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The evidence for long-time tails as a part of the velocity autocorrelation function for a
classical particle is examined. Computer simulations, theoretical treatments, and light-
scattering experiments are discussed. It is argued that numerical error propagation in the
computer simulations may give rise to long-time tails as an artifact which is of hydro-
dynamic character. The theoretical treatments of physicists, whether avowedly phenomeno-
logical or putatively rigorous, all rely on a hydrodynamic mechanism. The usual theoretical
treatments by mathematicians, based on the differential topology of “dynamical systems,”
appear not to be in agreement with long-time tails. Recent experiments with polystyrene
spheres, observed by light scattering, claim to see the effect of long-time tails. These experi-
ments may be interpreted as observations of the Stokes-Boussinesq effect expected for
“macroscopic” spheres, but not justified for truly microscopic, molecular-sized, particles.
While long-time tails may yet be rigorously established by computer simulation, theory, and
experiment, it is argued in this paper that this has not happened yet. Moreover, a firm basis
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for serious doubt is raised.

I. INTRODUCTION

The Langevin equation’? provides an elegant and
successful explanation of Brownian motion.® The
theory is quantitative and enables one to compute
the diffusion constant for a macromolecule with a
diameter of 10 A. There are two ingredients for this
computation which have become prototypic of the
connection between correlation functions and trans-
port coefficients generally.*~® The first ingredient
is a consequence of the Langevin theory and gives
an exponential decay for the velocity autocorrelation
function of a sphere2:
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in which v(0) is the initial velocity, v(¢) is the ve-
locity at time ¢, kg is Boltzmann’s constant, T is the
temperature of the fluid in which the Brownian
sphere is immersed, M is its mass, and 7 is the relax-
ation time given by Stokes’ law*:
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in which 7 is the viscosity of the fluid and R is the
radius of the sphere. The second ingredient is the
Green-Kubo formula*~% connecting the diffusion
constant D with the velocity autocorrelation func-
tion:

27

kyT
6mnR

D= fo‘” dt (v(t)w(0)) = 3)

This expression for D was already obtained by Ein-
stein,> but the connection between a correlation
function and a dissipation coefficient, arrived at in-
dependently by Green and Kubo, is of much more
general validity.

Early theoretical work based on the Boltzmann
equation, or on the Boltzmann-Enskog equation,
provided justification for the exponential decay
law®” for the velocity autocorrelation function in
(1). This was the basis for the belief in separated
time scales during dynamical evolution in many-
particle systems, and became the impetus behind the
Bogoliubov-Born-Green-Kirkwood Yvon (BBGKY)
hierarchy approach to rigorous kinetic theory.®

It was a great surprise at the end of the 1960’s
when Alder and Wainwright’ reported that comput-
er simulations of hard spheres and hard disks gave
rise to a velocity autocorrelation function possessing
an asymptotic power law, a “long-time tail,” instead
of an exponential decay:

(u(t)w(0)) ~t~9% for t— o (4)

in which d is the dimensionality of the system simu-
lated. Nevertheless, within a very short time, several
theoretical explanations appeared which explained
the computer results and corroborated each other.
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A nonlinear approach, now called “mode-coupling”
theory, was presented by Bedeaux and Mazur.”® The
method was independently used by Kawasaki'l
somewhat earlier. The mode-coupling approach was
reviewed by Pomeau and Résibois!? as early as 1975.
A linear, phenomenological approach, strongly
dependent on hydrodynamics, and already evident in
Kawasaki’s work, was presented by several au-
thors.!> One of these authors, Hauge,14 also invoked
the Stokes-Boussinesq theory!*~!7 which goes back
to 1903. Each of these approaches is avowedly
phenomenological in one way or another. Dorfman
and Cohen'® provided the first putatively rigorous,
kinetic-theory approach in a pair of papers, which
appeared in 1972 and 1975. Their results agreed
with the other approaches, and with the computer
simulations. Some physicists viewed the problem as
essentially solved at this point, and subsequent text-
books treat it as such. Wood and Erpenbeck'® care-
fully reproduced and extended the computer simula-
tions. However, light-scattering experiments were
only reported much more recently.”’ These experi-
ments support the long-time—tail viewpoint, but
their interpretation requires careful discussion and
will be so treated later in this paper.

Parallel but independent of the development
described above, progress continued in an entirely
different arena. The very mathematical approach?!
to “dynamical systems,” which depends heavily on
differential topology and differential geometry, also
produced surprising results. Chief among these
were the results on ‘“strange attractors” which ap-
pear in dissipative dynamical systems. Application
of the methods involved to Hamiltonian dynamics is
also possible?>?* and provides the modern form of
the old ergodic theory ideas.?* In the cases of hard
spheres (billiards), and the Lorentz gas, very recent
results for the velocity autocorrelation function have
been achieved by Bunimovich and Sinai.?> These re-
sults very much sharpen the conditions required for
long-time tails or their absence, and appear to vitiate
a great deal of work by physicists on the Lorentz-
gas model.?® Moreover, criticisms of the computer
simulations based on numerical error propagation
have been answered by some by invocation of the
so-called “B-shadow” theorem. This theorem is a
by-product of the same mathematical approach just
described, and its applicability to the computer
simulations for hard spheres is open to serious ques-
tion.?’

Because the issue of long-time tails is currently of
central importance in nonequilibrium statistical
mechanics, and because there are several grounds for
doubt, it is the purpose of this paper to establish
these doubts in some detail. It is hoped that this
will stimulate others to answer these doubts, and

thereby sharpen or definitively settle the issue. It is
not our purpose to claim that long-time tails in dif-
fusion processes are an artifact of numerical error
propagation. This possibility needs to be explored,
and cannot be ruled out on the basis of present evi-
dence from computer simulation, theory, or experi-
ment.

The paper is organized as follows:

In Sec. II the computer simulations for the veloci-
ty autocorrelation function are described. How nu-
merical error propagation could affect the results is
discussed. In particular, it is argued that velocity
crosscorrelations rather than autocorrelations are be-
ing simulated, and that these correlations lead to hy-
drodynamic correlations. The [-shadow theorem
for Anosov systems is discussed, as well as the ques-
tion of whether or not the billiard systems being
simulated are in fact Anosov systems.

In Sec. III the mode-coupling theory and results
are summarized. It is observed that the results are
obtained from hydrodynamic velocity field correla-
tions and not from particle autocorrelations. The
connection between this observation and the discus-
sion of Sec. II is elucidated.

In Sec. IV both the phenomenological linearized
hydrodynamic theory and the rigorous kinetic
theory are discussed. It is shown that both obtain
the long-time tail from hydrodynamic correlations
identical with those invoked in Secs. II and III.

In Sec. V exact results are presented for coupled
harmonic oscillators. These are the only exact re-
sults available, and their marginal significance for
the general problem is discussed.

In Sec. VI the Stokes-Boussinesq explanation of
long-time tails is summarized. The usual treatment
is criticized, modified, and discussed in detail. Re-
cent experiments involving light scattering from po-
lystyrene spheres are discussed and interpreted in
terms of the Stokes-Boussinesq theory. It is argued
that this does not imply identical results for truly
microscopic molecules, contrary to widespread be-
lief.

In Sec. VII the results of studies on the Lorentz-
gas model are summarized. The idea of a “finite
horizon,” due to Sinai, is discussed. A possible in-
compatibility of the physicist’'s and the
mathematician’s approach is adumbrated.

In Sec. VIII an elementary statement of the re-
sults of the modern theory of dynamical systems is
given. Several problems related to the issue of
long-time tails are mentioned in addition to those is-
sues already raised in preceding sections. It is ar-
gued that this branch of mathematics needs to be
much more closely associated with the efforts in ki-
netic theory.

In Sec. IX concluding remarks are presented.



3218 RONALD F. FOX 27

II. COMPUTER SIMULATIONS

The computer simulations of Alder and Wain-
wright’ and of Wood and Erpenbeck!® are capable
of simulating the behavior of several hundred to
perhaps a few thousand hard disks or hard spheres.
To make such small systems have properties approx-
imating those of systems of macroscopic size,
periodic boundary conditions are used.!* The simu-
lations run typically to 20¢, or 30t,, where ¢t is the
mean free time. By 10z, or 12¢y, the exponential
portion of the velocity autocorrelation decay is re-
placed by the long-time—tail power-law decay.

