
PHYSICAL REVIE% A VOLUME 27, NUMBER 6 JUNE 1983

Broadening of Lyman lines of hydrogen and hydrogenic ions by
low-frequency fields in dense plasmas

Robert Cauble
Berkeley Research Associates, Springfield, Virginia 22151

Hans R. Griem
Laboratory for Plasma and Fusion Energy Studies, University ofMaryland, College Park, Maryland 20742

(Received 22 November 1982)

A previously developed extension of the quasistatic approximation which allows for the

broadening of hydrogen lines by low-frequency fields is applied to the first four Lyman lines

of hydrogen, ionized helium, Cvr, and ArxvIII. It is demonstrated numerically that the
low-frequency Stark broadening is Gaussian in the case of relatively small dynamical
corrections. Extrapolation of this Gaussian approximation to cases with large corrections
leads to good agreement with measurements of the Lyman-a, -P, and -y lines of hydrogen

and allows the prediction that the Lyman-5 should retain its central dip.

I. INTRODUCTION

Profiles of spectral lines, broadened mostly by
Stark effects from electric fields produced by
charged particles in dense plasmas, have long been
used for determining electron or ion densities and
related quantities (like the surface gravities of stars).
A much more recent application is the measurement
of deuterium-tritrium (DT) fuel densities in inertial
fusion experiments from profiles of x-ray lines emit-
ted by small admixtures of suitable heavier elements,
e.g., argon. Because lines of one-electron systems,
being subject to linear Stark effects, are especially
sensitive to the perturbations caused by charged par-
ticles, hydrogen lines are most useful in the analysis
of stellar atmospheres and Ne x or Ar vxiII lines in
the inertial-confinement fusion experiments. Al-
most as suitable are He I and lines from heliumlike
(two-electron) ions having upper levels with close
perturbing levels within about a line width.

Experimental verifications of line broadening cal-
culations ' for hydrogen lines generally indicated
—10% accuracy in electron density determinations
from Balmer lines. However, experiments also re-
vealed some discrepancies in the central profile re-
gions of such lines and much larger discrepancies
for Lyman lines. If, e.g., Lyman-a had been used
for density diagnostics, an error of over a factor of 2
would have been incurred in the sense of an overesti-
mate.

Since the discrepancies depended on the (reduced)
perturber mass, it was natural to seek as their cause
deviations from the quasistatic approximation for

the broadening by ions. Various attempts were
made to allow for the dynamics of ion-radiator in-

teractions, most of them being reviewed in Ref. 6.
Of these attempts, an analytic approximation pro-
cedure developed by one of us allows systematically
for the first time derivatives of the perturbing fields
produced by ions and by low-frequency collective
modes. The required joint probabilities for the
squares of these derivatives and the initial field act-
ing on the radiator were obtained by combining
Chandrasekhar and von Neumann's fluctuation mo-
ments for gravitational fields produced by stochast-
ically distributed and independently moving stars
with a fluid model for the collective fluctuations.
[See Appendix of Ref. 7, but note that in the last
equation the exponent of the first kpa factor should
be 4 and that the factor in square brackets should be
—2. Also, as already pointed out in Ref. 9, the
coefficient of the tan '(x /v 2) term in the collec-
tive contribution should be multiplied by 3 to obtain
the correct expression as used in the previous and
present calculations. ]

It is hoped that our statistical model will soon be
subjected to experimental tests via light scattering or
computational tests via two-component plasma
simulations. Pending such tests, we can point out
the excellent agreement obtained both for Lyman-a
and Lyman-P, notwithstanding the very different
profile structures and the required extrapolation of
the small-time expansion for the low-frequency field
effects in case of Lyman-a. This extrapolation will
be discussed in more detail in Sec. II, together with
other aspects of the calculations.

