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Density, longitudinal, and transverse-current correlation functions for hard spheres at
various densities and wavelengths have been generated by computer simulation and com-
pared with both the generalized Enskog kinetic theory and wavelength-dependent hydro-
dynamics. It is shown that even for dense gases the generalized Enskog kinetic theory is
quantitatively accurate in describing the thermal fluctuations at finite wavelengths and fre-
quencies, as is wavelength-dependent hydrodynamics, as long as the wavelength is greater
than the mean free path. At liquid densities neither theory can account for the viscoelastic
relaxation effects, directly observed in the transverse-current correlation function by shear-
wave propagation, at a wavelength somewhat above the first diffraction maximum, Howev-
er, wavelength-dependent hydrodynamics quantitatively describes the neutron scattering
function at wavelengths from this point (above the first diffraction maximum) through the
diffraction maximum (where the de Gennes narrowing occurs) to the mean-free-path limit.
Furthermore, viscoelastic effects in the long-wavelength regime can be accounted for by in-
troducing into hydrodynamics time-dependent transport coefficients. At still longer wave-
lengths, viscoelastic relaxation times become short compared with hydrodynamic relaxation
times and ordinary hydrodynamics with constant transport coefficients describes the neu-
tron scattering function.

I. INTRODUCTION

The dissipation and propagation of spontaneous
fluctuations in a classical fluid at thermal equilibri-
um can be experimentally investigated by neutron
and light scattering or simulated by computer
molecular dynamics. Simulation has the advantage
that it produces results of a specified accuracy for a
known simple intermolecular potential and, hence,
lends itself well to a quantitative test of nonequili-
brium theories and models. These theories' of the
dynamic processes in fluids have been developed ei-

ther at the macroscopic or continuum hydrodynam-

ic level, ' or at the molecular or kinetic level. '

The purpose of this paper is to establish the domains
of validity of these two reference theories and the
quantitative differences in the intermediate distance
and time regime which more complex theories must
take into account.

In either of these two theories a generalized ver-
sion needs to be employed since we want to predict
the time evolution of a wavelength-dependent prop-
erty rather than just the time evolution of a correla-
tion function in the long-wavelength limit which

leads to an ordinary transport coefficient. The gen-
eralized or wavelength-dependent kinetic theory is
based on Enskog's modification of the Boltzmann
equation which takes into account the finite size of
the hard spheres relative to the average distance be-
tween particles. ' The accurate numerical solution
of this generalized kinetic equation is elaborate and
has been given in a separate paper. Since it was pre-
viously found that the generalized Enskog model
predicts quite accurately (for all but very dense
fluids) the generalized transport coefficients, it can
be anticipated that the neutron scattering function
will be quantitatively reproduced at all but liquid
densities. Even at liquid densities, at sufficiently
short wavelength, the generalized Enskog model be-
comes exact since under these circumstances corre-
lated collisions can be neglected. Attempts to ex-
tend kinetic theory through consideration of such
correlated collisions will not be considered here.

Hydrodynamics is generalized only to the extent
of including wavelength-dependent thermodynamic
and transport coefficients so as to predict the decay
of the fluctuations. The term generalized hydro-
dynamics implies both wavelength- and frequency-
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dependent transport coefficients. If we were to intro-
duce the frequency dependence of the transport
coefficients as well we would have a tautology since
such frequency- and wavelength-dependent trans-
port coefficients were themselves derived from the
decay of the various types of Auctuations. Indeed,
the objective of utilizing only wavelength-dependent
transport coefficients is to clearly delineate the re-
gion in wavelength where the time dependence of
the transport coefficients can be neglected; namely,
the region where the hydrodynamic relaxation times
are much longer than the relaxation times associated
with the autocorrelation function of the various
transport coefficients. This spatially nonlocal hy-
drodynamics has the further limitation that it is
only applicable for fluctuations of small amplitude
since the wavelength-dependent properties were de-
rived from a linear theory. Furthermore, the contin-
uum model must be expected to break down unless
tha wavelength is at least larger than the mean free
path. Since thc mean free path at liquid densities is
an order of magnitude smaller than the diameter of
the particle, it appears optimistic to expect the con-
tinuurn approximation to hold to such small dis-
tances; however, for dynamic properties the mean
free path is the relevant length scale.