Ideally, the computed trajectory would correspond
with the real Newtonian trajectory at least for the
entire time course of the simulation. We would
want to be able to stop the simulation after, for ex-
ample, 30¢y,, reverse all velocities, and then
backevolve the trajectory to ¢t =0. Numerical accu-
racy would be achieved if the backevolved trajectory
ended up within a sufficiently small € neighborhood
of the initial conditions for the original forward evo-
lution. In the computer simulations so far, this ob-
jective is not achievable. Erpenbeck?® has stated the
following: “The ability of molecular-dynamics cal-
culations to evaluate the velocity autocorrelation
function to relatively long times ( ~30¢,, where ¢ is
the mean free time) is, of course, subject to question,
especially for values of the time greater than that for
which an individual trajectory loses essentially all its
accuracy [~ 12t, for 48-bit (binary digit) (single-)
precision arithmetic for moderately dense hard
disks].”

This problem of numerical error propagation in
computer simulations has been appreciated for some
time. Many practitioners?®?° invoke the so-called
B-shadow theorem®® to justify their empirical obser-
vation that time averages obtained in simulations are
essentially independent of numerical methods used
and machines used. This theorem, independently
proved by Anosov®' and Bowen,* arises in the
mathematical theory of dynamical systems. It is
proved for Axiom-4 systems,’? which includes the
Anosov systems.>

The Anosov-Bowen theorem may be expressed as
follows. Let T be a mapping on a compact manifold
M. T is assumed to be an Axiom-4 diffeomor-
phism. Let x denote a point in M. A sequence of

points {x;}, where i =1,2, . .., in M is an a pseudo
orbit if
d(Tx;,x; 1)<a forall i, (5)

in which d is a distance measure on M. A point x
“B shadows” the sequence {x;} if

d(Tix,x;)<B forall i=1,2,... (6)

in which T' is the ith iterate of 7. The Anosov-
Bowen theorem can now be stated:

For every f—0 there is an a >0 so that every a
pseudo orbit {x;},i=1,2,..., in M is 8 shadowed
by a point x in M.

Application of this theorem to computer simulations
of hard-sphere (disk) systems is achieved by identi-
fying M with phase space and identifying T as the
Hamiltonian evolution in phase space for a fixed
discrete time interval. All we have to do is choose
the time interval small enough so that the numerical
accuracy of the computer will guarantee the condi-
tion (5) for an a pseudo orbit. Thus, the numerical
trajectory is an a pseudo orbit, but it is S shadowed
by a true Newtonian (Hamiltonian) orbit.

There is a catch to the application of the
Anosov-Bowen theorem. We have not verified that
the hard-sphere system is an Anosov system (or
Axiom-A4). Sinai has proved that the system is a K
system,** and he has also shown that hard-sphere
systems are not Anosov.?” So we really do not know
whether the Anosov-Bowen theorem is applicable.
Moreover, the failure of the hard-sphere system to
be Anosov is a result of a technicality,?’ which in
the present context may be crucial. Anosov systems
are said to be exponentially unstable,”*? i.e., the T
flow on M is “hyperbolic.” For hard spheres, the
exponential instability is not “uniform,” i.e., there is
no lower bound on the exponential rate. On the one
hand, if the hard-sphere system were Anosov, then
exponential instability in M would suggest (nothing
has been proved here) that the velocity autocorrela-
tion of a single sphere should decay exponentially.
On the other hand, the failure of the hard-sphere
system to be Anosov results from the lack of a lower
bound on the exponential rate in M, and this situa-
tion is what can give rise to long-time tails in other
model systems containing only one moving parti-
cle.’> Ruell?! has stated that there is evidence that
correlations decay exponentially for Axiom-A4 flows;
but at the time of his writing this characterization
was unproved, and an outstanding open question.
We shall return to this issue in Sec. VII during the
discussion of the Lorentz-gas model.

It is important to distinguish between trajectories
in phase space and the trajectories of individual par-
ticles in ordinary three-dimensional (two-di-
mensional) space. Clearly, if the phase-space trajec-
tory moves away from the true, Newtonian trajecto-
ry, then the projected motion of individual particles
will also become numerically erroneous. A detailed
account of the connection between these two per-
spectives is not to be found in the extant literature
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on Axiom-A diffeomorphisms. Consider a tagged
sphere (disk) and its 3D (2D) trajectory. Initially,
the computer simulation keeps the numerical trajec-
tory coincident with the Newtonian trajectory.
Around 10¢, these two trajectories become different.
It is possible that the numerical trajectory subse-
quently becomes very similar with. the Newtonian
trajectory of another particle (remember—the
Anosov-Bowen theorem is for phase space, and we
are now in 3D space). As the numerical trajectory
continues to evolve, it changes from one individual
Newtonian trajectory to another and another and so
on. Consequently, the computer-determined veloci-
ty correlation function is not really an autocorrela-
tion function, but is perhaps quite close to being a
mutual-correlation (or cross-correlation) function for
many, different, individual particles and their asso-
ciated velocities. Let the tagged particle velocity be
denoted by v,(z). We want {v,(t)v,(0)) for all z, but
we are really getting something more like

(v(,(0)) for tE€(0,zy),

(v2()04(0)) for tE(ty,t5)

(v3(t)v,(0)) for tE(t4,ts), M

(v,,(t)vl(O)) for te(tzn_z,tzn_l),

where the numerical trajectory agrees with the
Newtonian trajectory for particle n during the inter-
val (ty, _3,t2,_1). During the gaps (25, _1,,,), the
numerical trajectory may not be close enough to any
particular particle trajectory.

Mutual correlations do occur when one deals with
fluids.*” The hydrodynamic velocity field is the
averaged sum of the velocities of all those particles
in a mesoscopic volume centered at the field point T:

p(T,1)U(T,1) Ev BS(T—T1,(0)) . €

The velocity field autocorrelation will be made up of
both labeled particle velocity autocorrelations and
mutual correlations. The latter will dominate by
virtue of being of order N? whereas the former are
of order N, where N is the number of particles in a
mesoscopic fluid element (N is typically 10'2). A
straightforward calculation based on fluctuating hy-
drodynamics®® yields

(ua(f',t)ug(f",t’))=—§—kBTP%(41rv| t—t'[ )73,
in the limit ©)
172441172
L_M__*w , (10)
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where v is the kinematic viscosity, p is the mass den-
sity, and a and B are indices for cartesian com-
ponents of the velocity field. The limit (10) means
that the velocity field fluctuations are in a local re-
gion for long times. This “hydrodynamic” correla-
tion, which is not a tagged particle velocity auto-
correlation, does yield a long-time tail. Could it be
that numerical error propagation changes autocorre-
lations into mutual correlations characteristic of hy-
drodynamic correlations, which possess long-time
tails? If this is so, then the long-time tails observed
in the computer simulations are not necessarily
those of a tagged particle, but are instead those asso-
ciated with the hydrodynamiclike numerical noise.
This perspective leaves entirely open the question of
whether the tagged particle velocity autocorrelation
function also possesses a long-time tail anyway.

