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Dispersion relation for propagation of light in cholesteric liquid crystals
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A general theory of the light propagation in periodic structures characterized by a uni-

form rotation of the dielectric tensor about a given axis is presented. Starting from a funda-

mental approach of Dreher and Meier, which is mostly numerical, an analytical solution of
the characteristic equation has been found which can be used to calculate the wave vectors
as a function of co and of the incidence angle 0;. The electromagnetic wave is described as a
superposition of elementary modes having the form of Bloch waves. Each elementary mode
is represented by a sum of plane waves elliptically polarized, whose wave vectors are the
roots of the characteristic equation. The analysis of the solutions of such an equation allows

us to draw a more complete map of the stability and instability regions for light propagation
in helical structures than the ones currently available in the literature. The coexistence of
two distinct modes, with different polarization states, determines the shape of the stability

map. Each mode presents a series of Bragg instabilities. Between the two Bragg instabili-

ties of the same order a further instability exists which is common to both modes and does

not satisfy the Bragg conditions. All instability bands, with the exception of only one of the
first order, vanish at normal incidence. This occurs for any value of the optical anisotropy
and is a peculiarity of perfectly ordered helical structures. The bandwidth increases with 0;,
and overlapping may occur. Typical plots of dispersion curves and attenuation constants
are reported. Finally, we compute the intensity and the polarization state of the light re-

flected from a thin film, in order to clarify the controversial point about the structure—
doublet or triplet —of the higher-order reflection bands.

I. INTRODUCTION

The discovery of cholesteric liquid crystals stimu-
lated the study of the propagation of electromagnet-
ic waves in helicoidal structures having a definite
periodicity. Exact analytical solutions to this prob-
lem have been found only for the particular case of a
plane wave propagating in the direction of the helix
axis. '

So far no simple analytic solutions have been
presented in the literature for the case of oblique in-
cidence. In such a case the different parameters of
physical interest are generally found by using a nu-
merical approach, such as, for instance, the method
of the propagation matrices in stratified media. In
the present paper a different type of approach is uti-
lized, similar to the one used by Taupin and by
Dreher et al. Such an approach gives very precise
numerical results and, furthermore, allows a deeper

insight in the understanding of the light propagation
in helicoidal structures. The method consists of
finding out those solutions of the Maxwell equations
which are in agreement with the Bloch-Floquet
theorem. These solutions are the simplest propaga-
ting waves in the structure and will be referred to, in
the following, as elementary modes of the propaga-
ting wave.

It is convenient to consider a semi-infinite sample
on which a plane wave of a given angular frequency
co impinges with incidence angle 8;. In analogy to
what happens in a homogeneous anisotropic crystal,
the incident wave splits within the sample into two
separate elementary modes having different polari-
zation states. The polarization states are now in
general elliptic, and the shape of the ellipse changes
along the helix axis. Actually, each mode can be
represented as a superposition of plane waves having
elliptic polarization and wave vectors K„=K+2n q,
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where n is an integer and q is a vector parallel to the
helix axis whose modulus is related to the helix
pitch p by the relation q =2m. /p. In the theory, am-
plitudes as well as polarization states of the plane-
wave components will appear as unknowns in a set
of algebraic homogeneous linear equations. The two
characteristic values of K corresponding to the ele-
mentary modes of propagation can then be found by
solving the determinantal equation of the set.

Taupin and Dreher et al. have solved numerically
such a set of equations and found the conditions
whereby the structure acts as a transmitting or a re-
flecting medium. In the present paper an analytical
approach is adopted to the study of the determinan-
tal equation. Starting from a set of algebraic equa-
tions similar to the one appearing in Dreher's paper
it is shown that the determinant of the set can be ex-
pressed as a simple analytic function of K. It is
thus possible to obtain more complete results and to
show that the results of Dreher et al. are not corn-
pletely correct.

The developed method has been applied to calcu-
late reflectance spectra from a thin film and shows a
good agreement with the numerical calculations car-
ried out by Berreman and Sheffer with the 4&(4
matrix technique.

