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Ion diodes suited to inertially confined fusion research must conduct very high currents.

The magnetic fields due to these currents are comparable to the fields used to provide mag-

netic insulation of electrons. Because these self-fields are necessarily high at the diode boun-

dary where the power is applied, and are zero at some other part of the diode away from the

power feed, these diodes have generally been treated theoretically by two-dimensional

particle-in-cell computer simulations. There is a special class of ion diodes employing series

magnetic field coils which can be described by a one-dimensional model. These diodes are

highly amenable to treatment by analytic theory, and therefore are easily designed and

scaled to multiterawatt systems. Many features of these diodes make them very attractive

as drivers for inertial-confinement fusion research. Theoretical analysis of this class, includ-

ing magnetic field configuration and field coil design, electron drifts, diode efficiency, and

ion focusing, is presented. Also presented is analysis of a plasma-filled version which pro-

vides ion bunching and filtering of light ion species which might otherwise have detrimental

effects on target experiments.

I. INTRODUCTION

Pulsed power ion diodes have made rapid progress
in the few years since their inception. ' " They
have achieved high efficiency (-50%) and have
demonstrated very high power output. Nevertheless
the designs used originally have met with difficulties
in focusing at higher power levels. The effects
which cause difficulty are self-focusing of the beams
and reduction of beam kinetic energy due to net
drift-region beam currents, uncertain equipotential
line shapes due to virtual cathodes (i.e., cathodes due
to clouds of electrons not in close proximity to a
physical electrode), and lack of control of
relativistic-electron drifts in the diodes. This paper
describes a very simple ion-beam diode geometry
which overcomes these difficulties to a large degree
and which can be described by analytic theory.

The configuration described is applicable to the

Ampfion series of diodes. Ampfion was originally
an acronym applied to the automagnetic plasma-
filled ion diode. ' ' All of the theory to be present-
ed is applicable to that particular diode, but much of
the theory applies equally to the Particle Beam
Fusion Accelerator-I (PBFA-I) and Hydramite hy-
brid diodes. ' These hybrid diodes use dielectric
surface ion sources rather than initial plasma fills.
Some of the theory can also be used to reach a quali-
tative and semiquantitative understanding of other
magnetically insulated ion diodes.

The plasma-filled Ampfion diode has one qualita-
tive difference from other ion diodes in that the ion
acceleration gap increases in time at a rate propor-
tional to the diode current. This results in voltage
ramping which in turn results in axial focusing
(bunching) if the diode focal length is chosen prop-
erly.

Sections II and III describe the one-dimensional
diode geometry, the electron drifts, and the electron
losses for both the plasma-filled and hybrid diodes.
Sections IV and V discuss the sheath dynamics for
plasma-filled diodes, and in Sec. V the filtering of
light ions for multiple ion species plasmas is calcu-
lated. In Sec. VI the scaling of plasma-filled diodes
to provide the best impedance match to the pulser
and the best bunching of the ion beam is calculated.
In Sec. VII an example of the design of a focusing
ion diode is given.

II. ONE-DIMENSIONAL
DIODE GEOMETRY

The simplest diode geometry and the one to be
discussed is the strip diode (Fig. 1), i.e., a planar
diode of finite width and infinite length. Extension
of this analysis to a practical, focusing diode can be
found in Sec. VII. The theory cannot treat end ef-
fects since they are two dimensional. If S is defined
as the ratio of the diode gap Z to the diode width b,
then end effects are at least of order S since
Maxwell's equations are second order. It is there-
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FIG. 1. Ideal strip diode. Diode extends to 2 00 in the
x direction. Figure is greatly expanded in the z direction;
the separation between the anode and cathode plasmas is
s~all in comparison to the diode height b. Pitch of the
field coil varies in the y direction in such a way as to keep
8„+B„constant.

fore unnecessary to keep terms higher than S . The
theory will be seen to keep second-order terms in a
natural fashion.

Ion diodes suitable for inertial-confinement fusion
conduct very high currents and therefore have very
high self-magnetic fields (i.e., magnetic fields due to
the diode current itself) at the side of the diode to-
ward the power source. On the other side of the
diode, or perhaps at some axis or plane of symme-
try, the self-magnetic field must go to zero. It
might seem at first glance then, that such a diode
must be a two-dimensional device even when
neglecting end effects. However, if the self-
magnetic field is supplemented by that of a suitably
designed field coil in series with the diode, the prob-
lem can be reduced to one dimension (neglecting end
effects).

The geometry of such a diode may be found as
follows: Assume that the electron and ion current
densities to the anode are independent of y (Fig. 1)
and also that the magnetic field tangential to the
anode is independent of y. The latter assumption is

necessary for the electrons to gyrate with uniform
radius for all values of y. This results in the tangen-
tial electron current density being independent of y.
These requirements will specify the field geometry
except for one parameter which may be specified as
the ratio of the tangential magnetic field to the
diode current. This parameter will be seen to deter-
mine the efficiency of the diode.

Since the fields are specified, the currents parallel
to the anode are also specified. These currents are
due to electrons drifting in the diode electric field
and the tangential magnetic field. It will then be
shown that the fields are indeed in the proper direc-
tion to provide the electron drifts, i.e., the fields and
drifts are consistent with each other.

The magnetic field configuration will require a
boundary condition which must be met by the field
coll, Since the self-magnetic field is proportional to
the diode current the coil field must also be propor-
tional to the diode current and must therefore be in
series with the diode to allow for time dependence.