III. MODE COUPLING

The mode-coupling theory'®~!? of the long-time

tails begins with the hydrodynamic equations for a
binary mixture. The species whose diffusion con-
stant is of interest to us is a dilute solute species in
some solvent. The solute is represented by a concen-
tration c(T,#) which satisfies the nonlinear equa-
tion!©
d — 2 = — = — (=

Ec(r,t)zDoV ¢(T,t)—(T,2)-Ve(T,1) (11)
in which D, is the “bare” diffusion constant, and
U(T,?) is the velocity field of the mixture. The term
containing u(T,?) is the nonlinear, mode-coupling
term. Since the solute is dilute, d(T,?) can be
thought of as essentially the velocity field of the sol-
vent alone. It satisfies the linearized, fluctuating
Navier-Stokes equation®®

uy(T,t)

8 Fn=—t
at T p ax,

1 9 =

+;5— ag(r,t) (12)
in which p is the pressure and §aB is the fluctuating
stress tensor.’® The summation over B is implicit.
The mode-coupling strategy is to solve (12) for
u(T,t). This quantity fluctuates because of S,g.
Therefore, in (11), the nonlinear term becomes a
multiplicative stochastic*® term and ¢ (T,?) satisfies a
multiplicative stochastic  differential equation.
Equation (11) is averaged with respect to the fluc-
tuating velocity field U(T,z) by means of cumu-
lants.*® In the limit |k | —0, where K is the spatial
Fourier-transform wave vector, the “renormalized”
diffusion equation is obtained:
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ks
p

i(c(?,t)>=DoV2(c(?,t))+£
at 3

In this analysis, it is not the velocity autocorrela-
tion function for a tagged particle which has been
used to calculate the renormalized diffusion coeffi-
cient,

2 kgT
R=7 P

ftds[47T(D0+V) [t —s|17%2,

(14)

but the hydrodynamic velocity field autocorrelation
function. The averaging procedure which converts
(11) into (13) depends, in the |k | —O0 limit, on the
second cumulant, which is determined precisely by
the second moment of U(T,?), i.e., the velocity field
autocorrelation function. This is why the integrand
in (13) and (14) is so similar to Eq. (9). The differ-
ence is that the factor v in (9) becomes Dy +v in (13)
and (14). This is a result of the mixing of the two
terms on the right-hand side of (11) during the
averaging procedure. At room temperature, with
water as the solvent, v is at least 10° times bigger
than D, for all molecules of radius bigger than 3 A.
Consequently, this difference is effectively unobserv-
able.

The long-time tail has arisen from hydrodynamic
fluctuations. The agreement with the computer
simulations could be interpreted as further support
for the notion that numerical noise is of hydro-
dynamic character, rather than as support for the
view that a tagged particle’s velocity autocorrelation
function has a long-time tail. The agreement is not
fortuitous; rather, the explanation fits the cause of
the observed “artifact.” It may be so that the tagged
particle’s velocity autocorrelation function has a
long-time tail, but this mode-coupling agreement
does not establish this proposition.

The fact that hydrodynamic fluctuations give rise
to long-time tails has surfaced in both this section
and in Sec. II. In Sec. IV more will be said about
how it occurs and, in particular, it will be shown to
be a consequence of the diffusive character of the
Navier-Stokes equations.

The mode-coupling theory may be criticized on
another basis. The structure of Egs. (11) and (12)
which leads to the interpretation of (11) as a multi-
plicative stochastic differential equation may not be
correct. Macroscopic equations, such as the hydro-
dynamic equations, are expressed in terms of macro-
scopic quantities, such as ¢(T,t) and u(T,?), which
are obtained from microscopic particle dynamics by
averaging procedures.”® One then obtains equations
which are perhaps nonlinear in the averaged, macro-

T ot
[, dst4m(Do+v) [t —5 |17V (7,0) . (13)

I
scopic quantities. The equations for the fluctuations

of these macroscopic quantities satisfy equations
which are obtained by linearization of the averaged
equations and which contain additive stochastic in-
homogeneous terms.>® At least this is what happens
if any sort of master equation approach is used.**~*
Equation (12) is the kind of equation which does ap-
pear in such treatments. Equation (11) with a sto-
chastic interpretation for U(T,?) is not. There is a
theory for the fluctuations of a binary mixture,*
and it just is not of the form of (11) and (12) with
the interpretation given above. I think the attrac-
tiveness of the mode-coupling approach to long-time
tails stems from its apparent agreement with the
computer simulation results. As noted above, this
may be illusory.

IV. KINETIC THEORY

An exact calculation of the velocity autocorrela-
tion function for a tagged particle requires solving
the N-body problem exactly. This is, in general, not
possible. Consequently, a rigorous approach based
on kinetic theory must necessarily involve approxi-
mations which, it is hoped, are well controlled. The
work of Ernst et al.,'* was avowedly phenomenolog-
ical, but it provided the outline for a rigorous ap-
proach in which the phenomenological steps could,
perhaps, be replaced by rigorous kinetic-theory argu-
ments. The tour de force attack of Dorfman and
Cohen,'® using kinetic theory, went further in this
direction than one previously imagined possible.
Some textbook authors*' have even treated their
work as the definitive conclusion to the whole
development. In this section of this paper, the
mechanism behind the work of Ernst et al., and the
work of Dorfman and Cohen will be discussed.
Once again we will see that it is hydrodynamics
which gives rise to the long-time tail. Moreover, the
theory of Dorfman and Cohen will be seen to in-
volve several approximations or truncations, which
cannot be said to be well controlled in any rigorous
sense.

The velocity autocorrelation function for a tagged
particle in an N-particle system can be expressed as

po(0)=5mB(V(1)-¥,(0))
= mB(V,(0)¥,(—1)) (15)

in which m is the mass of the tagged particle,
B=1/kgT, and time translation invariance has been
used. The average can be written
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(Vl(O)'Vl(—t)):(Vl.e_’LNV])
Z% [ a¥xvyere PN,

(16)
. . _1 —BHy . . e
in which Z ‘e is the canonical distribution
and Ly is the Liouville operator

N B.
LS B d
i—1 m 9r1;
_2 a¢(r” K] _a(f)(r,-j). d
i<j ar; aﬁi aFj aﬁi

while Hy is the Hamiltonian

N
Hy=3 ;" + 3 o(ry) (18)

i=1 i<j

in which r;;= | ; —1; |. The integral in (16) is over
all coordinate and momenta and is symbolized by
dVx =d®,d%, - - - d®xy, where d®x; =d’r;d’p;.

In the phenomenological treatment, the exact time
evolution implicit in (16) is replaced by an approxi-
mation which is essentially the hydrodynamic relax-
ation of local equilibrium. The result is an expres-
sion with the form*?

po(=5mp [ d*vy [ d*rio-P(F,0U(F, )47

(19)

in which ¢¢(V)) is the normalized Maxwell distribu-
tion and P(T,t) and U(T,t) are the probability of
finding the tagged particle and the local velocity at
T at time ¢, respectively. The relaxation of P(T,?) is
governed by a diffusion equation

%P(F,t)=DV2P(f',t) (20)
whereas the relaxation of ﬁ(f',t) is governed by the
diffusionlike Navier-Stokes equation

%ﬁ(az)ﬂvzﬁ(atw%N[ﬁ'-ﬁ(ﬁz)] @1
in which v is the kinematic viscosity. Equation (21)
neglects compressibility contributions, such as bulk
viscosity and sound propagation, which are not of

a 0

direct concern in the present context. The initial
conditions for (20) and (21) are

P(1,0)=W(r—T1))
and (22)

—

U(T,0) =29, W(T—T1)

p
in which W (r'—T)) is a distribution of initial posi-
tions for the tagged particle, V, is the initial veloc-
ity, and m ~!p is the mean particle density. Intro-
duction of Fourier transforms

P(K,)= [ d’rP(F0e’* T

and (23)
UK,0= [ UFne 7

converts (19) into

pD(t)~——fd K)W(—K)e—(D+vk’

(24)

in which W(K) is the Fourier transform of
W (T —T1)), the solutions to (20) and (21) have been
used, and the Maxwell velocity average has already
been executed as a result of the additional factor of
Vo in (22). This result is expected to be valid only
for long times and for small initial spatial inhomo-
geneities, which are introduced by W (t'—T1;). Con-
sequently, the W (K)W(—K) factor is replaceable by
1, and the resulting integral yields

pD(t)z%%[MT(D—}—V)t]—UZ . (25)

The similarity with (9) is, of course, striking. Com-
parison with (14) provides even stronger support for
the conclusion that the argument is, in essence,
correct.