1983 The American Physical Society



ROBERT CAUBLE AND HANS R. GRIEM

Our new results given in Sec. III show that the ex-
cellent agreement with experiment' is also obtained
for Lyman-y, and we can now predict that dynami-
cal effects should not be sufficient to sInear out the
central dip of Lyman-6 under the conditions of the
various experiments. ' '

Encouraged by the good correspondence between
measured and ealeulated profiles of hydrogen lines,
we present in Sec. III calculated profiles and profile
parameters for one-electron ion lines as well. Al-
though almost no experimental verification is avail-
able for these lines, it seems nevertheless reasonable
to expect similar accuracy as for hydrogen lines, be-
cause the relevant dimensionless parameters have
very similar values.

II. THEORY AND CALCULATIONS

To obtain the line shape, the time-dependent
Schrodinger equation (already averaged over the fast
electron time scale) must be solved for the radiator
in some initial field which then varies with time.
For Lyman-a, this was done for the unshifted corn-

ponents, assuming the shifted components to be
much broader than the electron collision width of
the unshifted components. For Lyman-P, the cou-

pled upper-state equations were solved '" by Fourier
transforming and algebraically iterating to second
order in the field derivatives. Application of the
latter method in the present paper to the Lyman-a,
-y, and -6 lines is straightforward, but in the cases of
n =4 and n =5 quite tedious. Use was made of the
symbolic manipulation program MACSYMA (Math-
lab Group, Massachusetts Institute of Technology,
Cambridge, MA) to facilitate the algebra, the details
of which can be found in the Appendix. The aver-

age over initial fields and field derivatives was done
numerically.

If the detuning A~ is measured in terms of the
shift of the innermost shifted Stark component in
the Holtsmark field I'o, i.e., in terms of

' 2/3
3nk 3nfi 3nA 4m%

2Zme 2Zrnr 0 2Zm 3

where n is the upper-state principal quantum num-

ber, the profile correction can be written as

Al(x„}=~„M(a)=e„'"E,'"(x„)+F„' 'E,' '(x„) .

2PlZroU

3nA

'2
2mZr0 3k' T

&n =
3nh' M;

where U is the radiator velocity, which must be in-
cluded in the average over velocities, and M; is the
mass of the perturbing ions. The line-shape correc-
tion can be seen to consist of two terms, the first of
which dominates in the case of light emitters per-
turbed by much heavier ions (for example, hydrogen
broadened by argon). The first term in Eq. (1} is
negligible in the case where light ions cause broaden-
ing in a heavy emitter (e.g., argon in a DT plasma).

Since the interaction term in the Schrodinger
equation is approximated by a function linear in
time t the derived second-order expression in Eq. (1)
is correct only to second order in t. This may not be
adequate in the case where the decay times from
electron collisions are long, i.e., when C is small. If
C/co„ is a small number, the implicit assumption of
nonoverlapping electron and ion time scales may not
be valid. To model terms in the correction of order
greater than t, we will make the extrapolation in
Eq. (3).

Greene' has shown that the small-time depen-
dence of the conditional covariance, which governs
the part of the line shape due to ion broadening, is
quadratic in time. %e conjecture that this is the
small-time limit of a Gaussian, i.e.,

2 2

LG(t) =e e ~e (1—
4 coot ),-Ct a ' -Ct ' 2 2

where the time domain line shape is given in terms
of an effective electron collision width C and a
Gaussian profile of 1/e width coG. The Fourier
transform of the short-time (second-order) correc-
tion in Eq. (3) is

1 a C —3C(ha))
4 [C2+(Ac@)2]3

Our second-order solution of Eq. (1) turns out to
have the same form as Eq. (4) for the four Lyman
lines studied so far, except for an overall change of'

sign for n =3 and 5. Letting co~=—4b(e'"+e' ')m„
and noting that at Am=0, E,'"(4~)=E,' '(Am), we
find that

Here x„=Leo/co„, and A)(x„) is the field averaged,
but not radiator velocity averaged profile correction;
E," '(x„) are functions of the dectron collision
width C. The quantities e„""are given by

b =a'i E,(x„=o)
i (C/co„)