In the following, J will be used to describe current
densities to the anode whereas j will be used for the
current densities throughout the diode, ' also, Z will
be used as the distance from anode to cathode and
x,y,z will be used as the Euclidean coordinates in the
diode. Subscripts e and i will refer to electron and
ion parameters, respectively, and subscripts a and c
will refer to anode and cathode parameters. In this
section the fields will be determined in the accelera-
tion gap as will the surface current on the anode.
The details of this surface current for plasma-filled
diodes will be discussed in Secs. IV and V.

The Euclidean axes are defined in Fig. 1. Since
the electron and ion current at the anode, J, and J;,
are to be independent of x and y, the y component of
the surface current (current per unit width) must be
0&

——Jy =(J,+J;)y to conserve current. The mag-
netic field deep in the anode (i.e., in the anode plas-
ma for a plasma-filled diode or in the anode metal
for a metal-dielectric anode ") is zero so the mag-
nitude of the tangential magnetic field at the anode,8„is given by B,=goo„where 0, is the magnitude
of the surface current. Since B, must be indepen-
dent of position so must cr, . Therefore

ey+o„'=(Jy) +o,'=o, .

The surface current path can then be found from the
differential equation

where the geometric constant b p is give11

bp ——0., /J g b. The integral of this equation is
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x/bp ———in([1+[1 —(y!bp) ]'~ ]I(y/bp))

+[1—(y/bp) ]'~ +const .

The magnetic field line projection on the anode sur-

face is normal to the current path and thus given by

dy/dx = —o„/cr~= —[1—(ylbp) ]'~ l(y/bp)

or again by integrating

(x,y) components of B and j, it is seen that there is

a small component of j parallel to B, but that it is

down from the normal component by approximately
abp (d a/dz2) —] which is of order S since bp) b.
Thus the tangential components of magnetic field

and diode current density are normal to each other
to the order of S, which is necessarily small for
small edge effects. It is also clear that the tangentia1

component of the magnetic field is given by

x/bp [1———(ylbp) ]'I +const . Bii =(B,+Bi, )' =Ppbpj'z (2.1d)

Ay = —a (z)(y/bp),
z

A, =bp ' f a(z)dz,

(2.1a)

where B ( —oo ) =0 and a (z) is arbitrary except that
a( —00)=0. The magnetic field is then given by

BA, BAy da y
By Bz dzbp

'

BA„ BA da y
Bz Bx dz b

(2.1b)

' 2 —1/2
BA BA„g(z) y
Bx By b bp

1—
bp

The current densities are given by pp j = V p 8 or

BB, BBy
Parx =

2 —3/2
a 1—

2
bp bp

2 1/2
dQ

dz2 bp

BB„BB, da y"'"=
Bz Bx dz2 b, '

BBy BB 1 da
Ppji=

Bx By b p dz

(2.1c)

By looking at the dot product of the tangential

The field lines at the anode are thus circular with a
radius of bp.

At this point the currents in the gap could be as-

sumed to be parallel to the surface current in the
anode, or the magnetic field could be assumed to be
parallel to that at the anode. These assumptions will

soon be seen to be equivalent (to order S ). It is con-
venient to assume that the latter (constant field
direction across the diode) which, when combined
with V A=O, gives a general form for the vector
potential of

A = —a (z)[1 (y Ibp ) ] '—~

for all values of z.
The field coil must be designed to give the proper

boundary condition at the cathode side of the diode.
Electrons flow in from the cathode at the power in-

put side of the diode (Fig. 1) and the net value of j,
must then be given by J;. The x component of the
magnetic field is thus given by B,„=ppJ;y. From
Eq. (2.1d) the total tangential magnetic field at the
cathode is given by B =ppJbp. The current per
unit width at the power feed (y =b) is just the
current density times the diode height b, i.e.,
O.y(b) =Jb. If the coil consists of vanes spaced Lbc

apart in the x direction, then the current per vane
must be Jb M. The spacing in y of the vanes hy
then gives the coil current per unit width in the y
direction Jb M/Ay. This can be put in Ampere's
law to get

Bgy+Bd, ——2pp Jb
hy

' (2.2)

where B,y is the y component at the first cathode
and Bdy is the y component in the drift region be-

tween the coil and the second cathode (see Fig. 1).
The factor of 2 in Eq. (2.2) is due to the two layers
of the field coil. Equation (2.2) can be rewritten

By:pp Jb:pp Jb dX(y)
4y dy

The flux between the anode and the field coil due to
By must be the same as that between the field coi1
and the second cathode. This is because of the small
field penetration into the metal conductors on the
time scale of the diodes (-30 ns). The ratio
Bdy/B, y must be related to the ratio of the gap be-

tween the anode and the field coil to the gap be-

tween field coil and second cathode. However, the
field at the field coil is not the same as that at the
anode so the field ratio is not simply the ratio of the
gaps. For the moment the ratio will be assumed to
be one. This will be discussed further in Sec. VII.
With this assumption then
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(2.3a)

where g =J; /( J, +J; ) is the diode efficiency. Equa-
tion (2.3a) is readily integrated to yield

'2' 1/2
6 1 yX(y) = —y 1—

bpg 2 bp
+bpsin

bp

(2.3b)

For bp ——26 (which says that the tangential magnetic
field is twice the maximum self-field) the right side
of Eq. (2.3a) varies from 1.0 at y =0 to 0.87 at y =b.
The slope of the coil is then almost a constant and
equal to bpg/b. For this reason, although both bpg
and bp are involved in the coil design, the design is
usually more sensitive to bpg than to 6p.

Thus far the general forms of vector potential and
magnetic field which have uniform J„J;and
tangential magnetic field have been found. The vec-
tor potential in the anode cathode gap was found us-

ing the constancy of the skin current in the anode.
The details of this skin current will be considered in
Secs. IV and V.