In view of the discussions in Secs. II and III, we
could argue instead that we are getting long-time
tails once again because we have used a hydro-
dynamic argument which is guaranteed to reproduce
the effects of numerical noise because of their hy-
drodynamiclike character. In fact, we see that the
long-time tails come from the diffusive nature of the
hydrodynamic equations. This can also be exhibited
for the case of the hydrodynamic velocity field
correlation (9) which follows from the integral

—

—ik(

T-T"

(ug( T upg(F',1)) = —V2,5+

In the limit | T—T"'| —O0, this becomes just

dx, Ixg | (2m)}

fdJke kz_ e—-vkzlt—x’| . (26)
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The Gaussian character of this integral and the in-
tegral in (24) is a result of diffusive dynamics.
Thus, the hydrodynamic character of numerical
noise in the computer simulations is really of a dif-
fusive nature, provided that the hypothesis that it is
the noise which produces the long-time tail is
correct.

It is interesting to note that in Sec. II it was ob-
served that hard-sphere systems failed to be Anosov
systems because the exponential instability was not
uniform, i.e., there is no lower bound on the ex-
ponential rate. In integrals (24) and (27) the long-
time tail results from an identical effect. The ex-
ponential decay of the integrand does not have a
lower bound either, since k—0 is allowed. There-
fore, correlations of diffusive origin are incompati-
ble with Anosov behavior. In Sec. VI particularly, it
will be argued that the diffusive modeling of the
true underlying microscopic dynamics is especially
poor for short times, as is well known, and that this
causes the long-time behavior of the correlation
functions. One could also argue that the diffusive
behavior is consistent with the nonAnosov character
of hard-sphere systems. The negation of this asser-
tion will be explored in Sec. VII.

The kinetic-theory approach to the calculation of
(16) does not involve wholesale substitutions as in
the phenomenological approach just described. In-
stead, it purports to be a rigorous calculation modu-
lo certain hopefully innocuous simplifications.

The procedure used is that of a hierarchy which is
truncated. Moreover, ultimately the analysis is spe-
cialized to hard-sphere interactions, which are of a
singular nature when viewed from the potential
form of (17). It is possible to introduce a modified,
but exact, form of the Liouville operator Ly which
describes the dynamics for hard spheres. This is
given by

Pi 3 = ..
- - 3 TG, (28)

ar; i<

M=

1
-~

Ly

1]
in which T(i,j) is the binary-collision operator.'®*
For hard spheres, the velocity autocorrelation in (16)
is modified by replacing Ly with Ly. Equation (15)
is rewritten as

po()= [ d*, ¥, ®p(V,,0), (29)

I
where ® ,(V,,1) is defined by
(V1)
1 |4 —tLy, —BHy_,
:?mB‘Zm:;fdGXz"'deNe Ne NVI
(30)

in which the factor of ¥ came from the d’r, in-
tegration, since only relative coordinates appear in
the integrand. The hierarchy is derived by looking
at (a/al )q)DZ

i@p(vl,”zﬁfd3r2d3vzf(1,2)$D(X1,X2,t) ,
ot m
(31
where
2
(DD(xl)xZ’t): %‘mB%mé

Next, (a/at)d_).D(x,,xz,t) is given by

%‘Bb(xhxz,f)%-fz( 1,2)® p(x,x3,1)

=2 [ @i T(1,3)+T(2,3)]
m

X B p(x1,%5,x3,0),  (33)

where
D pxy,x5,X3,1)

3 -
! Vo 9 [ 6 6, Ly, —BHy_
=smp mfdx4--'dx,,e e V.

(34)

This process is continued indefinitely until an infin-
ite hierarchy is produced. In each expression, we
have in mind, implicitly, the thermodynamic limit:
N—>w, V>, N/V=p/m. The direct computa-
tion of (29) has been converted into an infinite set of
coupled, first-order differential equations.

The next step of the procedure is to introduce
cluster functions. These are defined by
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B p(x1,%5,%3,1)= 5D(V2,t)¢o(vz)¢o(va)+YD(X1,sz)¢o(Va)+X;D(x2’x3,l‘)¢o(72) +X p(x1,%2,%3,1)

(35)
The hierarchy now takes the form
L& a0=L [ drd?0, T o (V008072 + X plxy 0], 36)
%5D(x1,x2,t)+f2(I,Z)Yp(xl,xz,t)
=T(1,2><1‘>’D<v,,t)¢o("v’2)+£— [ d*rsdos{ TUL,3060(9)X plx1,x2,0)
+T(2,3)(14Py3)bo(V3)X p(x1,%2,1)
+[T(1,3)+T(2,3)]X p(x,X7,x3,1)} 37)

in which P,3 is a permutation operator for variables
labeled with 2 and 3. The strategy'® now is to
neglect X p(x,x,t) in (36) and then solve the result-
ing closed equation for ¢,(V,,t). This provides a
first approximation for ®p(V,,t), which is then
used in (37) where X p(x,X,,x3,t) is neglected. This
gives a closed equation for X j(x,x,t) which pro-
vides an approximation for X p(x;,x,,t). This ap-
proximation can be put back into (36) to get a better
approximation for ®p(V,#). One then moves up
the hierarchy in a similar fashion, all the while re-
fining the approximate solutions for the cluster
functions. .

The lowest-order approximation for ® p(V,t) ob-
tained in this fashion is nothing other than the
Lorentz-Boltzmann equation, and it yields

poi(D)=exp ——f;—t(mBDoor‘ (38)

in which Dy, is the self-diffusion coefficient from
the Lorentz-Boltzmann equation in the first Enskog
approximation. The subscript 1 in (38) refers to the
fact that this solution is for the lowest-order approx-
imation to the hierarchy. Equation (38) exhibits the
exponential decay of the velocity autocorrelation
function typically found from the Boltzmann-type
equations (for example, Lorentz-Boltzmann and
Boltzmann-Enskog).

The next step in the solution to the hierarchy pro-
vides an approximation to X (x;,x;,¢). This ap-
proximation is then inserted into (36) to yield a
correction to the Lorentz-Boltzmann equation. The
solution to this new equation is much more in-

[

volved* than the solution to the Lorentz-Boltzmann
equation itself. In fact, the solution requires addi-
tional expansions into infinite series which can only
be analyzed to the first few lowest orders. This
analysis, while very demanding, has been carried out
in detail,'®** and yielc_i§ long-time tails. One
does not need to go to X p(x;,x,,x3,¢) in order to
get this effect.

Because the approximation scheme begins with
the Lorentz-Boltzmann equation for hard spheres,
the expressions obtained are expressed in terms of
the eigenfunctions and eigenvalues of the Lorentz-
Boltzmann equation. The problem is analyzed
through spatial Fourier transforms and temporal
Laplace transform. Long times and gentle spatial
variations correspond with the small Laplace-
transform variable € and the small Fourier-
transform wave vector k. In the limit e—0 and
| k | —0, the eigenfunctions and eigenvalues of the
Lorentz-Boltzmann equation which dominate the
approximate solution to the hierarchy based
upon X p(xy,x,,t) are the so-called “hydrodynamic
modes.” These arise directly from the conservation
of linear momentum and kinetic energy during
hard-sphere collisions. They ultimately** give rise to
an expression for pp ,(t) which involves an integral
just like that in (24). Thus, once again, the long-
time tail arises from hydrodynamic behavior of dif-
fusive character exhibited in Gaussian integrals over
Fourier variables.

There is no doubt that the beautiful analysis of
Dorfman'®* and Cohen has explained the
phenomenological ~analysis of Ernst er al.?
Nevertheless, one may well ask what would happen
if X p(xy,x,,%x3,%4,%5,t), for example, were included
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in the analysis, or even much higher-order cluster
functions. Even the analysis bases on X p(x,,x,,?)
required approximations and truncations. These ap-
pear to be reasonably controlled, but the neglect of
all higher-order cluster functions has an effect on
the final result which cannot reasonably be intuited.
Moreover, a shift away from hard spheres towards
more realistic particle interactions renders even the
analysis of X p(x1,X,,¢) considerably more difficult
and it removes the natural emergence of the hydro-
dynamic modes.

V. COUPLED OSCILLATORS

In a sense, it is inappropriate to include a discus-
sion of coupled oscillators in this paper because they
describe a solid lattice rather than a gas or liquid.
Nevertheless, there are two good reasons for doing
so. Coupled oscillators provide virtually the only
exactly computable model for the velocity auto-
correlation function. This feature was exploited ear-
ly by Montroll*® and later by Ford, Kac, and
Mazur.*® In addition, the proposition that conserva-
tion of momentum causes the long-time tail in the
velocity autocorrelation function can be explicitly
tested with oscillators.