II. PROPAGATION EQUATIONS

where e =(t.~+@2)/2, 6=(e& —e2)/(e&+@2), and

e~, e2, e3 are the three principal values (a list of the
principal symbols used in this paper is given at the
end of this section).

According to Eq. (2.1) the structure is periodic
along the z axis with a period p/2=~/q and has a
complete translational symmetry along any direction
perpendicular to the z axis. Owing to such a sym-
metry, Maxwell equations have solutions of the type

E( r, t) E(z),(~ „,)I gz Calf

(2.2)
H(r, t) H(z)

Assuming that a plane wave of wave vector K;
penetrates within the cholesteric liquid crystal
through a plane surface perpendicular to the z axis,
the following relation between the incidence angle 0;
and Kz can be written,

m
sine; = (2.3)

where m =Etc/co, and n; is the refraction index in
the external medium.

Within the eholesteric liquid crystal a wave of the
type (2.2) is obtained when the incidence plane of
the wave is the plane [x,z I.

Upon substituting (2.2) in Maxwell equations and
taking into account that IMp=p=1 (Gaussian units
are used) the following set of equations is obtained:

The medium is considered as a perfectly ordered
cholesteric liquid crystal, whose macroscopic optical
properties are described by a dielectric tensor uni-
formly spiraling around one of its principal axes.
The latter is defined by the equation

Em( 1+5cos2qz) em 5 sin2qz 0

5 sin2qz e (1—5 cos2qz ) 0

mE = ——HZ
E3

H, =mEy,
—1

. c m2 dEz
Hy ———i—1—

N C3 dz

q dEy
Hz =i-

co dz

(2.4)

(2.1) whereas Ez,E„are related by the coupled equations

~2 d2 m2 m2
+ 1 Ez +6 1 (Ezcos2qz +Ey sln2qz ) 0

~m co' dz'

~2 d2 m2
2 2

+1— Ey +5(Ezsin2qz —Eycos2qz) =0 .
&m co dz

(2.5)

This set of equations is equivalent to the one reported in Refs. 1 and 4 —6. The periodicity of the structure
along z, with period p/2=2m/2q, suggests looking for solutions of the form

E„ . xn
e 2niqz (2.6)

Ey 3'n

According to Floquet's theorem the set of Eqs. (2.5) has at least one solution of the type (2.6). Generally, how-
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ever, there exists a complete set of solutions of this type, except in special cases which will be discussed in the
following. For a more complete discussion the reader should refer to the paper by Dreher et al.

Substituting Eq. (2.6) into Eq. (2.5), the following three-diagonal set of algebraic equations is obtained:

~n —1~n —1+an —lvn —1+ n —1 n

Cn Un —1+an Qn +~n Un

~n~n+ nUn+Cn n+1 =0 .

~n +n 3n~ Un +n+3n (2.8)

Kqc
{2.17)

and the meaning of the other variables is given in
the following list:

El +C2 61 —E2
&rn = 5=

2 6'1+ EP

an =a —a'{k +n)

b„=b —b'(0+n )

Cn =—C =6~6m Q)r,
I

a= (2e —m )a, ,
2

m ter
m

2

1 1a'= —,+m'
2 m'

(2.10)

(2.12)

(2.13)

(2.14)

2%
q =, p =helix pitch;

N P
2' 2A,

k=
2g

III. EVALUATION OF THE
COEFFICIENTS DETERMINANT

(2.20)

(2.21)

1 1b'= —,—m'
2 m'

' 1/2

1—

(2.15}

(2.16)

Equations (2.7) represent a system of infinitely
many homogeneous equations in the unknown quan-
tities

t u„,u„]. The coefficient determinant is a con-
tinuant and will be indicated by the following sym-
bol:

Cn —1 Cn

Cn b„ Cn +1

Here the second row is formed by the elements of the main diagonal and the other two rows by the elements of
the upper and lower diagonal, respectively.