Figure 1 shows two examples of our calculated
correction function E,(x„)compared with the corre-
sponding short-time Gaussian form DIG(x„} from
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TABLE I. The parameter 6 defined by Eq. (5) for the first four lines of the Lyman series of atomic hydrogen and hy-

drogenic helium, carbon, and argon. In the case of hydrogen and helium lines, the perturbing ions are Ar, in the case of
carbon and argon lines equal concentrations of 0+ and T+. Column headings are the same for H and He II and for C vI

and Ar XVIII.

log~o(X, ) T {10K)

O.S

1

2

H
0.921 1.636 3.93
0.694 1.545 3.66
0.508 1.463 3.31

log)0(N ) T( 106K)

0.5
1

2

CvI
0.136 1.188 1.18
0.079 1.121 0.85
0.045 1.076 0.47

0.5
1

2
3

0.614 1.348 1.748 3.79
0.583 1.191 1.668 4.08
0.560 0.998 1.595 4.02

0.889

20 0.546 0.339 1.324 1.96
0.532 0.207 1.230 1.38
O.S22 0.125 1.156 0.94

18 0.5
1

2

0.651 1.441 1.813 3.74
0.607 1.582 1.760 3.67
0.576 1.537 1.684 4.08

0.5
1

2

0.563 0.688 1.453 2.13
0.546 0.454 1.346 1.72
0.533 0.312 1.255 1.31

0.5
1

2

0.712
0.665
0.595

0.5
1

2

0.579
0.562
0.546

He II

0.841 1.582 3.92
0.534 1.469 3.32
0.329 1.359 2.34

4.5
9

18

Ar XVIII

0.109 1.162 0.79
0.064 1.105 0.52
0.038 1.065 0.33

0.600 1.596 1.678 4.50
0.566 1.113 1.608 3.84
0.550 0.745 1.512 3.33

23 4.5
9

18

0.549 0.251 1.259 0.96
O.S35 0.157 1.181 0.72
0.524 0.095 1.124 0.52

0.621 2.343 1.740 4.50
0.590 1.820 1.689 4.02
0.560 1.339 1.616 3.54

4.5
9

18

0.569 0.435 1.315 0.72
0.550 0.295 1.239 0.49
0.535 0.195 1.175 0.40

20 0.635
0.598
0.604

4.S
9

18

0.594
0.570
0.551

The parameter b is seen to be a slowly varying
function of density and temperature, indicating rela-
tive insensitivity of the Gaussian extrapolation to
the collision widths. This is desirable since the
second-order Stark shape [see Eq. (4)] is quite sensi-
tive to small changes in C. The present treatment of
the a line does not require the simplifying assump-
tions made earlier. In that paper the parameter
equivalent to our b is a constant and equal
to ( —,v3) =0.521. This value is close enough to
our tabulated values so that our profiles are essen-
tially identical to those of Ref. 7. The values of b
were arbitrarily varied to observe changes in the fi-
nal convolved profiles. A 2S% change in b leads to

16mroa o(3bka T~M')

Z4~2ge( ]—1/g 2)2

where M' is the smaller of radiator or perturber

an intensity change at line center in Lyrnan-P of
about 10%, with a 5% change at the peaks. The
same percentage modification of b causes line center
intensities in Lyman-y and I yman-5 to adjust by
about 2% or less.

Before presenting results of profile calculations,
we observe that Eqs. (6) and (8) correspond to
Gaussian widths in the a scale'*' of

2
' I/2

roA, 3bkg T
CG

ace M' 7
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FIG. 3. Corrected profile (solid curve) of Lyman-5 of
hydrogen at N, =10' cm and T=12700 K. Dashed
curve is the uncorrected profile of Ref. 2.

FIG. 2. Comparison of the second-order corrected line
shape (dashed curve) with the "summed" Gaussian model
considered here (solid) for Lyman-P of hydrogen at
N, =10" cm and T=12700 K. Points are the mea-
surements of Grutzmacher and Wende (Ref. 5). Solid
curve is the result of convolution of the correction func-
tion with the uncorrected profile of Ref. 3 (dots).

compares the prediction by the Gaussian model and
those measurements.