Consider N coupled oscillators, each of which has
mass m. The Hamiltonian for this system is given
by

N opl
Hy=3 —— m T 2 z"u(qt g’

i=1 i<j

K,-j =Kj,' .

In this case, the Liouville operator in (17) may be
written

N
pi 9

Ly=23 ———— 3 x;(gi—q

N 2 'm g = ij\qi —4g;

9 9
dp; 9p;
(40)

The mutual-correlation matrix analogue of the ve-
locity autocorrelation function in (16) may be writ-
ten

= (U,‘(O)e_‘LNUj>

———fd X v;e _tLNe_BHij. (41)

Ultimately, we will want to look at a diagonal ele-
ment of this matrix because it will correspond with
a velocity autocorrelation function. Now, observe
that

iM,-j([)=—

dt
--3

icam

+ 3 ;K:K(qz—qi Je _'L”v,-> (42)

l<i

<U,'LNe —tLij )

—tL
K11<(q1 —qjle rNUj)

in which the action of the Ly on the v; to its left
was achieved through integration by parts. Dif-

with (39) ferentiating a second time yields
|
d* 1 —tL 1 —iL
——M;=S—x;{(g;—q;)Lye Yv;)— S —«k;{(qj—q;)Lye  ¥v;)
dt2 ij EI m i\\q;i—q))Ly j 1§,’ m i \\q1—q; )Ly j
=3 K,1< i —vp)e - Moy + Y K,,((v,—v,)e 'L”v,-)
icl™ I<iM
1 —tL 1 —tLy
ZZK,,(v,e vj)———’;;x,q(v,-e v;)
1 1
='; ;K“Mlj(t)—; ;KiIMij(t) . (43)
M
Define (;; by Therefore, we can now write
d?
L [zxi, ] i=j LMy (1) = — 302, My (1) (45)
m |4 dt !
(@)= L with the initial conditions
__—Kijy l#.]
m kBT
1 | ,j(O)—(U,UJ>— m Sij
ST [ 2 ki ]8"1‘ ‘ W (46)
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d

EMU(O)= - (U,‘LNUJ' ) =0.

The solution is simply the matrix
kgT

m

M,'j(t)= [COS([Q)],‘j . (47)
An equivalent result was obtained by Ford, Kac,
and Mazur.*

So far, the coupling matrix «;; is completely gen-
eral. If we put the oscillators in a circle and let
them interact with nearest neighbors only, with
identical strengths, and write w?>=(1/m)k, we then
have

(02);j=—w2(8,~+l'j+5,-_,J)+2a)25,j . (48)

The eigenvectors and eigenvalues for this matrix are
known and are easily verified to be

iz—ﬁls

N

1
VN P
with eigenvalue (49)

i,

N

A.[ =4 Siﬂ2 (02 .

This is to be interpreted as

ul 1

S (Qz)jsFNﬂP

s=1

i—z—Nlls

i2—7rIs =A Lex
N©|THMYN P
(50)

It leads to the spectral resolution of cos(t{2) given
by

i%\’,luk ——j)]

v

(51)

N
[cos(1Q)] = % >, exp

s=1

X cos | 2wt sin

In particular, the velocity autocorrelation for any os-
cillator is given by a diagonal element of this expres-

sion
kpT XN
(w(—0))y=——3 cos 1s” :
N
(

2wt sin
mN

s=1
52)

In the limit N — «, we find

. kgT (1 .
A}Tlm (vv(—t))N=—;1— fo dx cos[ 2wt sin(mx)]

kgT /2

-2 lf dy cos[2wt sin(y)]
m mJ0

(53)

kT

=2~ J,201), (54)

m

where J, is the Bessel function of order 0. It is in-
teresting that it has the asymptotic form

v
t——

cos
4

Jo(2wt) ~

(172 (55)
which reminds one of the long-time tail for one di-
mension, except for the oscillatory numerator. This
numerator is sufficient to produce a finite Green-
Kubo integral:

D= fo dt{w(—1))= ; fo dt Jo(201)= 2::1(0 '
(56)

The notion that momentum conservation is re-
sponsible for long-time tails is incompatible with
this result. In two or more dimensions, nearest-
neighbor coupling leads to more complicated expres-
sions*> and D=0. That the diffusion constant van-
ishes makes sense because there cannot be real dif-
fusion in a fixed, oscillating lattice. That D50 in
one dimension is a kind of fluke. One can only
speculate about whether the numerator or the
denominator in (55) is indicative of the generic
behavior for a fluid system.

The possibility that a superposition of cosines, as
in (52), is the form of the velocity autocorrelation
function in general, that is, for a fluid system rather
than a lattice, arises in the Mori-Zwanzig theory of
correlation functions.*’ The continued fraction rep-
resentation*®*’ for the Laplace transform of the re-
laxation function (in the present context, the velocity
autocorrelation function) takes the form

2(2)= . (57)
Z+A,

Z+A, 1

Z+A32_+_.

While the theory provides formal expressions for the
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A;’s, they are not computable in general. If at any
stage, a A; is set equal to zero, then =(Z) may be
written as a ratio of polynomials in Z which has the
form of the Laplace transform of a sum of cosines.
These cosines each have different amplitudes and ar-
guments, which depend upon the values of the A;’s.
In the event that no A]- equals zero, we expect Z(Z)
is a superposition of infinitely many cosines. The
spectral density of their arguments and the distribu-
tions of amplitudes will determine the nature of the
behavior of their sum. Whether long-time tails or
much more rapid decays occur is simply not known.
Both long-time tails and exponential decays, as well
as many other possibilities, are compatible with this
representation of the autocorrelation function.
When the frequencies are linearly independent much
is already known>® about such series, but it is not
known when a physical system will give rise to
linearly independent frequencies.

VI. STOKES-BOUSSINESQ

The idea that long-time tails are fundamentally
hydrodynamic in origin gains considerable support
from a very old result in classical hydrodynamic
theory, the Stokes-Boussinesq formula.'*=!'7 This
formula provides time-dependent corrections to the
simpler Stokes formula for viscous drag on a sphere
in uniform motion. There are two corrections. One
is the Archimedean correction to the inertial mass,
while the other involves an integral over the past
and gives rise to a long-time tail in the velocity auto-
correlation function. This long-time tail is identical
with that already discussed in the preceding sec-
tions.

The Stokes-Boussinesq formula for the drag on a
sphere of radius R in a fluid of mass density p and
viscosity 7 is

M%V: —6mRY — 3 MoV

172 .
2| P t v(s)
+6mR 7 ] f—wds——_\/t———s .

(58)

In the Introduction, the effect of the first term on
the right-hand side of (58), the Stokes friction term,
was exhibited in Egs. (1)—(3). A simple exponential-
ly decaying velocity autocorrelation function (1) was
obtained and Einstein’s formula (3) for the diffusion
constant resulted. Physically, the simple Stokes fric-
tion occurs when a sphere is somehow caused to
move at constant velocity through a fluid. This is
really incompatible with the exponentially decaying
velocity implied by the Stokes equation. The nonun-

iform velocity equation of Stokes-Boussinesq (58)
leads to a velocity autocorrelation function given
byl4

kB T e —iwt
(w0 =="— [ do s vawvpellcl]
in which the contour C in the complex w plane is
taken in the clockwise sense along the real axis and
then back along a semicircle around the bottom half
of the w plane and y(w) is obtained from (58) by
Fourier transform and is

Y(0)=6mR[1+R(—iw/v)'*—ioR*/9v], (60)

where v is the kinematic viscosity of the fluid. The
square root is defined by a branch cut along the neg-
ative real axis in the w plane. If (59) is used on the
left-hand side of (3), then one still gets the right-
hand side. Thus, D is insensitive to the long-time
tail. It has been shown'* that the expression in (59)
does yield

kT
p

(v (v (0))~

w |

(4mv|et])~32 61)

asl— 0.