It is convenient to define a new coordinate system
in which the fields, potentials, and currents are in

simpler form. This system will be called the g, h, z
system, where z is the same as that in the x,y, z sys-
tern. Ignoring for the moment the z component
since it is unchanged, the g, h system is defined by

where X(y) is the vane shape function for the coil
and the finite difference has been replaced with a
differential since the coil vanes are to be closely
spaced so M and Ay are small compared to the vane
radius of curvature in the x,y plane. Combining this
with B,„=goJ;y, B,=pP;bo, and B, =B,„+B&
yields the equation for the vane shape X(y)

2 1/2
Jb dX 6 dX y
J bp dy bpg dy bp

b —g 1+[1—(y/bo)']'"
=ln

bp y/bp

or

ylbo =sech[(h g)-lbo] .

To find the metric of the g, h, z system

dg =dx+(y/bo)[1 (y—lbo) ] ~ dy .

dh =dx —(y/bo) '[1 (y—lbo) ]'~ dy,

(2.4c)

or

[1—(y/bo)']'"dg = [1-(ylbo)'1'"dx

+(y /6 p)dy,

(ylbo)d" =(ylbo)dx —[1 (ylb—o) ] ~ dy .

+sech dh +dz
bp

(2.5a)

where ds is the distance element along any path.
Since there are no cross terms the system is orthogo-
nal. The unit vectors are easily found to be

h —g h —g
g =x tanh +y sech

bp bp
(2.5b)

g
h =x sech

bp

h —g—y tanh
bp

and z. The vector potential and field can now be
written simply as

Squaring both of these and adding them and also
adding dz yields

ds =dx +dy +dz

=[1—(y/bo) ]dg +(y/bo)2dh2+dz2

= tanh dg
h-

bp

and

(x g) lbo = [1——(y lbo )']' '

b —x 1+[1—(y lbo)']'"
= ln

bp y/bp

(2.4a) A= —a (z)g+ —f a (z)dz,
bp

da a (z) h —g

(2.6a)

(2.6b)

1—
bp

' 2 1/2

(2.4b)

Clearly, a constant g line is a projection of the mag-
netic field lines on the anode and a constant h line is
a projection of vector potential lines. By adding
these two equations it is seen that h —g is a function
of y and independent of x

and the current density in the diode gap is [from Eq.
(2.1c)]

dazdaP'j=
d, , g 6, d

a 2 h —g h —g+—
2

coth g+h sech
62 6 bp

(2.6c)
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FIG. 2. Orthogonal g, h, z coordinate system. Constant

g lines are projections of the magnetic field lines on the

anode. Constant h lines are projections of vector potential
lines. This system is described by Eqs. (2.1).

Since the electric field is in the z direction and the
tangential magnetic field is in the h direction; EXB
is along the g direction (i.e., along constant h lines) ~

Although individual electrons will not, in general,
drift along the EXB direction, it seems reasonable
to assume that there will be equal numbers of elec-
trons drifting at equal angles on either side of that
direction. Past 90' to that direction both magnetic
and electric fields force the electrons toward the
anode so that they must be lost. Numerical simula-
tion of diode with series field coils like those
described here, and in other configurations indicate

that drifts do indeed go in the EXB direction. '

III. DIODE EFFICIENCY

The last (h) term is again the small component of j
along the magnetic field which is down by S from
the main component.

There are two functions for this coordinate sys-
tem which are very useful. The first is the distance
from the y =bp line along a constant h line which
will be called g(y). From Eq. (2.5a) for dh =0 and
dz =0

h —gdg=ds
~ q~ p ~ p=tanh dg

0

= —tanh d (h —g)
bp

or

g /lb p
bo

cosh =e
bo

(2.7a)

-&~ho y=e
bp

(2.7b)

These functions will be used in subsequent sections.
They may be visualized by considering the two con-
stant h lines on the right side of Fig. 2.

Thus far a one-dimensional field and current con-
figuration has been found. For the diode to behave
according to the model, however, the electron
dynamics must be such as to give currents consistent
with those of Eq. (2.1c) for the fields of Eq. (2.1b).

The second useful function is the separation between
two constant h lines (measured normal to those
lines) an infinitesimal distance apart divided by their
separation aty =bp. This is given by

ds h —g8'(g) =
qs p ~ p=sech

0

Bc=pob oJ&

The efficiency g of the diode is thus given by

Bc
YJ 0

B,
(3.1)

The efficiency of the diode cannot be 100% be-

cause of the self-magnetic field. The electrons will

circulate in the x direction but they also move in the
—y direction due to the self-field. The electrons
drift in from the cathode (Fig. 1) at the edge of the
diode and charge builds up uniformly over the diode
due to the shape of the curved drift paths (constant
h lines). The charge buildup is uniform because the
diode was designed to give uniform current, and this
includes displacement current. Displacement
current is proportional to the rate of change of the
diode electric field which is proportional to the elec-
tron charge per unit area. The increased electric
field and the loss of y component canonical momen-
tum due to the tangential electric field at the edge of
the diode cause the electron orbits to extend across
the field until they are lost at a rate which is deter-
mined by pressure balance. The increased electron
charge per unit area also increases the ion current'
(i.e., enhances it} since the net ion charge per unit
area must equal the net electron charge per unit area
because E, is zero at the electrodes. '

It was shown in Sec. II [Eq. (2.1d)] that the mag-
netic field parallel to the electrodes is given by

poboj~ for all values of z. Since the anode col-
lects all of the diode current, the total, tangential
magnetic field at the anode is

B,=pobpJ .