Previous attempts have teen made to introduce
wavelength dependence into hydrodynamics but
only in a limited sense. The most obvious way is to
introduce wavelength-dependent thermodynamic
properties but ignore the wavelength dependence of
the transport coefficients. ' This is accomplished
through the static structure factor and the thermo-
dynamic properties that can be derived from it, such
as the isothermal compressibility and the sound
speed. This procedure, however, ignores the wave-
length dependence that arises at finite wavelength
through the coupling of energy and density fluctua-
tions, This coupling leads to a transport mechanism
whose effect vanishes at long wavelengths, but at
finite wavelengths affects such thermodynamic
properties which in the long-wavelength limit be-
come, for example, the temperature derivative of the
density or the heat capacity at constant pressure.

Some of the details of the computer molecular-
dynamics calculations are given in Scc. II. Section
III gives the comparison to the two theories at a
series of densities, wavelengths, and frequencies in
graphical form and discusses the discrepancies.
This comparison is restricted to hard spheres since
only for them are the generalized kinetic theory and
generalized transport coefficients presently available.
In Sec. IV the question is addressed as to whether it
is possible to detect the effect of the long-time tail of
the transport coefficients in the neutron scattering

function through thc dependence of the sound speed
on wavelength. In Sec. V the transverse-current
correlation function is described. In the Appendix
the intermediate-scattering function and the
transverse-current correlation function for hard
spheres, as calculated by molecular dynamics at two
densities and a few wave numbers, are tabulated.

II. MOLECULAR-DYNAMICS SIMULATION

Table I specifics the three density states investigated

TABLE I. Range of variables investigated.

v/vo no g(o) I/o

10

1.6

0.144 1.21 1.31

0.471 2.06 0.23

0.884 4.98 O.OS

0.41'
S.36
0.62
0.31b

19.71
0.76
0.38'

100.2

11.6
0.9

44.

14
162.0

1.2

'The two entries for each density correspond to the
minimum and maximum values investigated in the simu-
lation study for 500 particles.
Minimum value for 4000 particles.

The simulations were carried out on a system of
N particles contained in a periodically repeated cu-
bic cell. For most of the runs N was 500, but a few
runs at N=4000 were also carried out to check the
number dependence on a system that is of exactly
twice the linear dimension and thus contains exactly
commensurate wavelengths. The length of the cube
was chosen to be unity and the hard-sphere diameter
0 was varied to give the desired density. It is con-
venient to specify density by the volume ratio V/Vo,
where Vo ——cr /v2 is the volume per particle at
close packing. The relation between density and
V/Vo is therefore

vZ
na

V/Vo

The largest wavelength of the fluctuations that
can be studied is, of course, the cell dimension itself.
The wave number k is related to the wavelength
A. by k=2m/A„ It is convenient to measure the
wave number in terms of ko, so that the smallest
value of kcr is

' 1/3

min k0.=2m
NV/V,
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and the range of kyar that was studied. That range is
comparable to the one that is covered by neutron
diffraction experiments on liquid argon; namely,
from about 0.3 to 20.

The highest-density state in Table I is close to the
freezing density of the liquid, V/V0 ——1.50. The in-
termediate density, V/V0 ——3, is in the dense fluid
region since, in the presence of a small attractive po-
tential, the liquid-gas critical transition would occur
at about V/V0 ——5. By the same token the low-

density state, V/V0 ——10, is at about half the critical
density; thus, it is still far from being a dilute gas.

Another characteristic length in the system be-
sides that determined from V/V0 or 0. is the col-
lision mean free path given by I = [&2rrno g(rr )]
where g(cr) is the pair distribution function at con-
tact. Both l/cr and g(0.) are also given in Table I.
Whereas kyar is a more natural dimensionless variable
to express structural correlations, kl is a more ap-
propriate variable for characterizing dynamic corre-
lations. A small kl means that collisions are fre-
quent, a necessary condition for the validity of hy-

drodynamics, while a large kl means that collisions
are rare and unimportant compared to free-flow ef-
fects. Furthermore, the collision parameter

y =1/W2kl is often used in kinetic-theory calcula-
tions" to indicate whether the hydrodynamic regime

(y )3), the kinetic regime (y -1),or the free-particle
regime (y (3) is the appropriate model.

In the simulation procedure the desired time
correlation function, for example, the intermediate-
scattering function F(k, t), defined as

F(k, t)= —gexp[ik [R~ —R~(t)]]
p~q

where RJ (t) is the position of particle j at time t and
the angular brackets denote ergodic average, was
generated at prescribed k values and at about 100
fixed time intervals. The results were then averaged
over a number of time origins, separated by about
one mean-collision time. The Enskog mean-
collision time

rE = [4~17tl 0' vpg(o')]

is introduced for the purposes of measuring time in
a dimensionless variable s =t/~E, where vo is a velo-
city defined through v0 ——k&T/m. The length of a
run was typically 4X10 collisions per particle for
both the 500- and 4000-particle system. The N
dependence of the results is given by the comparison
shown in Fig. 1. The differences are almost within
the combined statistical uncertainties.