Even though D is insensitive to the long-time tail,
the mean-square displacement of the sphere obeys
two different laws as t— o depending on whether
Stokes friction or Stokes-Boussinesq friction is used
to calculate it. This is the basis for the light-
scattering experiments of Paul and Pusey.® For
Stokes friction alone, the r— o0 behavior of the
mean-square displacement goes linearly in ¢, whereas
the Stokes-Boussinesq friction implies an asymptotic
t'2 correction. Paul and Pusey clearly saw the
difference, although the amplitude of the observed
effect was only 74% of the predicted value. Their
observations were for polystyrene spheres, 17000 A
in radius. Several possibilities exist to explain the
discrepancy in amplitude, but this issue is not fully
settled yet, and is not of direct concern in the con-
text of the present paper. I am inclined to state that
Paul and Pusey have seen the Stokes-Boussinesq ef-
fect.

In the remainder of this section, I will argue that
the Stokes-Boussinesq formula must be properly in-
terpreted before it can be used as a basis for the
velocity autocorrelation function for a Brownian
particle. I will also argue that the Paul and Pusey
observation is of a macroscopic character which
cannot simply be extrapolated to a truly microscopic
regime for molecules or systems of identical hard
spheres.

The difficulty with the Stokes-Boussinesq equa-
tion (58) was already alluded to above while discuss-
ing the simpler Stokes equation. To derive the
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Stokes friction, a steady-state hydrodynamics prob-
lem is solved. Either a sphere moves at constant
velocity through an infinite fluid, or an infinite fluid
moves at constant asymptotic velocity past a fixed
sphere. These two perspectives are equivalent and it
is useful to take the former perspective since it is
much more easily generalized to the Stokes-
Boussinesq case. This means that an outside force
of some kind keeps the sphere moving at constant
velocity, and the consequent viscous drag caused by
the fluid is computed. This drag determines how
much work must be done by the outside force to
keep the sphere moving at constant velocity. If the
outside force is suddenly removed, then it is imag-
ined that the velocity decays according to the ex-
ponential decay law implicit in (1). This is in fact
not proved, but is merely an extrapolation of the re-
sult for steady motion to nonsteady motion. The
generalization to nonsteady motion is described in
great detail by Landau and Lifshitz.'"> First, they
consider what would happen if an outside force is
used to make a sphere oscillate with very small am-
plitude and fixed frequency w. The time-dependent
Navier-Stokes equation is now required. The result-
ing fluid velocity field and drag force is calculated.
The ultimate result is a drag force such as in (58) ex-

cept that the V’s must be replaced by the corre-
sponding expression for a sphere oscillating at con-
stant frequency. In principle, the fluid will react to
a forced oscillating sphere by first evolving accord-
ing to transient solutions to the Navier-Stokes equa-
tions and by secondly evolving according to particu-
lar, forced solutions. It is only the latter solutions
which are used in the derivation of the Stokes-
Boussinesq equation. Landau and Lifshitz then
proceed to show that if the outside force creates a
forced motion which can be expressed by a Fourier
integral over fixed frequencies, then the drag force
on the sphere induced in the fluid is the Fourier su-
perposition of the responses obtained for each fre-
quency. Again, no transient behavior is included.
Landau and Lifshitz actually never wrote an equa-
tion such as (58). They have written the drag force
on the right-hand side of (58) and they solve prob-
lems in which the V in this expression is specified
from outside. This gives them the induced drag
force caused asymptotically by a sphere which
suffers an imposed motion from outside forces. For
example, they consider the case in which V is con-
stant. Based on their argument, there is no reason to
expect the result to hold for the self-force on a
Brownian sphere. That is, one is not justified in
writing (58) in a situation in which no outside force
is contemplated, but in one which it is imagined that
the drag force is induced by the motion of the

sphere without outside forces. In short, we have not
justified the self-forcing equation (58) on the basis
of the Stokes-Boussinesq drag force calculation,
which is for forced motion of the sphere. This is
simply the generalization of the objection to writing

M% =—6mqRV (62)
based on a calculation of Stokes friction determined
for a sphere which must move at constant velocity.
This is not to say that there are not regimes in
which either (58) or (62) are good approximations;
rather, they are not justified by the standard deriva-
tions of their respective drag forces. In the case of
(62), justification requires a separation of time
scales. Specifically, if the fluid relaxation, governed
by the time scale R?/v, is short compared with the
velocity relaxation time scale M /(67qR), then (62)
is a good approximation. This amounts to

M >>6mpR>*==>M, (63)

in which M is the mass of the Brownian sphere and
M, is the mass of the displaced fluid [which also ap-
pears in the Archimedean term in (58)]. In the ex-
periments of Paul and Pusey, for example, it was
found convenient to work with polystyrene spheres
in water made up of H,O-D,O mixtures. These
mixtures were used to obtain M =M, so that set-
tling effects could be minimized. Thus, they did
their work well outside the validity of (62), which
was their intention. However, this leaves open the
question of whether (58) is valid. This question is
much harder to answer since the corresponding cal-
culation which includes transients has not been ex-
hibited.

There exists a parallel problem for which the
transient behavior can be deduced and compared
with the results which would be the analogue of (58).
This is the problem of the drag produced on an in-
finite plane surface which undergoes lateral motion
in its own plane. It is considered by Landau and
Lifshitz’!  explicitly, and a mathematically
equivalent heat-flow problem is treated by Morse
and Feshbach.’? The problem is a Dirichlet boun-
dary value problem.

Let the plane be the y-z plane. An incompressible
viscous fluid is in the region x >0 with the plane at
x =0. From symmetry, it is evident that all quanti-
ties depend on x and ¢ only. The velocity of the
plane is denoted by V and the velocity field of the
fluid is denoted by U.>> We assume that the plane’s
motion is parallel to the y axis and oscillatory. The
boundary conditions for the fluid’s velocity field are
U=V at x=0, ie, uy=u,=0 and u,=v. In-
compressibility requires V-u=0, which becomes
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(d/0x )u, =0, which with boundary condition u, =0
at x=0 implies u,=0 everywhere. Moreover,
(d-V)HU, the nonlinear term in the Navier-Stokes
equation, becomes [u,(3/8x)]d since there can be
x-t dependence only, and this vanishes because
u,=0. The equation of motion for the fluid be-
comes
B Lgptwv. (64)
ot p
The x component of (64) is dp /dx =0 which implies
|

GD(xax’yt,t’):41T‘V(41TV1 t—t' | )—1/2 exp

which has a normal derivative at x’=0 given by

d 4mx 1 \—1/2
- — 0 t,t' — — (4 t t
ax'GD(x, y )— ]t t'| ( 77V| ‘)
x2
—— . (67
X exp w1 67)

Incidentally, we again see a long-time tail emerging
from the normalization factor of the Gaussian solu-
tion to a diffusion equation. The solution can be
written in general as

d
dx

( t)—Lftdt’ Gp(x,0,4,¢")u (0,1")
ulx, —477' 0 ’ p'\Xx,U,1, u ’

1 o , ,
* oy fo dx'Gp(x,x',t,0)u(x’,0)  (68)

in which u (0,t') is, of course, v(t’), and we will take
u (x’,0)=0. Therefore, the solution is

X2

X e

Vv |t —t'|3?

exp

v(t') .

u(x,t)= fotdt' 5

(69)
Morse and Feshbach™? state the following: “In order

to obtain a steady-state solution, we shift the ‘begin-
|
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2v

|

u o, (x,t)=voexp X |cos

2

R
. iw
=vgRe iot — ’— ’
v

exp

(x —x')? .
4v|t—t'| P

172

that the pressure p is constant since it has no y-z
dependence. Thus, letting u, be denoted by simply
u yields
2
%u:v—aa;i-u with u=v at x=0, (65)
a classical Dirichlet problem, and it is equivalent,
mathematically, with a heat conduction problem?®
with the temperature given at x =0. The Dirichlet
Green’s function is readily obtained by the method
of images and is

(66)

__(x4x"?
4v|t—t'|

I
ning of time’ to t = — « at which time initial values

are zero.” Landau and Lifshitz do the same without
saying so. The idea is to eliminate transients. For

the case of a pure frequency oscillation,
v(t")=vycos(wt’) and we get
exp | X5
) ftd x P vt —t'|
,1)= t'
Holx 0 2Vmv [t—z'| 372
Xvgcos(wt') (70)
from (69), or
exp | — X1
oD fz PR P 4v|t—t'|
u, (x,t)= t'
© - 2V7v |t —t |32
Xvgcos(wt”) (71)

from the shift of the time origin. Morse and Fesh-
bach®? find

(72)

where Re means real part. By a related calculation, it is found that
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X

ug(x,t)=voRe jexp |iowt— |—
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in which Im means imaginary part. To obtain this
result, complex integration was required in which all
square roots are interpreted by a branch cut along
the negative real axis.