We conclude by presenting profiles of Lyman-a,
-P, -y, and -5 of Ar XvIII in a DT plasma for laser

9.0
Lyv

mass. These widths are of the same order of magni-
tude as an earlier estimate' ' a& for low-frequency
Stark broadening, but scale differently with plasma
conditions, and are larger than aq for relatively
small perturber masses. All of these differences are
as expected, because the earlier estimate allowed ex-
plicitly only for collective fields through a weak
coupling approximation.

In Fig. 2 we compare the profile of Lyman-P of
hydrogen in argon obtained from the Gaussian ex-
trapolation with that obtained from the second-
order calculation at the conditions of the experi-
ment. ' Agreement is seen to be very good between
experiment and both calculations, the second-order
result predicting a slightly higher central intensity.
Figure 3 shows our results for Lyman-5 of hydrogen
in argon at conditions of the Lyman-P measure-
ment. The profile correction is seen to be very
small. The second-order correction, however, is un-

physically large. Measurements are availableto for
Lyman-y of hydrogen in argon at a density and tern-
perature similar to the above, where again the
second-order correction is inappropriate. Figure 4
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4.0

3.0
0

I

2
X„

FIG. 4. Comparison of the model profile (solid curve)
with measurements (Ref. 10) of Lyman-y of hydrogen in
argon at N, =10' cm ' and T=12700 K. Dashed curve
is the uncorrected profile (Ref. 2) to which the correction
function is applied.
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T=4.6)(10 K. Dashed curves are modified impact broadened profiles (Ref. 14). Solid curves are the corrected profiles.

fusion experiments. We have calculated the line
shapes at an electron density of 5)&10 crn and
temperature of 4.6X 10 K. The modified impact
profile with which the Gaussian-Stark function is
convolved is shown as the dashed curves in Fig. 5.
The solid curves show the modification of the line
shapes when ion motion and low-frequency electron
field corrections are made via the model presented

here. Fine-structure splitting was neglected in our
calculations. It would have considerable effect on
Lyman-a of ArxvIu, for which the fine-structure
splitting in units of co„ is

' —2/3
aZ 4m

192 3
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or MF-1.1S for the condition of Fig. 5. For
higher members of the spectral series, errors from
neglecting fine structure should be almost negligible,
because M~ for them is smaller by a factor
-(2/n) .
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APPENDIX

where Ck~ is the electron collision matrix, cok is the
Stark shift in the initial field, and the m are propor-
tional to the field derivatives.

dd. (co) is thus given by a linear combination of
& Uk~ )'s, the number of which is governed by the

(2)

values of the matrix elements defined in Eq. {A1").
However, owing to a symmetry with respect to re-
placement of the initial field F by —F in Eq. (A2),
only about one half that number of elements are
needed. For example, applying Eq. (A1) to Lyman-
a using the definitions given below gives the result

Re& —,(U»+ U22 Uzi —U—i2 }+2U33&

3m

In this appendix we present some details of the
calculation of the line-shape correction for Lyman-
u, -y, and -5 including the definitions of the para-
bolic wave functions used to form the atomic matrix
elements. Also presented is an outline of the solu-
tion of the coupled Schrodinger equations for the
matrix elements.

In terms of the Fourier transformed time develop-
ment operator, the second-order expression for the
line-shape correction of a Lyman resonance line (of
upper level n) is given by

1
It —1 It —1

dd, (a)}= Re g gz U„''
3' s=0 s'=0 IIt -0

It —2 It —2

+2+ gr+U"'
s=0 s'=0

(A1)

After compensations due to the above-mentioned
symmetry, the line shape is given by Eq. (A5). Since
all of the U functions we will present below are
Fourier transformed in time, in order to conserve
space we will henceforth omit the tildes identifying
the transform.

The parabolic wave functions (
I
nsm ) ) for n =2

are defined in terms of spherical wave functions
( Inlm)) by

I
2oo&+

I
2»),

2 2

(A4)

= I21, +1) .