Statistical fluctuations in the time correlation
functions have been estimated at various times along
the decay of each function. By assuming that the

1.0
t

t
I

0.8

0.6

0.4

0.2—

0.0—
10 20 30 40

S

FIG. 1. Normalized intermediate-scattering function
F(k, s) of a hard-sphere fluid at V/Vo ——3 and ko =0.62
for 500 (circles) and 4000 (triangles) particles. Arrow in-

dicates the time for a sound wave to travel the length of
the 500-particle cell. Solid line represents the kinetic-
theory result and the dashed line represents the hydro-
dynamic results. Error bars are indicated.

successive average values of the function over 10
collisions can be treated as uncorrelated, an absolute
accuracy of the initially normalized correlation
function of typically 0.02 or less was established.
This uncertainty is indicated by the error bars in all

figures.
The frequency spectra are obtained by Fourier

transforming the time functions and are expressed in

terms of the dimensionless frequency variable
N =N7E/ke. Because the time correlations were not
smoothed before transforming, the frequency spec-
tra show structure due to the noise present in the
correlation functions as well as that due to trunca-
tion of the data.

As input for the hydrodynamic theory, the gen-
eralized thermodynamic properties and the
wavelength-dependent transport coefficients are re-

quired. These have previously been determined for
hard-sphere systems. As input for the kinetic
theory, the generalized thermodynamic properties
derived from the static structure factor S(k) [the
Fourier spatial transform of the pair distribution
function g(r)] are needed. The transport coeffi-
cients are determined by the kinetic theory itself
and, hence, consistent with that theory, assume the
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Enskog values. S(k) can be obtained from the ini-
tial value of the intermediate-scattering function.
The values generated in the present study are com-
pared with the Percus-Yevick approximation' in
Fig. 2. The agreement is generally within a few per-
cent except at the highest density ( Vf Vo ——1.6) and
small ko, where S(k) is itself small. As is well
known, Percus-Yevick is in error by about 20% in
that region. Figure 2 also provides a useful guide to
structural effects on fluctuations. The region of
wave number where structural effects are expected
to be strongest is near the first peak, which is called
the first diffraction maximum. In the long-
~avelength limit S(k) approaches the value deter-
mined by the compressibility, as demonstrated in
Fig. 2.

III. DENSITY CORRELATION FUNCTION

The Fourier transform of the intermediate-
scattering function

S(k,co) =I dt e'"'F(k, t)

is the dynamic structure factor, the quantity directly
measured in an inelastic neutron or light scattering
experiment. Much of the present knowledge about
the behavior of S(k,~) and F(k, t) has been derived
from neutron scattering measurements' ' and
molecular-dynamics simulations on fluids with con-

0.03—
)(

FIG. 2. Static structure factor S(k) of a hard-spheres
fluid at three densities indicated by the values of V/Vo.
Molecular-dynamics results {circle) are compared to the
Percus-Yevick approximation (solid curve). Comparison
at the highest density (V/Vo ——1.6) and small ka values is
shown on an enlarged scale as an insert. Statistical uncer-
tainties of the data points without error bars are smaller
than the size of the circles. The cross represents the re-
sults of a molecular-dynamics calculation of the compres-
sibility.

tinuous potentials. ' ' This neutron data cannot be
used to make an unambiguous test of dynamical
theories that apply only for hard spheres and, hence,
there is a need to generate molecular-dynamics data
on F(k, t) and S(k,co) for hard spheres.

The behavior of F(k, t) for hard spheres at three
densities and covering a wide range of wavelengths
is shown in Fig. 3. In each case at the smallest ko.
value, the intermediate-scattering function decays in
an oscillatory manner, the oscillations being much
more pronounced at the two lower densities. Since
the oscillatory behavior signifies a propagating col-
lective excitation, it is apparent that density fluctua-
tions or sound waves are more strongly damped at
liquid densities. As can be seen at intermediate den-
sities for the same value of the wavelength, collec-
tive mode propagation can be better sustained than
at either lower or higher densities. Hence, lack of
experimental confirmation of a propagating mode in
liquid argon suggests that such confirmation should
be attempted at intermediate densities. The ob-
served monotonic decay of F(k, t) at all densities at a
wavelength corresponding to ko=1.52 (some 80
times the mean free path at liquid densities or four
times the diameter of the hard-sphere particle) indi-
cates that the propagating mode is effectively com-
pletely damped at that and all smaller wavelengths.