Such a determinant is obviously divergent, due to the fact that its elefnents grow as n for large values of n.
In order to obtain a set of equations having a convergent determinant, it is convenient to divide both sides of

(2.7) by n —ko, where ko is a suitable chosen constant. The corresponding determinant will be considered as a
function of k and indicated by D (k), i.e.,

Cn —1

{n —lj —kp

&n

n —kp2

&n

n —ko2 2

b„

n —ko2 2

&n

2 2
n —kp

Cn

n —ko2

(3.2)
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With the use of a method similar to the one used for the Hill determinant, it is possible to represent D(k} in
the form of a simple analytic function of k. We divide first the rows of D(k) by [(k + n )—ko) f(n —ko) and
write

+~ (k+n) —ko
D(k)= g, , D'(k),

n —ko

where

(3.3)

&n —»
(3.4}

with

. b —6'(k +n)2

(k+n) —ko

(3.5)

where n is any integer.
Let C»(k) and C2(k) be the coefficients of the di-

pole and quadrupole terms of D'(k) corresponding
to a given singular point k„belonging to one of
these progressions. Then, according to Eq. (3.8) all

the poles belonging to the same progressions have

the same coefficients,
C

2(k+&)' —k,
It is straightforward to check that D'(k) has the fol-
lowing properties:

C»(k) =C»(k +n) =C»,

C2(k) =C2(k +n) =C2 .

(3.12}

(3.13)

(1}D'(k) =D'(k+n),

(2) D'(k) =D'(-k),
(3.8)

(3.9)

Furthermore, according to Eq. (3.9},all the poles be-

longing to different progressions have the same coef-
ficient Cz and opposite coefficient C»,

k„' =ko+n,
k„"=—ko+n,

(3.10)

(3.11)

and (3) D'(k) is an analytic function of k with
second-order poles at points represented by the two
progressions

C»(k) = —C»( —k) =C»,

C,(k)=C, ( —k)=C, .

The function

(3.14)

(3.15)

f (k) =D'(k) —g — +,+„k—k, —n k+k, —~ (k —k, —n)' (k+k, —n}'
(3.16)

is therefore analytic, with no singularities, and bounded. By the Liouville theorem it is then a constant, which
in the following will be indicated by the symbol Co.

The constant C2 is given by

C2= lim (k —ko)'D'(k
k~ko

(3.17)

whereas Co and C» can be obtained once D'(k) is known for two different values of k. Let these values
1

be k =0 and —,. Then from the relations

1

„(z—n) sin mz
X (3.18)
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we easily obtain

D'(0)sin ~kQ+D'( —, )cos mkQ —4vr~Cz

sin mkQ+cos ljkQ

D'101—D'( —, ) —2m C2(1/sin mko —1/cos nko)

1/sin mkQ+1/cos mkQ

(3.20)

(3.21)

Recalling that

we finally obtain

sin&z
(3.22)

[(n +k)' —k,'][in +ki'-kb]
[in +k) —(k, +kb)/2]

where

k, =(g )' m'm, ,

kb =(&~ ~ )

(3.2'7)

Ci
U=sin mkQ+

2CQ

a C2
(1—2 sin2~kQ ), (3.24)

CQ

Ci+2m C2
V=sin mkQ+ sin mkQ ~

CQ
(3.25)

In order to actually obtain D(k) it is thus necessary
only to know D'(0), D'( —, ), and C2, which implies

that it is necessary to evaluate the continuant for
three values of k. This can be performed numerical-

ly on a suitably truncated form of the continuant.
The parameter kQ—yet to be assigned —can be
chosen in such a way as to minimize the truncation
errors.