At the cathode side (i.e., at z such that E =0) the z
component of the electron current is zero since the
electrons drift in radially from the first cathode.
Therefore
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Individual electrons are accelerated continually, but
the electron cloud as a whole is in equilibrium and is
not accelerating toward either electrode. Therefore
the total pressure (particle plus field) is the same at
both electrodes. Thus, if the voltage across the gap
is V,

2 2 1/2
Ba Bc ~i 2e V+—M
2pp 2pp e M

(3.2)

since the electric field is zero at both electrodes
(space-charge limited flow), the ion momentum is
zero at the anode, and the momentum of electrons
lost to the anode is neglected (legitimate for
g &&m/M). In the above M is the mass for a sing-

ly ionized particle, but in general it is the mass di-
vided by the number of times ionized, i e.,
M =m;/z;. Combining Eqs. (3.1) and (3.2) we have

r)'(1+r)f) =1,
where

' 1/2
2Po J 2MV 2

B, e JMo(bpp) J

(3.3a)

' 1/2
2M V

(3.3b)

Ba Bc (1—fI)B,

poJ. I oJ.
B,

=bp .
JMp J

This expression gives the efficiency of the diode. It
does not give 100% for finite magnetic fields, which
is contrary to a common statement about diode effi-
ciency being 100% for fields above some critical
value. The expression is, however, consistent with
behavior expected when self-fields are considered.
The expression bpg was used in the denominator of
f because it is closely related to the coil design, as
was pointed out at the end of Sec. II. The efficiency
expression is correct as stated in Eq. (3.3) for all bp,
but bpg is not essentially constant for all voltages
and currents if bp is too close to b.

The above expression was derived assuming that
all electrons drift in from the cathode at the edge of
the diode, and none come across from the field coil
(Fig. 1). This should be correct from the charge
buildup argument given earlier, and is supported by
numerical simulation results. If electrons do come
straight across from the coil the first expression in

Eqs. (3.3) becomes ri (1+rlf) & 1, which reduces the
efficiency.

Equation (3.1) yields an added meaning to the
geometric constant bp. The average drift distance
along a drift path (constant h line) for an electron is
equal to the electron current per unit width,

(B,—B,)/po, divided by the electron current densi-

ty, i.e.,

Therefore bp is also the average drift distance of an
electron.

Goldstein and Lee' have shown that

1 —g
J;

where v., and ~; are the average times an electron

and ion spend in the diode gap. Since ions travel

straight across the gap, ~; is dependent mostly on

the size of the gap Z and the diode voltage. The

electron lifetime ~, should be proportional to bp,
however; so high bp should give high g as Eq. (3.3)
predicts.

It should be emphasized that Eq. (3.3) has not in-
volved orbit calculations but is rather derived from
considerations of momentum balance and from
space-charge limited conditions at the electrode. Al-
though g =B,/B, was derived for the special
geometry of Sec. II it can be proven more generally
if the electrons move predominantly normal to the
electric and magnetic fields. For this reason Eqs.
(3.3) (using the expression for f with B,) may be true
locally for all magnetically insulated ion diodes with
large width to gap ratios.

IV. PLASMA DYNAMICS
FOR PLASMA-FILLED DIODES;

SINGLE ION SPECIES

In this section an anode which is a cold, collision-
less, quiet plasma of finite electron density np and
containing a single ion species is assumed. This
plasma might be generated by plasma guns and in-

jected into the diode region. ' Ions are accelerated
from the surface of the anode plasma, across the ac-
celeration gap, after which they pass through the
first cathode (Fig. 1). At the same time the anode
plasma surface moves back with velocity
u, =dZ/dt. Part of the plasma ions are being re-
moved by the electric field (to provide the ion
current) but the plasma surface motion is caused

mostly by magnetic pressure. Since the magnetic
pressure pushes on the electrons, an electric field
develops to transfer the force to the more massive
ions. This results in a potential hump at the plasma
surface like that shown in Fig. 3. It is convenient to
define a precise boundary between the anode plasma
and the acceleration gap. This boundary will be de-
fined as the point where E =0 (Fig. 3), and at this
point z =0.

The lower portion of Fig. 3 is drawn in the g,z
system. The potential hump temporarily speeds the
electrons up while they are in it. Most of the ions
are reflected from this potential hump, but a frac-
tion c, pass over it. All of the electrons are reflected
at the peak, and in doing so they step over a distance
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A, in the direction of wider flow [increased W(g)].
From Eq. (2.7b) and Fig. 3 their reflected current
density is

noeu, W(g)

1V(g A—).

—0
Q=o

(1—e)=e (4.1a)

It will be seen later that a gg 1; thus

Since there is no net current or charge in the plasma
at z = —00, this electron current density must equal
the ion current density noeu, (1—s } so that

e
noeu&

i+ nereus

l
)

I

]I
t
I

I

I

I

The ion and electron current densities are then given

by (for z &0)

FIG. 3. View of the anode plasma in the rest frame of
the plasma surface. Magnetic field pushes on the elec-
trons which then pull on the ions through the electric field
on the left side of z =0.

no(2 —F.)u,

(u, —2eg/M)'/

no(2 e}u—s no(2 —e)u,

(
2 2)1/2

8

'2l
80

' 2 1/2

(4.2a)

(4.2b)

where 8 is the Heaviside unit step function. The
tangential current in the plasma {i.e., z g0) is due to
the electrons alone as the magnetic field has virtual-
ly no effect on the ions over the thickness of the
plasma sheath; so from conservation of canonical
momentum in the g direction (E8 ——0)

8 Pl

By putting Eqs. (4.2a) in Poisson's equation

e(n, —n;)

dz &0

and by multiplying by dP/dz, and by putting Eq.
(4.2b) in Ampere's law [Eq. (2.6c)] and multiplying
by da/dz, the equations can be combined and in-
tegrated to get the pressure equation