At liquid densities the decay of F(k, t) is seen in
Fig. 3(a) to slow down dramatically at wavelengths
close to the first diffraction maximum. This effect,
known as de Gennes narrowing in neutron scatter-
ing, ' arises from the strong spatial correlations in
this wavelength region and is an indication of the
sensitive dependence of dissipative processes on the
fluid structure. As the wavelength coincides with
subsequent peaks in the static structure factor, cor-
responding to further neighbor distances, slowing
down effects in F(k, t) can also be expected but not
as severe,

Kinetic theory, as can be observed in Fig. 3(a), ac-
counts remarkably well for the slowing down effect.
This can be traced to the dominance of the mean-
field term in the generalized Enskog kinetic equa-
tion at the diffraction maximum. The collisional
term, which the kinetic theory approximates, makes
only a relatively minor contribution at the wave-
length of the diffraction maximum; however, that
term makes the dominant contribution on either side
of the diffraction maximum, which accounts for the
observed discrepancies there. Nevertheless, the ki-
netic theory outside the diffraction-maxima region
correctly predicts the general trend of the increasing
rate of correlation function decay with decreasing
wavelengths.

The comparison of the kinetic theory with the
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molecular-dynamic calculations is consistent with
previous results. Previously it was found that the
Enskog model gave quite accurate results in the
long-wavelength limit at all but liquid densities, that
is, for the transport coefficients themselves. Since
its extension to finite wavelengths should lead to at
least as accurate results, it was found in the preced-
ing paper that the generalized transport coefficients
were also accurately evaluated at all but liquid den-
sities and, hence, so should the neutron scattering
function, as is confirmed in Figs. 3(b) and 3(c). At
liquid densities the wavelength-dependent kinetic
transport coefficients, most importantly the viscosi-
ty, are too small in magnitude due to the neglect of
the slow collective readjustment of the configura-
tional liquid order in response to a stress fluctuation
as the solid phase density is approached. This slow
decay of the stress autocorrelation function at liquid
densities has been colloquially dubbed the molasses
effect. Its neglect, hence, leads to a too fast decay of
F(k, t) by the kinetic theory, as noted in Fig. 3(a).

At sufficiently short wavelength, however, this
collective phenomena is eliminated since only a few
particles are involved in the fluctuations and thus
the kinetic theory becomes exact again. This is
shown in detail in Fig. 4, which not only illustrates
that for wavelengths of a few mean free paths kinet-
ic theory is accurate, but that for wavelengths less
than one mean free path the free-streaming approxi-
mation becomes quantitative. In that limit, col-
lisions can be entirely neglected and F(k, t) ap-
proaches a Gaussian function, exp[ —(kvot) /2].
That limit, ko & 100 for V/V0 ——1.6, is unfortunate-

ly beyond the reach of normal thermal neutron
scattering experiments. However, the region where

F(k, t) decays slower than a Gaussian and thus
S(k,co) is, through the collision mechanism, nar-
rower than the free-particle result has been observed
in neutron scattering studies on pressurized hydro-
gen for the self-correlation function. ' '

At the other extreme of long wavelengths, agree-
ment with hydrodynamics (including the observa-
tion of propagating modes) can be expected and is
demonstrated in Fig. 5. Kinetic theory also reduces,
at sufficiently long wavelength, to the hydrodynam-
ic result, however, with the kinetic values of the
transport coefficients. Since these are accurate ex-
cept at the highest density, this accounts for the
comparisons made in Fig. 5. At V/V0 ——1.6 kinetic
theory predicts a slightly more pronounced collec-
tive mode, characterized by a weak shoulder, pri-
marily because the shear viscosity is too low by
40%, leading to less damping. On the other hand,
the disagreement observed for the hydrodynamic
theory with constant transport coefficients at low
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FIG. 4. Normalized intermediate-scattering function

F{k,s) of a hard-spheres fluid at V/V0 ——1.6 and high re-

duced wave number k0=25 (closed circles), 50 (open

circles), and 100 (squares), compared to kinetic theory

(solid curve) and wavelength-dependent hydrodynamics

(crosses). Dashed curves correspond to the free-streaming

solutions.

density is due to the neglect of the wavelength
dependence of the fluid properties when the mean
free path is larger than the diameter of a particle.
At higher densities at the same wavelength the mean
free path is considerably smaller than the particle di-
ameter and, as shown in the preceding paper, the
fluid properties deviate, then, little from their long-
wavelength limit. Correcting for the wavelength
dependence leads to good agreement with molecular
dynamics even at the lowest density.