In order to make the above choice, it should be
noted that the elements y„of the continuant tend to
approach zero as 1/n and that if a term contains

y„, it contains y„ i as well. Thus for n ~ac these
terms tend to approach zero as 1/n and become
negligible for sufficiently large value of n. When
this happens, the continuant reduces to a product of
factors of the form

D(k) = (sin m.k —2Usin mk+ V), (3.23)
Sin KkQ

where

In order to have a rapid convergence of the con-
tinuant it is thus convenient to set

2
(3.28)

2U =sin mk, +sin mkb —C, —Cb, (3.29)

V=sin mk, sin m-kb —C, sin mkb —Cbsin mk, ,

(3.30)

C, =m sin(2mk, } lim (k —k, )D'(k),
k~k

(3.31)

Cb ——csin(2vrkb } lim (k —kb)D*(k},
k~kb

and D'(k) is a new determinant, given by

(3.32)

An even quicker convergence can be obtained by
writing in a slightly different way the basic equa-
tions. Instead of dividing by (n —k Q) the two equa-
tions of the system (2.7} containing n, the first
equation is divided by (n —k, ) and the second by
{n —kb). It is thus possible to obtain an equation
similar to (3.23), where D(k) is still proportional to
(sin mk —2U sin m k + V), but the quantities U and

V are given by the following expressions:

a —a'(k +n —1)

(k +n —[) —kb

e

(k +n —1) —kb

C

(k +n) —ka

a —a'(k +n)
(k +n) —k,

b —b'{k +n)
(k +n) —k,

b —b'(k +n)'
(k +n) —kb

a —a'(k +n)'
(k +n) —kb

C

(k + )2 kb2

C

(k + n +1)2—k.

~ (3.33)

The advantage of D'(k) with respect to D'(k) is that
the sum of all the terms which do not contain the
constant c is equal to 1.

In order to give an idea of the rapidity of conver-
gence of these continuants, we note that for all the

numerical calculations reported in this paper it was
never necessary to take into account terms with

~

n
~

~ 15 to reduce the truncation error to less than
1 ppm.
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IV. CHHARACTERISTIC EQUATION

On the basis oof the results of Sec.
eristic equation reads as

ec. III, the charac
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k )
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Brillouin zone (solid lines) cross exactly at the boun-

daries of the type-C region.
The detailed study of the solutions of the basic

equations (2.7) is still in progress and will be pub-
lished in a subsequent paper.

V. DISCUSSION

-05

FIG. 2. Dispersion curves for the two elementary

modes in the reduced Brillouin zone, computed at fixed
incidence angle for the cholesteric of Fig. 1 and for
m = V 2. Frequency gapa which occur at k = 20. 5 and at
k =0 correspond to instability regions of type B; they give

rise to the Bragg reflection peaks. Other frequency gaps,
which are common to both modes, correspond to instabili-

ty regions of type C; they give rise to further reflection

peaks between two Bragg peaks.

in which regions of instability of type B and C are
shown. This chart is similar to the one appearing in
Dreher's paper but shows also the existence of re-
gions of type C which do not appear in Dreher's
plots. Such regions are included within the two
Bragg bands corresponding to the two elementary
modes.

The instability regions correspond to total reflec-
tion bands. It can be noted that all the bands of or-
der n &1 becomes vanishingly narrow for m~0.
This agrees with the well-known result that for nor-
mal incidence only a single reflection band exists.

Finally, in Figs. 2 and 3 are reported the disper-
sion curves co,(k) and k(co, ) for m =2. It can be
observed that the curves represented in the reduced

The curves reported in Figs. 1 —5 refer to the
cholesteric liquid crystal studied by Berreman and
Scheffer which is a binary mixture of nonmeso-

morphic dextro 4,4'-bis(2-methylbutoxy) azoxyben-
zene (2MBAB) and nematic 4,4'-bis(hexyloxy) azox-
ybenzene, with 0.45 molar fraction of 2MBAB. As
reported by these authors, this cholesteric has a
pitch of 0.764 pm at 88'C and the following values

of the dielectric tensor: e&
——3.060 and

E'p=Eg=2. 430. These values have been obtained by
comparing the experimental reflectance from a
single-domain thin film with that calculated by the
method of propagation matrices.