The drag force experienced by the plane is given
by the stress tensor

du

Oxy =1 ax (74)

x=0%

This is, in fact, the force per unit area on the plane
caused by the fluid viscosity. Landau and Lifshitz
|

172
1 o . o
um(x,t):_—ERe f_mv(co)exp it — T }
This leads to a force per unit area given by
72
_|Pn todv(s) 1 77
W=7 e s

very similar to the Stokes-Boussinesq expression. It
is evident that a different result is obtained if the
analogue of (73) is used instead.

The essential point of the preceding discussion is
that it would not be justified a priori to write the
self-forcing equation

d du
—V=71— 78
P’ =M ax ’ 78

x=0%

where u is the mass per unit area of the plane. Cer-
tainly, the transient behavior in (73) should not be
ignored. Here, the plane experiences the force it
engenders through the fluid viscosity and it is not
subject to any outside forcing. Equation (78) would
be potentially valid only in some appropriate regime
in which one would think of the plane’s relaxation
taking place on a much slower time scale from the
time scale during which the fluid relaxes to its
steady-state response as given by (76) and (77).
From (73) the transient contribution to (74) can be
computed and is

‘/;, . y 3/2e —yt
trans _ -
Tay = —PUo— fo dy ol (79
In fact, this expression goes asymptotically like
t=32 ie., like
5
vv T(3)
t
U;;ns’jw _pvoTwz—ts/? . (80)

In this case, the asymptotic regime begins only after
t>0" L

The self-force will be sensitive to the immediate
past. The expression given by (77) is the drag force

X

are plainly interested in the effect of forcing the
plane to oscillate at a fixed frequency by some exter-
nal means. Consequently, it makes sense to wait un-
til transients die out, and to use (72) in (74) rather
than (73). They also consider the case where v (¢) is
not purely oscillatory but is a Fourier superposition
of frequencies:

1 ® —iw
vi=5-Re| [ vlole~do (75)

with the interpretation attending (71). They then get

do ] . (76)

[
which affects a plane forced from outside in a
prescribed manner. It ignores the immediate past
including the entire transient. By taking the initial
time at t = — o it is designed to ignore the transient.
In the case of the sphere, it would be of interest to
work out in detail the transient response. Even so,
one should not expect the result to significantly
modify the conclusions based upon the Stokes-
Boussinesq equation. This is so because the tran-
sient behavior will exhibit a long-time—tail behavior
characteristic of diffusion equations, of which the
Navier-Stokes equation is a special kind. Moreover,
diffusion equations are well known to be especially
poor descriptions of short-time behavior.** Conse-
quently, it would not be expected that a complete
analysis including transients would yield a good re-
sult because the crucial behavior during the immedi-
ate past is poorly described. The self-forcing prob-
lem poses special difficulties. In the regime of
molecular Brownian motion, the rate of thermal per-
turbations is such that viscoelastic effects must also
be contemplated. These effects result from frequen-
cy dependence in the viscosity, 7, for sufficiently
high frequencies.**>® For molecular Brownian
motion in water, the inclusion of such effects are
necessary, but they render the problem of a sphere in
a viscoelastic Navier-Stokes fluid extremely diffi-
cult. By itself, the viscoelastic correction does not
remove the general concern regarding the poor
short-time description of diffusion equations.

Even given all these caveats, the Stokes-
Boussinesq equation for self-forcing, Eq. (58), prob-
ably has a regime of validity just as does the simpler
Stokes equation for self-forcing, Eq. (62). We do
not know yet how to delimit this regime. If we ac-
cept the observations of Paul and Pusey at face
value, then we know that the regime is not charac-
terized in the same way as the regime for (62) was
characterized, i.e., by (63), as was discussed earlier.
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In any case, I believe that the measurements worked
out as they did because the polystyrene spheres were
so “large” (17000-A radius). The issue here has to
do with temperature fluctuations and the depen-
dence of viscosity on temperature. The qualitative
argument is that for a large sphere, the temperature
fluctuations in a volume of comparable size are
negligible, whereas for a sphere of molecular size,
the temperature fluctuations are so big that the tem-
perature dependence of the viscosity destroys the
idea of a constant viscosity on the molecular scale.
This renders the hydrodynamic description moot, if
not invalid, at the molecular level. Quantitatively,
the temperature fluctuations in a volume V are given
by

kpT?

C, (81)

(ATyATy )=

in which T is the average temperature and Cy is the
heat capacity of the volume V. If we take T =300
K and use the specific heat for water, which is ¢ =1
cal/K mole, we find

2 CIl’l3

(ATyATy)=5.3x10""%(K) (82)

in which V is to be measured in cm®. For the poly-
styrene spheres, V' =2X 10~ ¢cm3. Thus, the root-
mean-square temperature fluctuations are of order

(AT, ATy )'?=5x10"*K . (83)

In contrast, a molecule of radius 10 A (a small pro-
tein) has a volume ¥V =4.2x 10~2! ¢m, which yields
root-mean-square temperature fluctuations of order

(AT AT, )'?=36K . (84)
Coupling this fact with the fact that for water’’
%%"%2 ~2, (85)

which means that the viscosity changes noticeably
with temperature, implies that the viscosity will lose
its meaning in the neighborhood of the molecule.
This seems to be a more serious problem than
viscoelasticity or the poor, short-time description of
diffusion.

All of the preceding considerations lead to the
conclusion that there is no justified connection be-
tween the computer simulations of the velocity auto-
correlation function for hard spheres (and the
theories purporting to explain the same) and the
Stokes-Boussinesq equation (and the apparent obser-
vations of the same). In this regard, the last sen-
tence of Sec. 6.1 of Chap. XII of the book by
Résibois and DeLeener® is of interest: “The real
surprise is that these macroscopic arguments also

apply to the long-time behavior of correlation func-
tions for microscopic particles.” Do they?

VII. LORENTZ MODEL

The Lorentz-gas model was developed because of
the impossibility of solving a realistic N-body
dynamics problem. In this model, a single particle
moves in a space (usually the two-dimensional Eu-
clidean space R?) of fixed scatterers with constant
speed. When contact with a scatterer occurs, a sim-
ple, elastic reflection takes place, changing the direc-
tion of the velocity. A variety of systematic and sto-
chastic variations of the model are reviewed by van
Beijeren.?

The Lorentz model was developed by Lorentz™® to
describe conduction electrons in metals. Its popular-
ity in kinetic theory stems from its nontrivial nature
and tractability. It is not to be confused with the
Lorenz model,?! with which is associated the idea of
a strange attractor.

The velocity autocorrelation function for the
Lorentz model has been shown?® to possess a long-
time tails. This has been taken as support for the
kinetic-theory approach'® to long-time tails. It
could, however, be argued that it shows that the
Lorentz model provides a good modeling for hydro-
dynamic, or diffusive, correlations. In light of the
discussion earlier in this paper, this need not be con-
strued as evidence for long-time tails in exact
dynamics.