(These definitions differ slightly from Ref. 7.) The
entire line shape according to Eq. (A1) is then

1'+ —= &n»
I
(~+0»

I
100& &ns'l

I
(&+1» I

100&~&r+ 1L (a) ) = Re& U) ( —U2) +2U33 ) .
3m

(A5)

are matrix elements (using parabolic wave functions,

I
nsm ) ) of the dipole operator and U„ is the corre-

-&2) .

sponding matrix element of the second-order time
development operator, e.g.,

U~ I
0=&nsOI O' 'I ns'0) . (A1")

X, and X&+ in (A1') are normalizations. U~ is the
solution to second order of

i (he@ —mk—}Uk &+ QCkl U~J.

The Stark shifts for the shifted components are
given by

3A F and n)2 ———ui .
Zme

The electron impact width of each component in-
volves the matrix element of R R„where R is the
position vector of the radiating electron. This quan-
tity is diagonal in the spherical representation. '

Thus using (A4), &I
I
R R

I
k & is seen to be

=&kj ~kk Uij g~k~ UmJ —(A2}

IIt ~k
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where the matrix elements are in units of

C=9ao'

The matrix elements of ro in Eq. (A2) are given by

Since the initial field is assumed to lie in the z direc-
tion,

f011 3 Fz 3 Ft
~

Q)22 (A9}
Zppge Zptle

~ 0 0

eat ——
& k

I xF„+yF)+zF,
I
I & .

Zmea0
(AS) The off-diagonal elements of io can be written"

) ~

ikkl-
k

g &1I(.F.+yF)) Ik&« I(.F.+yF)) II&
mea0Z

F'g[&1
I

1'
I
k & & I

I

l"
I

1 &+ &1 I
1'

I
k & & k

I

1"'
I
l & l

4 Plea0Z
(A10)

where I -=x+iy. The two expressions in (A10} are
equal when averages over cross terms (i.e., F„F))are
zero and F„=F~=

2 Fz. The matrix elements of I +

and I" for the states defined in (A4) are

I p+
k 1 2 3 4 I k 1 2

Since the zeroth-order solution only connects
states of equal quantum number m, the derivatives
of this solution placed in the first ~ term on the
right-hand side (RHS} of (A2) with the second m

term on the RHS set equal to zero produce the
first-order correction,

0 0 1 0 1

0 0 1 0
0 0 0 0 3
1 1 0 0

0 0 0 1

0 0 1

1 1 0 0
0 0 0

U(1)»
Uf 1)

21

~ (0)*
11U»

(0)'
~»U21

where the elements are in units of —3a0. It is readi-
ly seen that

1331 1

The last term in (A2) couples states of different m
so that it does not contribute to this order. To ob-
tain the first-order contributions of these elements, a
subequation of (A2) must be solved,

%e now must solve Eq. (A2) to second order in
the interaction m. For the elements U» and U21 we
proceed as follows. Define the matrix of the left-
hand side (LHS) of (A2) using (A6), (A7), and the
table of R R matrix elements as

For Lyman-a (A14) reduces to

«—I~ro)U3i = —r03i(U» + U2» .f1) . f0)' f0)'
(A15)

2C —l (6N —
CO )

2C —i (hco+coi }

Substituting the derivatives of the solutions to
(A13) and (A15) into the RHS of (A2) gives the
needed second-order correction

The zeroth-order solution to UkI is obtained by set-
ting the derivatives in (A2) equal to zero. Thus

'
U(0)

—1

U21
(0) =~ 0

is

'
U(2)

11

U(2)
21

f 1 )' '
& 1 )'

(A16)
~11U21 213 U31

33 =
(C ~ g (U13 + U23

f2) 31 fl)' (1)'

(C—) Ace)

The third needed matrix-element correction U33'
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where

r r(1)
Ll 13 2l c013

(1) = —3 I .—1

U23 (C—i hen)

Rewriting Eq. (AS) as

L (co)= Re(U'|)'+U'||' —Up|'
31T

U21 +2U33 +2U33 &
(2) (0) (2)

=L' '(co)+iU, (co), (A18)

where we note that the first-order Vs vanish in the
field average, and the second-order correction to the
line shape can be obtained from Eqs. (A18), (A16),
and (A17).