Some disagreements between experiments and
theoretical results are pointed out by the authors
quoted above. We found it interesting to carry out
the calculations by a different method, also because
we found it puzzling that in their theoretical curves
the second-order Bragg reflection band shows essen-

tially only two peaks. As also in the paper of
Dreher and Meyer the presence of the central peak

1.0C
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FIG. 3. Real part Rek and imaginary part Imk of the

reduced wave vector k vs co„computed in the same condi-

tions of Fig. 2. Rek solid lines represent the dispersion

curves in the reduced Brillouin zone. 2q Imk is the at-

tenuation constant of the mode, its inverse is the ampli-

tude attenuation length.

FIG. 4. Real part Rek and imaginary part Imk of the
reduced wave vector k computed for the cholesteric of
Fig. 1 and for m = 1.06, corresponding to light incident at
45' from the glass, around the second-order reflection
band. Curves show that this reflection band is a triplet
and that the three components have comparable heights
and widths. Ratios of the areas of the three Im(k) peaks
are 1:1.2:1.4.
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0.1—

0.1
0.77

I

0.83

is ignored; one might doubt the very existence of
such a peak.

We therefore calculated the reflectance of a flat
layer around the second-order band, assuming the
saxne conditions of Ref. 6, i.e., for light incident at
45' in the x,y plane on a sample of 15 pitch lengths.
The calculation goes through the following steps.

(a) By means of Eq. (4.1) the characteristic values
are computed. In Fig. 4 the real and imaginary
parts of k are reported. The quantity 2q Im(k) is
the attenuation constant. One can notice three
well-separated instability zones of comparable width
and height. The energy density attenuation length
at the center of these zones is about 25 pitches. Be-
cause the saxnple was 15 pitch lengths, we expect
three accentuated reflectance peaks of comparable
intensity.

(b) By Eq. (2.7) the coefficients u„and U„, which
define the spectral composition of each mode, are
computed. These coefficients vanish very rapidly as
n increases. For such a reason they can be obtained
with any desired approximation by omitting all

u„,U„ for n & no, where no is some positive integer.
The obtained results can be summarized as follows.
The mode which corresponds to the upper curve of
Fig. 4 is elliptically polarized with a very strong E„
component (E„ is about one tenth of E„). The oppo-

site occurs for the other mode. A different situation
occurs only in a very narrow interval inside and

around the C-type instability zone, where both
xnodes have E„and E„components of comparable
intensity.

(c) Finally, when the four elementary modes of
characteristic values k i+, k2+, k i,k2 are known, the
wave inside the saxnple is represented as a linear
combination of them. The four coefficients of the

linear combination appear as unknown quantities in

a system of eight linear equations, obtained by

matching the fields at the layer surfaces. The other
four unknowns are the E„and Ey components of the
transmitted and reflected waves. The cases of m and

o polarization of the incident light have been

separately considered.
In Fig. 5 the reflectance coefficients versus co, are

reported. We note that each one of the four R „,R,R, and R „curves shows only one peak well

above the interference fringes. The peaks of R „
and R curves are the Bragg peaks of each of the

two modes. The peaks of R and R are instead

related to the C-type instability. This means that

the Bragg reflection is nearly in the same polariza-
tion state of the incident beam, while the reflection
froxn C-type instability is prevalently polarized in

the opposite state. Our calculations yield results

practically coincident with the theoretical curves of
Ref. 6 which, however, reports only the R and

R curves, where the C-type reflection peak is

nearly absent. The disagreexnents between theory
and experiment are confirmed.

It must be noted, anyhow, that all the calculations
have been made assuming a perfectly ordered sam-

ple, while the real sample is certainly soxnewhat

diffusing owing to surface defects and thermal fluc-
tuations of the director. At present no reliable cal-

culation has been published on the light scattering
properties of cholesteric liquid crystals. The present

theory has been developed also in order to study the

light scattering of thermally excited internal modes.

