HF
Li 6.83 6.48 5.19 4.77 5.03 491
N 6.60 6.24 5.60 18.06 19.10 18.86
Ne 6.26 5.99 5.46 34.66 36.21 35.20
Na 10.67 10.23 8.71 40.72 40.12 40.73
P 11.76 11.32 10.14 65.05 65.80 66.18
Cl 11.50 11.09 10.16 79.62 82.62 80.65
Ar 11.28 10.88 10.13 87.53 90.77 88.70
K 16.21 15.64 13.77 94.85 98.32 96.22
Cr 16.03 15.47 12.25 138.8 143.8 142.5
Ni 15.23 14.72 13.81 181.9 188.2 185.3
Br 15.98 15.50 14.40 265.8 274.0 268.9
Kr 15.83 15.36 14.48 278.4 286.9 281.4

taken for a scrutiny, employing the near Hartree-
Fock densities derived from the tabulations by
Clementi and Roetti,!! with the corresponding total
energies. One could have, of course, employed the
actual experimental energy data. Table I displays
(p7') and (p) values obtained via the BKCM, the
C-BKCM procedures along with their near Hartree-

I(p)(a.u.)

1
2
pla.u.)

FIG. 1. Radial momentum densities for the neon atom
employing —®—0-0— BKCM, —A—A—A—A— C-BKCM,
and —E—B—G— near Hartree-Fock (NHF) procedures.
The plots for the C-BKCM and NHF densities are
shifted upwards by 0.2 and 0.4 units, respectively, for the
sake of clarity. (See text for further details.)

Fock counterparts. A marked improvement
throughout can be seen for the C-BKCM (p~!) ex-
pectation values which are smaller than the corre-
sponding BKCM values, and also that they are seen
to better match the near Hartree-Fock ones. The C-
BKCM (p) values are enhanced as compared to
those obtained from the unmodified version as ex-

10

pla.u.)

FIG. 2. Radial momentum densities for the krypton atom
employing —9—0—0— BKCM, —A—A—A— C-BKCM,
and —E—E-GE— near Hartree-Fock (NHF) procedures.
The plots for the C-BKCM and NHF densities are shifted
upwards by 1.0 and 2.0 units, respectively, for the sake of
clarity.
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pected [refer to Eq. (9)], and the correction to the
latter was seen to be in the right direction even
though the modified technique overestimates their
near Hartree-Fock (NHF) counterparts a little. The
following trends may be noticed:

(P nur < (P71) cakem < (P71 BreM

and
(P)skeMm < (P)nuF < (P) cBkeM -

A higher cutoff for the momentum densities obtained
via the C-BKCM scheme, compared with the BKCM
one, is yet another desirable feature. For instance,
for the atoms Ne, Ar, and Kr, the cutoffs within the
unmodified BKCM technique occur around 26, 48,
and 97 a.u., whereas with the C-BKCM method it is
seen to extend to around 28, 50, and 100 a.u. Thus,

as has been stipulated, the momentum densities un-
dergo an improvement on the whole, even though
certain undesirable characteristics, viz., the singulari-
ty at the origin, a finite cutoff, and exclusively mono-
tonic decreasing nature of X(p), cannot be removed.

Another interesting observation is that the shells in
momentum space, i.e., the maxima in the radial
atomic momentum density I(p) =4mp?x(p), occur at
nearly the same momentum values as the NHF ones
for a given atomic system both for the unmodified as
well as modified BKCM versions. This is evident
from Figs. 1 and 2 for the cases Ne and Kr. It is
noteworthy that both the BKCM procedures are seen
to preserve the shell structure in momentum space.

Thus a simple modification of the BKCM pro-
cedure, with just a single experimental energy con-
straint imposed, is seen to lead to more physical
atomic momentum densities.
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