2. Lyman y

Application of Eq. (A1) to the Lyman-y reso-
nance line leads to the following form of the correc-
tion to the line shape:

Mr(a)1= Re( —, [9(U)I —U4) )+ Ugq —U3q +3(Upl + Ulp —Uqq —U3I 1]
(2) (2) (2) (2) (2) (2) (2) (2)

+4[0.301(Us5 + U75 1+0.199U66'+0.346(U6s + U76 )]) . (A19)

The parabolic wave functions used in (A19) are de-
fined in terms of spherical wave functions as

is the smallest nonzero Stark shift.
The diagonal elements of ~ will have the same

prefactors as in Eq. (A21a) with

I4&.
= —,

'
I
400)+ I41o)

co22 = —6 F~
~Zme

(A22)

+ —, I420)+ I430),
20

=-,'
I
400)+ I41o)

A table of off-diagonal elements [involving I + and
I —see Eq. (Alo) and comments thereafter] can be
constructed. The elements are found to have two
distinct evaluations which we label

——, 1420) + 1430),
20

ro&s= —6v 3 Fj
Zme

Is), Ig)

I7), I
10)

=( —, )'i~
I
41,+1)+

I
42, +1)

2

(A20) and

A@36———12 Fg .
Zme

(A23)

I43, +1),1

1
I
4»+2&+ 14»+2&

1

2
'

2
I
12),

I
14)

I
6), I

9) =( —, )'
I
41,+1)—( —, )'

I
43, +1),

I
11),

I
13) 1551 3

~ 2 4
C022

2

Fg

F (A24)

Taking m» as the basis we find that according to
Eq. (A10)

I1S&, I
16)=143+3& .

The Stark shifts of the various components are
given by C=36ao . (A25)

Atomic matrix elements of R R are all propor-
tional to a width C, which we take to be one-third
the value of C12, i.e.,

f01 = —f04 =3c02,

3=12= &11=

Q) 5 = —C07 =2N2,

where

fi
a)2 ———6 F

Zme

(A2la)

(A21b)

These matrix elements couple to as many as two
off-diagonal states, thus the LHS of Eq. (A2) is tri-
diagonal. In addition, the LHS forms a symmetric
matrix. We need all of the U elements in Eq. (A19)
as solutions of (A2) and U elements that these cou-
ple to through the last term in (A2). We define the
following "left-hand sides" of (A2) as
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12C—i (ha) —3m2)

3C

0

3C

8C —i ( ha) —co2)

0

0

12C—i (ha)+ 3ru2)

9C—i (hen —2cop) 2~3C 0

2&3C 7C i b,co — 2v 3C

0 2~3C 9C—i(ba&+2coq)

6C —i (ha) —m2) 3C

6C —i (Aco+cgP2)

U(0)
11

U(0)
21

U(0)
3i

U(0)
41

U(0)
55

(0)8 U65

U(0)
75

0 (A27a)

Zero order. The zeroth-order U's required by
(A19) are found by inverting

(1)
U5)

(1)
U7)

(0)'—m22U5)

0
(0)'

2a)22U7)

, j=5,6. (A28b)

We will also require first-order contributions from
terms that couple through different magnetic quan-
tum numbers. We will need

The solutions of U' ' with column indices (s) equal
to 2 and 6, respectively, are found from Eq. (A27a)
with the RHS's of (A27a) equal to

0
0

and 1 (A27b)

0 0,

respectively.
First order. In first order we have

(1)

(1)
Ui2, )

(0)' (0)'
36Usj +15U6)

m —1
(0) (0)'

015 6j + 36U7j

(1) (0)'
Ui) 15 U5j

fl) (0) (0)
U2) a)15 U5) +a)36U7J

w —1
(1) — ~ (0)' (0)'

U3) u36U6) +ra)15U7)
(1) (0)'

U4) ~15U7)

, j=56

j=5,6

U(1)
li

(1)
U2;

U(1)
3t

(1)
U4;

(0)—3u22U1;
(0)—a)22U2;

(0)'
a)22U3;

(0)'
3~22 U4i

i =1,2 (A28a)
U(1) ( U(o)'+ U(o)')

U4 = 8~6~(U2 +—U3 )
(1) 1

- (0)' (0)'

(i)
~51(U3 +U4(0)' (0)')

(A28d)

i =1,2.