Ordinary hydrodynamics at the highest density
disagrees with molecular dynamics beyond the
very-long-wavelength region in that the damping at
short times is overestimated by the shear viscosity.
This indicates that the relaxation of the density and
shear fluctuations are comparable, so that it makes
sense to introduce a time-dependent viscosity which
interpolates between the Enskog value relevant at
short times and the full value at long times. This is
demonstrated in Fig. 6, where the intermediate-
scattering function at high density is plotted on an
expanded scale and is compared with two hydro-
dynamic calculations employing the two different
viscosities. The figure shows that hydrodynamics
using Enskog coefficients corresponds best with
molecular dynamics at short times, while the hydro-
dynamic calculation which uses the correct high-
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FIG. 5. Dynamic structure factor S(k,u) of hard-spheres fluids at low wave number and three different densities, (a)
V/Vo ——1.6, ken=0. 38, (b) V/Vo ——3, ko =0.44, (c) V/Vo ——10, k+=0.41, by molecular dynamics (circles) compared to ki-
netic theory (solid curve) and hydrodynamics (dashed curve).

density values for the transport coefficients corre-
sponds best with molecular dynamics at long times.
At intermediate times, an interpolation is required.
In this density and wavelength regime, one, hence,
needs a nonlocal in time theory, but spatial nonlo-
cality is not required. Such time-dependent trans-
port coefficients are readily available from the time
evolution of the autocorrelation functions.

I
1

I
1

I

0.3—
Xo

Q ow0 ~~

0.2—
12 16 20 24

FIG. 6. Intermediate-scattering function for hard
spheres at a density corresponding to V/Vo ——1.6 and a
wave number ko =0.76 as a function of mean collisions s.
Molecular-dynamics data are given by the circles, the
upper dashed curve represents hydrodynamics using the
correct values of the transport coefficients, and the lower
dashed curve represents hydrodynamics using Enskog
values for the transport coefficients.

On the other hand, spatially nonlocal hydro-
dynamics, where the fluid properties are only wave-
length dependent, is applicable whenever the hydro-
dynamic relaxation times 1/k v are longer than the
dissipative relaxation times of the transport process-
es, particularly the kinematic viscosity v (see Figs. 3
and 4). For hard spheres this leads to the accurate
prediction of S(k,co) at all wavelengths greater than
the mean free path by wavelength-dependent hydro-
dynamics except at the highest fluid densities. At
high densities the viscous relaxation time is quite
long and the hydrodynamic relaxation time is not
long enough unless ko is greater than 5 or less than
0.3. As Figs. 3(a) and 4 show, from ko. of 5 to the
highest investigated value of 100, agreement with
molecular dynamics is obtained. In that region of
wavelengths the viscosity reaches its limiting value
in the order of a collision and hydrodynamic relaxa-
tion times are long in comparison. At long wave-
length, below ko. values of 0.3, 1/k v becomes suffi-
ciently large so that it exceeds the slow viscous re-
laxation time (of the order of 100 coHisions); in that
case ordinary hydrodynamics with wavelength-
independent fluid properties works. As pointed out
in the previous paragraph, in the region of ko. be-
tween 0.3 and about 1.0, at high density, the two
relevant relaxation times are comparable so that the
time or frequency dependence of the fluid properties
must be introduced to obtain a quantitative theory;
however, the wavelength dependence can be ignored.
In the region of ko. between 1 and 5 both nonlocali-
ty in space and time are required to express the de-
cay of fluctuations. If such wavelength- and
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frequency-dependent fluid properties were intro-
duced into fluctuating hydrodynamics, then F(k, t)
would be exactly reproduced, since such fluid prop-
erties were determined from F(k, t) itself. It is in
this region between ko of 0.3 and S and time scales
between 10 and SO collisions per particle that viscoe-
lastic phenomena are observed. Because of the
overwhelming importance of the wavelength depen-
dence of the viscosity, introducing the wavelength
dependence of fluid properties only through the
thermodynamic properties derivable from S(k) leads
to only insignificant improvements over the predic-
tions of ordinary hydrodynamics.