1 dQ

2po dz

'2

+(2—s)nou, m 1+ '2
eo d 2 2ek
2 dz rnu

2' 1/2
2eg

IQs
' 1/2

+M 1—
~"s

.=(2—c.)now, (m +M), {4.3a)

where the constant of integration is determined by
the boundary condition at z = —00, i.e.,
(dgldx)=(da/dz)=/=a=0. Going now to the
plasma edge (z =0)

2 '2
ea=0,

dZ 28 PRQs



ANALYTIC THEORY OF SERIES FIELD COIL ION DIODES

I~
E

noeus noe~us
(4 4)

so

dQ

dZ
=I o o=l PoJ=VPol//l

where the current is normalized to a finite area A for
later convenience; then from Eq. (4.3a)

Proof

ZA
=(2—c)(m+M)nou, . (4.3b)

The single species sheath dynamic constant F. is

given by (Fig. 3)

L2=eome /[n11(2 —s)e ]

is the so-called collisionless skin depth and

Fl
21/2 (4.6)

[ l ( l F2)1/2]1/2

The magnitude of the d 1})/dz2, n„and n; terms of
Poisson*s equation can be compared a posteriori.
The first term is found to always be smaller than the
other two by Mu, /mc, so the approximation is jus-
tified.

Equation (4.6) could easily be integrated numeri-

cally. However, it is readily seen that

I'(x)=e", F« l

&o poeI

noeAu, 2A (m+M)u,9+
and

F(x) 1+2' x, F &1 .

It will be seen in Sec. VI that the first q term is al-

ways small compared to the second. Therefore, the
ratio I/u, is virtually constant, i.e., as I and V

change with time, u, changes in proportion to I.
The relativistic electrons flowing from the

cathode into the anode plasma have been neglected
in the above calculation. Assuming J;=J, (i.e.,
g=S0%) the relativistic electron current density is
of the order of c down from noeu, . In addition,
these electrons are moving at almost the speed of
light, so their density is down by cu, /c from that of
the

chiasma.
This is a very small number, typically

10 to 10 for systems of interest.
The thickness of the sheath is, of course, calculat-

ed by solving Poisson's equation (4,2c) and Ampere's
law (2.6c) using Eqs. (4.2a) for the electron and ion
densities, and Eq. (4.2b) for the electron current. By
normalizing the scalar potential to mu, /2e and the
vector potential to mu, /e, one finds that the
d P/dz term of Poisson's equation should be small
compared to the n, and n; terms. This is the com-
mon assumption of quasineutrality. Using n, =n;
yields

d Q

dZ

noeus I;
/l eo(u, 2eg/M )'/—

Poisson's equation can be integrated once

eo dp Mli us 2e((1

2 d A 'M..'

The sheath scale size is thus given by I..
For z pO there are no electrons from the plasma

as they cannot cross the magnetic field that far.
There will be electrons from the cathode, but that
problem is more complex than the present model.
For this reason the solution for the potentials in the
z p 0 region will be found assuming no electron den-

sity, and then an enhancement factor' ' will be ad-
ded to account for electron density in the gap. The
magnitude of the enhancement factor may be es-
timated from the work of Bergeron. '8

Since electrons are not being considered at the
moment, Poisson's equation and Ampere's law are

ea (z)
' 1/2

F(z/I. ),

where

Using this equation, Ampere's law may be reduced
to a sad-order differential equation which can be
integrated once. The potentials may then be written

'~(;) =[r(z/I. )]',
Mug

and then again to yield
1/2

I;= 4g 2eso Mu,

9Z2 M 2e

where p, is the cathode potential. Letting —((1,= V
(the diode voltage), neglecting Mu, /2e, and for in-
stantaneous diode gap Z

' ]/2

I;= 4A 2e~0
V9Z' M

The addition of electrons to the gap region (zgO)
will enhance the ion flow. ' ' This will be taken
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V. PLASMA SHEATH DYNAMICS
FOR PLASMA-FILLED DIODES;

MULTIPLE SPECIES

I

~no~e
Piasma

I

fTl~+) & ITl~-
charge

e n, mu

L~ S~fTl~ U&

I

'r "n"."sl

(1-e)Sr
l

N"s~ l

Jo- QeUs

N

J. e&,+ps,
I =r+]

FIG. 4. View in the rest frame of the anode plasma
surface for a multiple species plasma.

If the presence of multiple ion species in the
source plasma is now considered, a surprising effect
is seen. Since all ions enter the plasma sheath with
the same velocity (u, ) some ions will have insuffi-
cient charge-to-mass ratio to get over the potential
hump and will be reflected. This is very important
as it will eliminate such light ions as H+. In an
inertial confinement fusion (ICF) experiment using
nonprotonic ions, this would prevent fast long-range
impurity ions from preheating the target. Careful
plasma source design is required to prevent low
source efficiency, as will be seen.