Second order. The required second-order U elements are seen to be

U(2)
1l

U(2)
2l

U3;
=A

U(2)
4i

( 1 )' ( 1 )'—3a)22 U 1; —2n)15 U5;
(1)' (1)' (1)'—e22U —2a)15U5; —2a)36U6;

( 1 )' ' ( 1 )' ( 1 )'
22U3i —236Ua —215 U7&

(1) ' (1)'
3a)22 U4; —2a)15 U7

i =1,2 (A29a)
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and

U(2)
5j

U(2)
7J

( 1 )' ~ ( 1 )' ( 1 )' ( 1 )'—222Usj —51( U1j + U2j ) —63 U11,j
63( U2j + U3j ) ~51{U 1 1 j + U12j )

( 1 )' ( 1 )' ( 1 )' ( 1 )'

( 1 )' ( 1 )' ( 1 )' ( 1 )'
2~22 U7j ~51( U3j + U4j ) ~63 U12,j

j=5,6 . (A29b}

The line-shape correction is found by inserting the derivatives with respect to Am of solutions of (A 17) in
(A28), taking derivatives in (A28) and inserting into the RHS of (A29), and replacing the U„', 's in Eq. (A 19) by
the results of Eq. (A29).

3. Lyman tII

The line corrections for Lyman-5 found from Eq. (A 1 ) is

~s(~)= «( —, [4(U&& —Us& )+Uz2 —U42 +2(Uiz + U2i —U4i —U52 ))(2) (2) (2) (2) (2) (2) (2) (2)

3m

+4[0.301(U66'+ U96') +0.199( U77 + Us7 )+0 245( Upj7 + U76 + Us6 + U97 )] ) . (A30)

[
soo)+(-,' )'"

~

sio)+(-,' )'"
~

52o&
5

+
i
530)+

i
540),

10 70

~

soo)+
~

sio& —(
—„)'"

~

s2o)
5 10

+(-')'"
~

s3o& —( —')'"
~

54o&

i
soo& —(-, )'"

i
52o&+( —,", )'"

i
54o&,

5

i6),
i
10)

i

si+i)+(-', )'"
i
s2, +»

5[9), [13)

[7),
[
ii)

[8), [
is)

i
14),

i
17)

i
16),

i
19)

+( io
)'"153 +1&+( i. )'" l

54 +1&

(A3 1)
=(—)'i

F

51,+1)+(—„)'i
i
52, +1)

~

s3, +i)+(—,)'"
~

s4, +i),
5

=( —, )'i
i
52, +2)+

i
53, +2)

2

+( —,', )'"
~

s4, +2&,

i
15),

i
18) =( —, )'

i
52, +2) —( —,)'i

i
54, +2),

i20&, i22&

i
21),

i
23)

1
i
53, +3)+

i
S4, +3),1

2
'

2

~

24),
~

25) =
~

S4, +4) .

The time development operator matrix elements in

Eq. (A30) are found with respect to the parabolic
wave functions defined in Eqs. (A3 1}:

Q)6 = —6)9=36)7,

N 2 = —6)4 =60 14= —6) 1 6 =2~~,

Q)20= —6321 =N7,

where the least nonzero shift is given by

The diagonal elements of m possess the same pre-
factors as in Eq. (A32a) with

15 fi
Fii2 Zme

The various off-diagonal elements of ~ possess two
distinct values. We represent these elements as

ci) 16
———1 5 Fq

Zme

fi
~37———1 8.38 Fg .