Taking into account that for a nematic liquid crystal
with the same thickness and optical anisotropy the
scattered intensity is about 10% of the incident light

(Ref. 8), a non-negligible effect on the reflectance
properties of a cholesteric sample should be expect-

0.1
0.77 0.83

(b)
0.85

VI. CONCLUSIONS

FIG. 5. Second-order renectance spectra of a cholester-
ic liquid-crystal film 15 pitch lengths or 11.45-pm thick in

the same conditions of Fig. 4. Indices m and cr denote the
polarization of the incident and reflected light with

respect to the incidence plane: m. indicates parallel and cr

indicates normal.

Despite the fact that the interest in cholesteric
liquid crystals lies in their extraordinary optical
properties, astonishingly enough, these properties
are fax from being completely understood. Most of
the papers found in the literature are concerned with
the particular case of light propagating along the
helical axis. The more general case of oblique prop-
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agation is usually treated with numerical methods.
These methods are useful for studying some particu-
lar properties of these liquid crystals, but they give
little insight on thc light-propagation mechanism

In the present paper a new formalism has been in-
troduced which is similar to the one used to charac-
terize the light propagation in the homogeneous, op-
tically anisotropic crystals. That is, we consider the
wave inside the cholesteric as a superposition of
plane waves having a definite polarization state.
The method is not very different from that used by
Taupin to calculate the reflectance from a semi-
infinite sample and from that used by Dreher and
Meier to find the Bragg reflection bands. In the
present paper, however, the formalism is developed
to thc point to make it applicable to study the gen-
eral optical properties of helicoidal structures, as,
for instance, the reflectance and the transmittance of
cholesteric liquid crystal films. The actual calcula-
tions are carried out on the basis of reasonably sim-

ple expressions and yield very precise numerical re-
sults.

Among the preliminary results thus obtained we
would like to stress what follows. We obtained a
very simple equation for the characteristic vectors.
The very existence of such an equation allows us to

classify the different types of instabilities occuring
in a helicoidal medium. We were then able to clari-
fy one of the most controversial points in the litera-
ture, i.e., the number and the origin of the reflection
peaks. We show that the stability properties of the
electromagnetic wave is determined by the coex-
istence of two modes with different polarization
states. Between the Bragg reflection peaks of the
same order of the two modes, a further peak is evi-

denced, where the dispersion curves in the first Bril-
louin zone intersect. This peak is common to both
modes and is therefore present independently of the
polarization state of the incident light, while the
Bragg instabilities give rise to selective reflection.
For what concerns the polarization of the reflected
light, we note that the Bragg reflcction peaks are
predominating of' the mw or crea type, while in the
central peak the dominant component is of the m.o.

or om type.

ACKNOWLEDGMENTS

We thank Professor G. Durand for having stimu-
lated this research. We also thank Professor P.
Mazzetti and Professor M. Rasetti for their useful
discussions.

'C. W. Oseen, Ark. Mat. Astron. Fys. 21A, 14 (1928);
21A, 1 (1929);Trans. Faraday Soc. 29, 883 (1933).

2H. de Vries, Acta Crystallogr. 4, 219 (1951);N. Isaert, J.
P. Berthault, and J. Billard, J. Opt. (Paris), II, 1, 17

(1980); for a more detailed bibliography' see H. Kelker

and R. Hatz, Handbook of Liquid Crystals (Chemic,

Weinheim, 1980).
3D. W. Berreman, J. Opt. Soc. Am. 62, 502 (1972).
4D. Taupin, J. Phys. (Paris) 30, C4-32 (1969).

~R. Dreher and G. Meier, Phys. Rev. A 8, 1616 (1973).
6D. W. Berreman and T. J. Scheffer, Phys. Rev. Lett. 25,

577 (197+;Mol. Cryst. Liq. Cryst. 11, 395 (1970).
7see, e.g., P. M. Morse and H. Feshhach, Methods of

Theoretiea/ Physics (McGraw-Hill, New York, 1953),
Chap. 5.2.

~E. Miraldi, C. Oldano, L. Trossi, and P. Taverna Vala-
brega, Nuovo Cimento B 60, 165 (1980).