Figure 4 shows the situation which must now be
considered. There are X ion species with mass-to-
charge ratio M; /e for i =1 to N, and charge fraction
in the source plasma 5;. All of the species with
mass-to-charge ratio less than M, /e are reflected
from the potential hump and are not accelerated by
the diode. The ratio of the output current to the
source current is

into account by adding an enhancement factor a and
rewriting the above expression as

=e5, + g 5;.
ll oeA Qs

The step-over distance A, must now be given by
—A, /bo

1 e

' 1/2
V3/2I=

4 M Z2

The electron density is still that stated in Eq. (4.2a)
and the drift current is still that stated in Eq. (4.2b).
The ion charge density is now

"—~ 2npe5„8[1—(2eg/M„u, )] (2—e)n pe5„ noe5,

[1—(2eg/M„u, )]' [1—(2ek/M, u, )l n =r+1 [1—(2eg/M„u,')]' '

Combining Poisson's equation and Ampere's law
'2 2

+npu, m (2—|() 1+1 da ep dp
2PO dz 2 dz

again as in Sec. IV, the pressure relationship is obtained:
'2 ' 1/2

Pl Qs

1/2

+g2MS, i—
M;us i =r+1

1/2 '1/2 '

y M5, &
—2'&,

Mr us i=r+1 Mi us

N
=n, u,

' m(Z —y)++2m, c, y —g S,—m, + g M, S, . (5.4)
i=1 i =r+1 i =r+1

Atz=o

M, u, dg P,pb pI
2

dz
'

2e
'

dz
=0,

so using Eq. (5.1)

b0 poeI
noeAu, 2A M, u,

~+ '

where the mass factor p1 is given by

(5.5)
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M;+' &
i =1 r i=r+1 l

(5.6)

It will be seen later in Sec. VI that the second term
in Eq. (5.5) dominates and, since p, —1, 1( must be
small compared to one. This is because the gap
opens mostly due to magnetic pressure rather than
ion removal by the electric field.

A Child-Langmuir law is again obtained for the
acceleration gap

' 1/2
aA 2e&o V/I= (5.7)

4P2g M, Z

where factors for enhancement and electron loss
have again been added and the mass factor p2 is

p2 ——1+/ ' g 5;[(M;/M„)' ' —1] . (5.8)
i =r+1

Since the various species to be accelerated (i =r to
N) will have different velocities there will be multi-
ple ion pulses at the diode focus. The first will be
for M, and this will generally be the one of interest
as it would otherwise be a source of preheat to the
target. The source efficiency is therefore defined by
(Fig. 4)

VI. ONE-DIMENSIONAL
TIME-DEPENDENT MODEL

OF THE PLASMA-FILLED DIODE

A self-consistent one-dimensional configuration
for Ampfion diodes has been elaborated above. This
will now be used to scale the diode. A simple model
will be used for the pulser and diode circuit. This
model is shown in Fig. 6. The circuit equation is

2U(t) =ZpI+L dI/dt+ V .

The model for the diode current is [Eq. (5.7)]
1/2

a 2eeoI=
4grtc2 M, Z2

Finally a relationship is needed to get Z:

dz =u, =RI,
dt

(6.&)

(6.2)

I

(T; «Mu$/2e) would spread the sharp edges of
Fig. 5. Poukey has recently confirmed this filtra-
tion mechanism with numerical simulations.

c5,
9$

e5, + g 5;

N

=1—y-' g 8, .
i =r+1

(5.9)
where R =u, /I is obtained from Eq. (5.5). Since
scaling rules are needed the variables are normalized
using

i =r+1

f is a small number so the efficiency can be small

under some conditions. If g, appears to be negative,
it implies that the value of r being used is not for the
fastest ion in the output and that a higher value of r
should be used. Figure 5 shows 7), vs 1( for a carbon
plasma source developed at Sandia National Labora-
tories. ' Assuming a small ion temperature

v= V/Up c =ZpI/Up

T= t /to A =L /Zptp

g =ZpZ /R U p tp

The equations then become

2, 0&7&1
0, otherwise

(6.3)

100 /o C

80 'Io

t =Kv /g

dg =C,
dv.

(6.4)

0.2

C4'
o

U(t) o

@DIODE

FIG. 5. Source efficiency g, vs sheath dynamic con-
stant 1( for a laboratory carbon plasma source. 1( is typi-
cally 0.03 to 0.10.

FIG. 6. Circuit model for a diode attached to a
transmission line.
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1.0-

0
0

U L, ClT

0

~=0.400
K&.200
x=1.000

FIG. 7. Normalized diode current c, voltage v, and
sheath size g for conditions close to best impedance match
to the pulser.

where
' 1/2

2eop AZpK=
4'gp p M/I g t Up

(6.5)

Some solutions to Eqs. (6.4) are shown in Fig. 7.
To examine the bunching the time of arrival at

the focus (focal length f, ) is calculated:

2
T(t)/t

FIG. 8. Diode energy vs time of arrival at focus for
normalized focal length 1.0. At any instant T the energy
which has arrived at focus is the difference between the
upper and lower branches of this curve.

T(t)=t+f&
[2eV(t)/M„]

This too is normalized:

T(t)/t p r+XU—
where

X=f)/ttptp, up ——(2e U/pM, )'~

(6.6)

(6.7)

(6.g)

for reasonable pitch coils, bp is of order A ', and
for a diode with "f number" about 1 and good
bunching (see above), A' is roughly equal to the
focal length which is about uptp (see above). It is
thus readily found that the second term is of order

(ttp/c)' (pp/ep)' Zp
'

The optimum values of A, K, and 7 are then
found by plotting the diode energy f Utdr versus

the time of arrival from Eq. (6.7). fuch a plot is
shown in Fig. 8. If the diode were 100% efficient,
72% of the energy available to a matched load

1

would arrive at target in 4 of the power pulse
length. The actual energy is down by g. This is a
substantial bunching factor.

For this square pulse the parameters A=0.4,
%=0.2, and 7=1.0 are about optimum. More so-
phisticated circuits and realistic voltage shapes have
been used with this model. ' The value of I does
not seem to be too critical. The values of A and K
are adjustable by shimming the series inductor and
by adjusting the plasma fill, respectively.