Zp?l e

Using ~16 as a basis we find that
2

F
2

(A34)

The matrix element of R.R between states
~

1) and

~2) is

C12 ——225a 0 =C . (A36)

All other elements of R R are proportional to C.
The LHS matrices of Eq. (A 1 ) that we require are

given by Eqs. (A37):

With these definitions we find the Stark shifts of
the various components as

N1 = —035 =4607,
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5C —i (Acr) —4co7)

7
—,C —(Ace —2co7)

3—C
2

3—C2

3C—i Ace

3—C
2

3—C
2

—,C —i (Aco+2co7)

5C —i (Aco+4co7)

4C —i (Ace —3co7)

(
3 )1/2C
2

( ) 1/2C
2

3C—i (Aco —co7)

3—C
2

3—C
2

3C —i (4~+co7)

(
2 )1/2C
3

( ) 1/2C
2

4C —i (Ace+ 3co7)

(A37)

3C—i (Aced —2co7) ( —, )' 'C 0

(-')' C —,C —i hen (-, )' C

0 ( —, )'~'C 3C i (b ~+—2~7)

—~' ( h~ —~k ) Ukl + QCk, U t = &kl
(0) (0) (A38)

for all of the matrix elements listed in Eq. (A30) ~

These are solutions of

Zero order. In analogy with Eq. (A27a) for
Lyman-y, we solve

U(1)
li

(1)
U2i

(1)
U4i

U(1)
5i

(0)'—4u77U1;
(0)'—2~77 U2;

0
(0)'

2co77U5;

(0)'
4co77 U5;

i =1,2 (A40a)

U(0)
11

(0)
0

U31 —0
U(0) 0

41

U(0)
51

(0)

U76 0
(0)

B U(0) 086

Uo 0
76

(A39a)

0 0
1

1
0 and 0

0
0

(A39b)

respectively.
First order. In first order we have

As before solutions of U' ' with s =2 and 7 are,
respectively, found from (A39a) with the RHS's of
(A39a) replaced by

and

(1)
U6J

(1)
U7)

Us)
(1)

U9J

—3io77 U)6
(0)'

(0)'—co77U7J

(0)'
77Usj

(0)'
3co77U9)

, j=6,7 . (A40b)

(1)
U14,)

(1)
U15,)

(1)

(0)' ' (0)'
~73 U6) +61 U7)

73( U7j + Usj
(0)' ' (0)'

~61 Usj +c073 U9)

j=6,7

(40c)

For contributions in first order due to coupling dis-
tinct magnetic quantum numbers, we solve Eq.
(A14) for all needed elements,
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(1) (0)'
Ulj

(1} (0)' ' (0)'
U2j ~16U6j +~37U»

U3& ———2A ii)37(U7j +Usj )
(1) 1 (o)' {o)'

(1) ~ (0)' ~ (0}'
U4j +37Usj +16U9j

(1) (0)
Usj

and

U6; ~61(U1; +(1) (0)'

U(1) iO73(U2 +
USl 73( U3i +(1) = — (0)'

(1) (0)'
U9; A@61(U4; +

U(0)')

U(o)')

U(0)')

U(o)')

i=6,7 .

Second order. The required second-order U elements are found as

U(2)
li

U(2)
2l

U' '
3l

U(2)
4i

U(2)
sl

( 1 )' ( 1 )'
4@77U1 —2u16U6.

( 1 )' {1 )' ( 1 )'—2m77U2; —2(u16U6; +co37U7;

—2co37(U7; +U8; )
( 1 )' ( 1 )'

(1)' (1)' (1)'
2a)77U4; —2(a)37US; +co16U4; )

( 1 )' ( 1 )'
@77Us- —2&16U9.

i =1,2 (A41a)

(2)
U6j

(2)
U7j

Usj
U(2)

9j

377U6j 61( U1j + U2j )+73U14j( 1 )' ' ( 1 )' ( 1 )' ' ( 1 )'

( 1 )' ' ( 1 )' ( 1 )' ( 1 )' ' ( 1 )'
~7~U7 ~73(Ut +U3 +Uts )+mstUt4

( 1 )' ( 1 )' ( 1 )' ( 1 )' ' ( 1 )'
77Usj —~73(U3j +U4j + Uls, j )+~61U16j

( 1 )' ' ( 1 )' ( 1 )' ( 1 )'
3~77U9J' ~61( U4j + Usj )+~73 U16,I

, j=6 7. (A41b)

The second-order line shape is then found by inserting (A41), (A40), and (A39) in Eq. (A30).
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