There is another objection of a more profound na-
ture. The work of Bunimovich and Sinai® suggests
that the long-time—tail results may not be generic.
They introduced the concept of a finite horizon,
which is not featured in the traditional accounts of
the model. A Lorentz model has finite horizon®® if
there is a constant 4 such that the length of any
straight segment (of the path of the scattering parti-
cle) which avoids all scatterers cannot be more than
this constant 4. They proved the theorem?’ which
says the following:

There exists a constant ¥, 0 <y <1, such that for
all sufficiently large n

| E(v(n),v(0)) | <exp(—n?). (86)

In this expression, n is the number of collisions
which have occurred, v(n) is the velocity after the
nth collision, v(0) is the initial velocity, and
|E(v(n),v(0))| is essentially what we have been
denoting by (v (#)v(0)). If y <1, the decay law is
not quite an ordinary damped exponential, but it is
far more similar to one than to a long-time—tail re-
ciprocal power law.

The approach of Bunimovich and Sinai is so dif-
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ferent from the traditional kinetic-theory approach
that the apparent conflict between these two ap-
proaches has not yet been resolved. The idea of a
finite horizon seems to be intuitively clear. It sug-
gests the transition from a Lorentz “gas” to a
Lorentz “liquid.” Can one incorporate the idea of a
finite horizon into the kinetic-theory approach and
corroborate the result obtained by Bunimovich and
Sinai?

VIII. DYNAMICAL SYSTEMS

The expression “dynamical system” has come to
mean different things to physicists and mathemati-
cians. For the physicist, it usually means a system
described by a Hamiltonian with some definite in-
teraction potentials. For the mathematician, it has
come to mean some kind of differentiable manifold
with a flow or mapping defined on it. The manifold
is further characterized either topologically, geo-
metrically, by a measure, or by some combination of
these. The physicist usually studies the particular
properties of his specific system, whereas the
mathematician is looking for generic properties in
his. The interface between these two approaches is
especially difficult, and except for certain simple
cases, it is not known which specific Hamiltonians
fall into which generic categories. Consequently, an
application of the mathematical view of dynamical
systems to the question of the velocity autocorrela-
tion function is not yet possible in a definitive
fashion.

In Sec. II one type of application was discussed.
It involved the application of the Anosov-Bowen
theorem to the question of numerical error propaga-
tion in computer simulations. As was pointed out in
Sec. II, even this application is fraught with
subtleties.

Another aspect of the difficulty in making con-
tact between the two disciplines of the physicist and
the mathematician in the context of the present pa-
per is that a great deal of the mathematical work on
dynamical systems has been for dissipative systems
rather than for Hamiltonian systems. This is espe-
cially true of much of the work on attractors and on
bifurcations.?*> Of the work on Hamiltonian sys-
tems, much of it has been on perturbation questions
for systems with few particles, such as in celestial
mechanics or with coupled oscillators. The truly re-
markable = Kolmogorov-Arnold-Moser (KAM)
theorem® is a product of these endeavors.

The problem of the velocity autocorrelation func-
tion for a tagged particle in an N-particle system has
not been the object of intense investigation from the
mathematical viewpoint. With the exception of the
work on the Lorentz gas mentioned in Sec. VII, the

context for studies of correlations has been the full
phase space. In this context the central concept®!3?
is that of “hyperbolicity.” Both Axiom-A4 systems
and Anosov systems are defined in terms of this
concept. The essence of the idea may be expressed
as follows:

Let f* be a diffeomorphism on a compact mani-
fold M. Let A be a closed invariant submanifold of
M, ie, AEM and f'A=A. Let vy be in the tangent
bundle at the point x of A with respect to f'. The
tangent bundle over A is denoted by T\ M. A is said
to be hyperbolic with respect to f* if there is a con-
tinuous splitting of TAM in E°+E*+E*, where E°
is a one-dimensional subspace along the flow, E* is a
contracting subspace (s for stable) such that

[oxl| <c e vy

for t >0 and x EE*, and E* is a dilating subspace (u
for unstable) such that

|[oxl] > eMu]|

for t >0 and x EE¥, where ¢ and A are constants,
and the double bars denote an appropriate metric.

If the whole of M is hyperbolic with respect to f7,
then f* is an Anosov flow. It is the nature of the di-
lating subspace which causes initially close trajec-
tories to exponentially move apart in such systems.
One would like to say more, although this is not at
all proved; e.g., the projection of such a flow down
onto a single particle’s velocity will result in a ve-
locity autocorrelation possessing rapid (exponential)
decay. Maybe “physical” systems are not Anosov.
In fact, as was pointed out in Sec. II, hard spheres
are not Anosov.’” Nevertheless, the presence of
intersphere potentials could make such systems
Anosov after all. These questions need to be pur-
sued.

Studies of systems with one or a few particles
(spheres or disks) in specially bounded regions (usu-
ally of R?) suggest another variation on this
theme.’! A dynamical system may have islands of
stability in a sea of hyperbolicity. The islands of
stability contribute long-time tails to the correlation
function whereas the hyperbolic sea leads to an ex-
ponential decay. The relative contributions, i.e., the
amplitudes, depend upon the measures of these two
subspaces of the whole manifold. There is some
reason to believe that as the number of particles in-
creases, the measure of the stable islands decreases
exponentially. This tantalizing suggestion needs
more study. There is the possibility that it is related
with the computer simulations. The connection in-
volves the size of the box used in the simulations
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and the density of disks. If both are increased,
perhaps islands of stability, which would be respon-
sible for the long-time—tail observations, will be-
come much less significant.

IX. CONCLUSION

The existence of long-time tails in the velocity au-
tocorrelation function for a tagged particle in an N-
particle system has been questioned. Computer
simulations have been criticized with regard to po-
tential numerical error propagation artifacts. The
invocation of the B-shadow theorem (Anosov-Bowen
theorem) as a defense against this criticism has also
been questioned. Three theoretical approaches have
also been criticized or questioned. Their mutual
agreement was shown to result from the fact that
they each ultimately utilize a hydrodynamic correla-
tion mechanism. Thus, they do not really provide
independent corroboration of each other. Moreover,
it was argued that they may merely describe the
correlations resulting from numerical error propaga-
tion which were heuristically shown to be potentially
of hydrodynamic character. Nevertheless, the
kinetic-theory approach is impressive. The experi-
mental observation of long-time tails was analyzed
from the viewpoint of the Stokes-Boussinesq effect.
It was argued that this is perhaps a purely “macro-
scopic” effect, with no justified correlate at the mi-
croscopic level. Finally, it was argued that the ap-
proach of the mathematical theory of dynamical
systems suggests in several ways that the velocity
autocorrelation function of a particle decays much
more rapidly than long-time tails imply. The
Lorentz-gas model was cited, as well as work on bil-
liard (spheres and disks) systems.

Our objective in this paper is not to deny the ex-
istence of long-time tails for the velocity autocorre-
lation function, or to even imply that some of the
evidence is in error somehow. Rather, the objective
is to raise a variety of questions which do not seem
to be easily answered and which need to be answered
before a firm basis for long-time tails is established.
Because so much of the evidence is of hydrodynamic

character, one suspects that there has been a com-
placency about the evidence; not because there is so
much independent corroboration, but because people
have mistakenly viewed the evidence as independent.
A truly independent line of enquiry based upon the
theory of Anosov systems (or an appropriate vari-
ant) does exist, and it is desirable to determine its
degree of consistency with the other approaches.

If the numerical error propagation problem could
be pushed back as far as, for example, 50¢, without
altering the presently observed emergence of the
long-time—tail behavior around 12¢y, then this
would provide convincing evidence. It may require
waiting for the next generation of computers to be
achievable. If, on the other hand, the onset of the
long-time tail would also be pushed back to 50¢, by
this procedure, then convincing evidence for the ar-
tifact interpretation would seem to be in hand.
Work has been done which compares the greater ac-
curacy of 120-bit (binary digit) arithmetic to 60-bit
arithmetic. If numerical error is the source of the
“hydrodynamiclike behavior” manifested in the
long-time tail, then the long-time—tail behavior
should show itself in the 60-bit study before it ap-
pears in the 120-bit study. It may already be possi-
ble to make a definitive statement about this on the
basis of existing data.

Although “real” experimental evidence has been
recently published, its interpretation has been seri-
ously questioned in Sec. VI of this paper. Conse-
quently, we feel that it is not yet inappropriate to
close with a remark made by Ruell?":

“In fact one should beware of the general tenden-
cy of theoreticians to provide explanations of phe-
nomena which have actually never been observed.”
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