It is now possible to judge the size of the two
terms in Eqs. (4.5) and (5.5). For a practical diode K
is of order 1 (see above), the enhancement' is
presumably of order 1, the efficiency is of order 1,
and the mass coefficient is of order 1. In addition,

This is typically about 30 to 100 for diodes of in-
terest. Therefore, from Eqs. (4.5) or (6.5) the g term
is negligible and I/u, is essentially constant. In ad-
dition, since the expression outside the brackets in
Eqs. (4.5) and (5.5) are s/rt and f/rt, respectively, it
is clear that E«1 for the single species case [Eq.
(4.5)] and g«1 for the multiple species case [Eq.
(5.5)].

VII. DESIGNING A FOCUSING DIODE

From the point of view of diode operation the
strip diode model is more than adequate. To drift
and focus ions, however, it is necessary to go to a
quasispherical diode where the deviation from a true
sphere is determined by the magnetic focusing ef-
fect. ' The assumption made depends somewhat
upon the exact diode being considered. As an exam-
ple the Ampfion-hybrid diode shown in Fig. 9 will
be used. This is an extraction diode using an annu-
lar first-cathode electron source. The field coil
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f lAST CAIRQDE direction is

From Ampere's law the theta component of the
magnetic field at the first cathode (B,e} and drift
side (B~e) of the coil are then given by

Bee+B~e=Bee(1+B~e/B.e) =
POI b,p

FIG. 9. A section of an Ampfion-hybrid which is built
for the Hydramite pulser. 8;=10 and 00 ——22' are the
inner and outer anode angles. Here CL stands for center
line. In the experiment, the diode is initially filled with a
low density plasma (n, -10"cm ') from the anode to the
focal region. This plasma provides a low initial im-

pedance to reduce prepulse and provides field-free ion
drift to the focus.

vanes, in addition to providing the radial magnetic
field, also supply an equipotential surface on the
cathode side of the gap. The ion source used in this
diode is a dielectric proton source (grooved alumi-
num with epoxy fill) and not a dense plasma prefill.
A low density plasma fill is generally used to pro-
vide field-free ion drift in the drift region. The gap
between the anode and the coil and between the coil
and second cathode are the same (6 mm). The focal
length is about 20 cm and the various angles of field
coil and anode are shown in Fig. 9.

First, the pitch of the field coil vanes is calculat-
ed. Assuming constant diode current density the
current enclosed inside a circle about the axis at the
cathode is

&Ig (8) qI(cos8; —cos8)

A (8p) (cos8 —cos8p)

where 8 is the polar angle at the circle, 8; is the po-
lar angle at the inner edge of the anode, 8p is the po-
lar angle at the outer edge of the anode, and A (8) is
the area between 8; and 8. The efficiency factor q is
included since the ion current alone appears at the
cathode. The P component of the magnetic field at
the cathode is then

poI (8)rl @oft cos8; —cos8
8 =

2~+ (8)sin8 2' (8)sin8 cos8; —cos8p

The number of vanes in the field coil is 2rr/hP,
where hP is the angular spacing between vanes. The
current per vane is then Ib,g/2' since the entire
diode current runs through the field coil. The spac-
ing between vanes in the theta direction is 868 so
the field coil current per unit width in the theta

Letting hP/68=dgld8

2
ppgbpl l POI 1(()

1+q i/2 2' d8
'2

poIrl cos8 —cos8
+

2mB sin8 cos8; —cos8p

ol'

A dP
2mb Rq(1+q '/

) d8

R (cos8; —cos80) dy
(1+g '

)gbp d8
'2 1/2

g cos8; —cos81—
bp sin8

The gaps are the same on both sides of the field coil.
The flux Inust be the same on both sides because no
flux can penetrate the anode and second cathode on
the 30-ns time scale of the diode pulse. If the mag-
netic field were constant across the acceleration gap,
the average field Be( ~ flux/gap) would be equal to
B,e. However, B,e——B,e/q and the average field is
between B,e and B,e. This is a good area for further
research. For the present calculation the geometric
mean of B,e and B,e will be used for the average
field. Then

)I/2 Il / 1/2

The flux and gap are the same on the drift side of
the field coil and drifting electrons are neglected
since the voltage must be due to the ion space charge
and can be only a fraction of the anode voltage.
Therefore B,e/B~e ——g' . Then

l VOI hp
1+ —1/2 2~g g8

The total tangential field at the cathode is again
pp'QIbp/3, so

'2
ppgIb p

A
+ P e



C. %.MENDEL, JR.

COIL OUTER
ANODE OUTER

0

/

ANODE INNER
COIL INNER

8
10'

—90
K =1.25 FIG. 11. Relationship between deflection angle 5(8)

and the cathode shape R(8).
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22.
24

180
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FIG. 10. $(8} plot of a field coil vane for three dif-

ferent coil factors Eo.

where d is the diode gap.
In the ion drift side of the coil (region 2, Fig. 9)

there will be some drifting fast electrons due to the
ion space charge, but they will be neglected. There-
fore for the drift-region field B~~

J Bgpdx = . [gI(8) I], —p

where A =2irR (cos8; —cos8o) has been used. For
the diode shown in Fig. 9 the right side of Eq. (7.1)
varies from 1.0 for 0=0;=10' to 0.9 for 0=0p ——22'
so the pitch dgld8 is almost independent of 8 and
is about 6. The small variation of R(0) has been
neglected in obtaining Eq. (7.1). Equation (7.1) is
easily integrated, and the shapes for several bp
values are shown in Fig. 10. The plots are actual
shapes for q = 1. For q ~ 1 the pitch will be lower.

The next calculation will give R(0). It could be
done before the vane figure calculation and used in
(7.1). However, variation in R has a negligible effect
on field coil vane design when compared to time-
dependent effects and does not seem worthwhile.