'

IV. LONGITUDINAL CURRENT
CORRELATION FUNCTION

An alternative method by which to represent the
density fluctuations is in terms of the longitudinal
current correlation function JI(k, t) defined as

jt(k, t) =—g tv&(t)exp(i k [R~ —R~(t)] l

where U,' is the velocity component of particle i
parallel to k. By virtue of the equation of continuity,
JI can be simply expressed in terms of the density
correlation function

1 d
JI(k, t) = — F(k, t)

k dt

or equivalently in frequency space as

JI(k,co) =—S (k, co)
k

The co factor weights the high-frequency regime of
S(k,co) more heavily while suppressing the impor-
tance of the low-frequency behavior. For this
reason J~ is convenient for the discussion of propa-
gating modes.

The time correlation function JI(k, t) has a heavily
damped oscillatory behavior as seen in Fig. 7. It can
again be observed that ordinary hydrodynamics
overestimates damping and kinetic theory underesti-
mates damping. It is convenient to discuss the
characteristics of propagating modes in terms of the
frequency and width of the peak in JI(k, co). Such
results in terms of the reduced frequency are shown
in Fig. 8. The scatter in the molecular-dynamics
data can be attributed to the error incurred by
Fourier transforming the raw data for JI(k, t) as well
as some uncertainty in locating the peak position of
a broad spectrum. At small k, the peak frequency
varies with k as ck, where c is the adiabatic sound
speed. As k increases, deviation from the long-
wavelength behavior (called dispersion) sets in and,

1.0
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FIG. 7. Normalized longitudinal current correlation
function JI(k, s) of a hard-spheres fluid at V/V0 ——1.6 and
at two wave numbers (a) ka =0.76 and (b) 2.28 by molec-
ular dynamics (circles) compared to kinetic theory (solid
curve) and hydrodynamics (dashed curve).

as can be seen from Fig. 8, this occurs at wave-
lengths corresponding to ko. &1, that is, only at
wavelengths shorter than a few hard-sphere diame-
ters, consistent with earlier observations.

Furthermore, Fig. 8 shows that the dispersion in
the effective propagation speed is negative. Peak
frequencies observed in rare-gas fluids, on the other
hand, show a positive dispersion at wavelengths
larger than the peak in the structure factor, while
beyond that a sharply negative dispersion is found.
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FIG. 8. Peak position (a) and the full width at half
maximum (b) of the longitudinal current correlation func-
tion Jl(k, s) of a hard-spheres fluid at V/V0 ——1.6 by
molecular dynamics (circles), kinetic theory (solid curve),
and hydrodynamics (dashed curve).
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FIG. 9. Adiabatic sound speed as a function of wave
number for two hard-spheres systems: V/Vp= 1.6 (solid
circle) and V/Vp ——3.0 {open circles). Solid line is the re-

sult of a theoretical calculation for V/Vp ——3.0

For hard spheres no such positive dispersion has
been found at the highest density and longest wave-

length investigated, as is sho~n in more detail in
Fig. 9. The importance of finding such positive
dispersion is that it would yield evidence for the ex-
istence of the long-time tail in the autocorrelation
function of the transport coefficients in the neutron
scattering function. Since such tails could not be
observed at the highest density in the autocorrela-
tion functions for the transport coefficients them-
selves, for the largest system that could be reason-
ably investigated by molecular dynamics, it is not
surprising that they cannot be detected in S(k,co) ei-
ther; such evidence presumably can be found by in-

vestigating still larger systems at longer wavelength.
At the lower density of V/V0 ——3, the situation is

more favorable for molecular dynamics since the
velocity autocorrelation function, though not the
more crucial stress autocorrelaiion function, gives
clear evidence of a long-time tail. Indeed, as Fig. 9
shows, the data are consistent at that density with a
weak positive dispersion predicted by a theory that
takes the long-time tail into account. ' The rela-
tively large uncertainty in the data, in spite of the
rather lengthy calculation, derives partially from the
error in the graphical location of the sound speed as
the peak in the Fourier transform of the longitudi-
nal correlation function. However, determination of
the sound speed by analyzing the molecular-
dynamics data by generalized hydrodynamics led to
identical results. It should be emphasized that the
data are also consistent with a zero slope
(wavelength-independent sound speed) prediction
and, hence, it appears that only very precise data

will be able to give evidence for long-time tails in
the sound speed.

The width of the propagating mode, also given in
Fig. 8, is reasonably well accounted for by kinetic
theory even at liquid densities. The incorrect values
of the transport coefficients lead to too small a slope
in the low-wavelength behavior of the width. At
larger ko the width behaves like the damping of
zero sound. From the calculation of the width at
the two lower densities, it can be concluded that the
general dependence on ko is quite similar except
that deviations from the long-wavelength behavior
starts at somewhat lo~er ko values as the fluid den-
sity is lowered.