The ions are deflected in the acceleration gap (re-

gion 1, Fig. 9) and the drift gap (region 2, Fig. 9).
To calculate the deflection accurately, the B~ pro-
files across both gaps need to be calculated. Once
again the average B~ in the acceleration gap must be
somewhere between the values at the anode and the
cathode and the geometric mean of B,~ and B,~ are
used. Then

in in I &( )"
Bye =Bye ='g Bzycf =Yj

2mR sin0
'

r

Ut =—J Bydx+ JBgydx

[I(8)(~'"+~) I] . -
2wMR sin0

The total ion velocity is

1/2
2eV
M

so the deflection 5(8) is

Vg
sin5(8) =—

V

Pod e

2mR sin0 2M V

1 /2

[I(8)(q'"+q)—I] .

Using Eq. (3.3) and

where the first term is due to ion current and the
second is due to current in the center hub which

supplies the current to the first and second cathodes.
The transverse velocity is then given by

cos0; —cos0
I(0)=I

cos0g —cos0p

2I1 d (g'~ +g)(cos8; —cos8) —(cos8; —cos8o)
sin5(0) =

2b2 sin8
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-a, —

FIG. 12. Offset circular arc used to approximate the
ideal R(8). a and b are the axial and radial offsets and r
is the arc radius. 8 is the polar angle.

The shape of the cathode surface R (0) is then calcu-
lated from

tan[5(8) ]=— —=y(8)
1 61R

R d0
(7.3)

r =Ro(0)+a +b +2Ro(0)(a cos0+b sin0),

where a subscript 0 refers to a circular-arc-generated
surface (see Fig. 12). Using (7.3)

'2 —1/2

as can be seen from Fig. 11.
It is easier to machine the anode surface (which

conforms to the cathode surface) in the form of an
arc of a circle rotated about the axis. The general
form of R (0) which fits this shape is

a(sin 8) —P(sinBcosB) = (G sinB),

a(sinBcosB) —P(cos 8) = (G cosB), (7.6)

which are readily solved for a and P. The function
sin5(0) from (7.2) is then put in place of G in (7.6)
which then gives the axial and radial offsets a and b

by a /r =a and b /r =P for any r.
The aspheric shape of the cathode surfaces causes

the shape of the vanes in the field coils to be noncir-
cular arcs. Their shape is determined by two con-
straints. (1) They must provide the proper Ro(0)
when shaped to the desired P(8). (2) They should be

normal to the Ro(0) surface when in place. The
latter requirement is to minimize ion loss to the coil
vanes by minimizing the projected cross section.

The vanes for this diode are to be cut from shim
metal stock. To obtain the vane shape as it is to be
cut from the shim stock requires the functions
Rp(8) and $(8) found earlier in this section. P is the
polar angle (colatitude) and 0 the equatorial angle
(longitude). The unit normal to the surface is n,
which makes an angle 5(0) to the radius vector r.
From (7.3) the unit vector n is then

These averages all consist of integrals of powers of
trigonometric functions and are readily done. The
best mean-square fit requires minimum p . There-
fore

Bp Bp

Ba Bp

which yields

tan[5p(8) ]=yp
——

T

a sin0 —b cos8

which can be rewritten as

a sinB —b cosB

T
(7.4)

np
——0,

ne= —sin5= —y/(1+y )'~

n, =l/(1+y )' ',
where again

(7.7)

This can be fit to (7.2) by various methods but, in
particular, a mean-square fit can be found analyti-
cally,

A function

(F)=I FdB/(Bp 8;) . —
~l

(7.5)

F=a sinB —PcosB

must be fit to a function G(8). The mean-square fit

p is givenby

p2=((F G)i) =a (sin~8)—+p (cos 8)

~ (G2) —2aP(sinBcosB)

—2a(G sinB) +2P(G cosB),

where

d$
(7.8)

where d s is the vector displacement along the curve
R (0), G(0). It can be shown that

ds=R(8)h(B)dB, h(8)=8+yR+Gsin8$,
(7.9)

ds =R(8)h(8)dB, h (8)=(1+y +G sin 8)'

1 dR
R d0

The curvature of the vane given by Ro(0) and
G(8) =d(('i/dB is greater than the curvature normal
to the surface. The curvature normal to the surface
is needed to find the shape of the vane as it would be
cut from flat metal. The curvature of the vane c, is
given by
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Combining (7.7) through (7.9), the curvature normal
to the surface is found to be

dy
1 d0

+6 (0)sin0 cos0
n c— 1—

R (8) h (0)
(7.10)

This can then be put equal to the curvature in the
plane of the shim stock from which the vane is cut
and the actual shape found by solving second-order
differential equations.

The radial or B~ field will also bend the ion paths.
However, the net flux crossed between anode and
second cathode is zero, which says that the vector
potential A~ is the same at the anode and second
cathode. Conservation of canonical angular
momentum about the axis then says that there is no
angular momentum after passing the second cathode
and the ions can pass through the axis. The focus is

only optimized for one instant of time, but temporal
variation should be modest if focusing is optimized
for peak power.

tion, the diode model provides a qualitative under-
standing of ion diodes not available in more compli-
cated geometries.

The plasma-filled versions of these diodes are also
easily scaled and provide superior impedance
matches to conventional transmission lines and par-
ticularly to magnetically insulated transmission
lines. '

Most of the theory presented here has been tested
experimentally' and good agreement has been
found. Work is continuing in two areas. Under-
standing the behavior of the electrons in these diodes
is very important with regard to the actual ion
current enhancement and to the self-field deflection
of the ions. These effects are being examined
analytically and with particle simulations. ' The
development of ion sources for both plasma-filled
diodes and surface sources is the most critical area
of exploration. Much of this research is empirical
as the theory is very complex.
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