V. TRANSVERSE-CURRENT
CORRELATION FUNCTION

Fluctuations in the transverse-current density are
described by

J,(k, r)= —g ugu~(t)expIik [R~ —R~(t)) )

where U;" is the component of the velocity of the ith
particle perpendicular to k. Its Fourier transform
will be denoted by J,(k,u). Although this quantity
cannot be measured in a fluid by neutron scattering,
it is of considerable interest because of its funda-
mental relation to the shear viscosity. In the long-
wavelength limit J,(k, t) satisfies the diffusion equa-
tion with the kinematic viscosity (v=q/p, where p
is the mass density) as the dissipative coefficient.
Previous molecular-dynamics simulations with a
Lennard-Jones potential near the triple point have
revealed a resonant structure in J,(k,~) at ko above
—1.7 which has been interpreted as evidence of
shear-wave propagation. There exists no simula-
tion at lower densities, so it is not known whether
such excitations also appear in dense gases.

In Fig. 10 hard-sphere data on J,(k, r) at high den-
sity are shown at two wave numbers. The correla-
tion functions decay monotonically at the lowest
value of ko =0.76, but at ko =2.28, J,(k, t) sho~s a
negative region near 12 mean-collision times. This
is also about the time when persistent correlations
manifest themselves in F(k, t) (see Fig. 3). The oscil-
latory behavior in J,(k, t) already sets in at ko = 1.52
(not shown) and hence agrees well with the critical
wave number for shear-wave propagation found in
the earlier molecular-dynamics simulation. The
time at which J,(k, t) becomes negative decreases
rapidly with increasing wave number, but then
remains constant near the first diffraction max-
imum. The negative feature of J,(k, t) is not very
pronounced and appears to be qualitatively wave-
number independent. At wave numbers beyond the
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FIG. 10. Normalized transverse-current correlation function J,(k,s) of a hard-spheres fluid at V/Vo ——1.6 at two dif-
ferent wavelengths (a) kcr =0.76 and (b) 2.28 by molecular dynamics (circles) compared to kinetic theory (solid curves) and
hydrodynamics (dashed curves). At k+=0.76 the upper dashed curve corresponds to a relaxation governed by the Enskog
viscosity, while the lower dashed curve uses the correct viscosity.

Vl Q

v

1.0

0.8

diffraction peak, the decay of the transverse-current
correlation functions becomes nonoscillatory, indi-

cating that the Quid will not support shear waves at
these wavelengths.

Neither kinetic theory nor conventional hydro-
dynamics can account for the shear-wave propaga-
tion phenomenon. As Fig. 10 shows, even at the
lowest ko value, where the oscillatory behavior has
not yet set in, there is, nevertheless, a significant

0.4
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l3
C]

0.2—
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0.0
0 40 60 /

C

0 2
ko

FIG. 11. Normalized transverse-current correlation
function J,(k,s) of a hard-spheres fluid at V/V0 ——3.0 at
two different wavelengths, ko =0.62 (open circles) and
1.23 (closed circles) by molecular dynamics compared to
kinetic theory (solid curves), hydrodynamics (dashed
curves), and wavelength-dependent hydrodynamics
(crosses).

FIG. 12. Full width at half maximum of the peak in

the frequency spectrum of the transverse-current correla-
tion function J,(k, ro) of a hard-spheres fluid at V/V0 ——3.
Molecular-dynamics results (circles) are compared to the
kinetic theory (solid curve) and hydrodynamics (dashed

curve). The short-wavelength limiting value is indicated

by FP (free particle).
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TABLE II. Intermediate-scattering function
function at V/Vp =1.6.'

and the transverse-current autocorrelation

s
As

kg =0.380
lb =4. 178

F(k,s) Jt(k s)

F(k, O) J,(k, O)

kg =0.760
M =1.671

F(k,s) Jt(k s)

F(k 0) Ji(k 0

ko =2.28
M =1.233

F(k,s) Jg(k s)

F(k, 0) J,(k, O)

0
1

2
3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

1.00
0.95
0.83
0.67
0.51
0.40
0.33
0.32
0.34
0.38
0.41
0.42
0.42
0.39
0.34
0.30
0.26
0.23
0.21
0.21
0.21
0.22
0.22
0.22
0.21
0.20
0.18
0.16
0.14
0.13

1.00
0.95
0.88
0.82
0.76
0.70
0.64
0.59
0.54
0.50
0.46
0.42
0.39
0.36
0.34
0.31
0.29
0.27
0.25
0.23
0.22
0.20
0.18
0.17
0.16
0.14
0.13
0.12
0.11
0.10

1.00
0.97
0.89
0.78
0.67
0.56
0.47
0.41
0.36
0.33
0.32
0.31
0.31
0.31
0.30
0.29
0.27
0.26
0.24
0.22
0.21
0.19
0.17
0.16
0.15
0.13
0.12
0.12
0.11
0.10

1.00
0.92
0.84
0.75
0.67
0.60
0.53
0.47
0.41
0.35
0.30
0.26
0.22
0.19
0.16
0.14
0.12
0.10
0.08

1.00
0.92
0.77
0.63
0.51
0.43
0.36
0.32
0.28
0.25
0.22
0.20
0.18
0.16
0.15
0.13
0.12
0.11
0.11
0.10
0.09

1,00
0.67
0.41
0.23
0.12
0.05
0.01

—0.02
—0.04
—0.04
—0.05
—0.04
—0.04
—0.03
—0.03
—0.02
—0.02
—0.02
—0.01

'The statistical uncertainty is 0.01

discrepancy between kinetic theory and molecular
dynamics. Figure 10(a) further demonstrates the
need to introduce a time-dependent relaxation rate
into hydrodynamics by comparing the rate of relax-
ation of two hydrodynamics calculations as was
done in Fig. 6. The difficulty with kinetic theory
and ordinary hydrodynamics is most dramatically
demonstrated by the absence of memory effects
which can cause the correlation function to become
negative. A similar effect has previously been noted
for the velocity autocorrelation function at high
fluid densities, which, for a qualitative explanation,
requires the introduction into hydrodynamics of
viscoelastic behavior, that is, time-dependent trans-
port coefficients.

In the dense gas, at V/Vo ——3, molecular-
dynarnics data show no evidence of shear-wave exci-
tations. Under these circumstances kinetic theory as
well as wavelength-dependent hydrodynamics is
quantitatively accurate in describing J,(k, t), as seen
in Fig. 11. For the dense gas, the full width at half
maximum of J,(k, t) is shown in reduced frequency
units in Fig. 12. From hydrodynamics one expects
that, at long wavelengths,

J (k )
1 gk /p
~ co +(gk /p)

so that its full width at half maximum is just
2gk /p. At the lowest values of ko. the molecular-
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ka =0.308 ka =0.308
M =2.354 M =5.885

s F(k s)
hs F(k,O) J,(k,O)

ka =0.616
M =1.177

F(k,s)
F(k,O)

k+ =0.616
M =2.354

Jt(k, s)

TABLE III. Intermediate-scattering function and the
transverse-current auto correlation function at VjVo

=3 0'

dynamics results are in agreement with this
behavior. Deviation from hydrodynamics behavior,
as expected, sets in at about k0-1, the width then
changes continuously from a k dependence to an
essentially linear dependence at ko-3. At still
larger ka it decreases gradually and eventually ap-
proaches the free-particle limit.

0
1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

25
26

28
29

1.00
0.96
0.86
0.71
0.54
0.36
0.20
0.08
0.01

—0.02
0.00
0.06
0.14
0.22
0.30
0.39
0.36
0.30
0.23
0.16
0.10
0.05
0,02
0.01
0.01
0.02

1.00
0.93
0.86
0.79
0.72
0.67
0.61
0.56
0.52
0.48
0.4¹
0.40
0.37
0.34
0.31
0.29
0.26
0.24
0.22
0.20
0.18
0.17
0.16
Q. 14
0.13
0.12
0.11
0.10
0.09
0.09

'The statistical uncertainty is 0.01.

1.00
0.97
0.87
0.74
0.58
0.42
0.28
0.17
0.09
0.05
0.04
0.05
0.08
0.11
0.14
0.17
0.19
0.19
0.18
0.17
0.14
0.12
0.09
0.07

1.00
0.91
0.80
0.70
0.61
0.53
0.47
0.41
0.36
0.31
0.28
0.24
0.21
0.19
0.16
0.14
0.13
0.1 1

0.09
0.08
0.07
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APPENDIX

This appendix contains the raw molecular-

dynamics data for the intermediate-scattering func-
tion F{k,t) and the transverse-current autocorrela-
tion function J,(k, tj for 4000 particles at selected
values of ko. and two densities. Table II gives these
functions, which are normalized by their initial

values, at three ka values for V/Vo ——1.6 as a func-
tion of s /M, where s is time measured in mean col-
hsions and M is the interval in mean collisions be-

tween each entry. The statistical error is +0.01 for
all entries. Table III is the same as Table II except
at V/Vo=30
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