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The wavelength- and frequency-dependent linear transport coefficients and the
wavelength-dependent thermodynamic properties have been determined for hard spheres at
three different densities and over a region of wavelengths and frequencies that range from
the hydrodynamic to the free-streaming regime. The molecular-dynamics calculation in-
volves the evaluation of correlation functions from which the generalized properties can be
simply derived consistent with their hydrodynamic definitions. The results are compared
with generalized kinetic theory and, except for the viscosity at high density and small wave-
length, the predictions of that theory are accurate within a few percent. For the viscosity,
mode-coupling theory improves upon the predictions of kinetic theory. A single application
is given in which the dependence of the Stokes friction coefficient on the size of the massive
Brownian particle is determined using the generalized viscosity. This illustration leads one
to believe that generalized hydrodynamics quantitatively apphes on the Inolecular scale.

I. INTRODUCTION

In describing relaxation phenomena in a fluid,
three relevant time scales can be established; namely,
in increasing duration, the time of a collision, the
time between collisions, and the hydrodynamic time
scale. Both the times of a collision and between col-
hsions are easy to estimate, but the hydrodynamic
time was thought to be exceedingly long and, hence,
completely separated from the time between col-
lisions. However, some years ago molecular-
dynamics calculations on the velocity autocorrela-
tion function, for example, showed the validity of
hydrodynamics in accounting for Auid behavior
down to nearly molecular scales of time and dis-
tance. It was shown that hydrodynamics works
quantitatively in explaining the long-time tail of the
velocity autocorrelation function and the velocity
field around a moving particle at intermediate densi-

ty down to a distance scale of about three-particle
diameters and a time scale beyond about twenty
times between collisions. Thus, the gap between the
hydrodynamic theory and the theory applicable on
the time scale between collisions, namely, the kinetic
theory, is not very large. The question arises as to
how to develop a theory to cover that region.

There are two obvious ways to proceed; namely,
to extend kinetic theory to longer times or the hy-
drodynamic theory to shorter ones. To extend kinet-
ic theory beyond the time between collisions requires
abandoning the molecular chaos approximation be-
cause, beyond one collision time, correlations be-

tween particles can develop. This turns out to be an
exceedingly complex problem and despite valiant ef-
forts not much quantitative progress has been made.
To extend hydrodynamics, on the other hand, re-
quires a statlstlcal mechamcal theory which 1s valid
at long times, and which can be systematically ex-
tended to shorter times. Such a theory does not ex-
ist. Hence, the present objective is to establish the
corrections to hydrodynamics from computer simu-
lations of the generalized transport coefficients, a
process which introduces a distance and time scale
into hydrodynamics. This is done by generalizing
the empirical constitutive relations between the
Auxes and the gradients which supplement the five
conservation laws. The gradients (considered to be
generated by Auctuations in the system) have dif-
ferent spacial extent and last for different lengths of
time, and since the response of the system depends
on these factors, it calls for the introduction of
space- and time-dependent phenomenological trans-
port coefficients. How this is done is described in
detail in Sec. II and is perfectly straightforward ' as
long as the amplitude of these Auctuations is small
so that we are in the linear transport regime.

The purpose of evaluating these generalized trans-
port coefficients from the theoretical point of view
is to establish the deviations from kinetic theory and
from various dynamical models. The asymptotic
behavior of the generalized transport coefficients
both in the short-tine and the short-wavelength
(free-streaming, no collisions) limit are correctly
given by the kinetic theory. These limits are expli-
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citly evaluated in Sec. II. Also, it is shown in Sec. II
that these generalized transport coefficients, in the
long-wavelength and long-time limit, reduce to the
weil-known Green-Kubo expressions for the ordi-
nary transport coefficients. ' The Taylor expansion
of the transport coefficients in wavelength about the
long-wavelength limit does not exist, and because of
this complexity the behavior around this asymptotic
limit is not explicitly established. Instead, the trans-
port coefficients have been numerically determined
as a function of wavelength and time and compared
to various models for dense hard-sphere systems.
Foremost among these models is the Enskog theory
which extends the kinetic theory to longer time
under the molecular chaos approximation. Im-
provements on that theory involve taking correla-
tions into account, some of which are included in
the mode-coupling approach. How well these
theories fare is described in Sec. III.

More heuristic models have been proposed for the
generalized transport coefficients in alternative
forms; namely, in terms of models for the memory
function. ' The memory function is merely the
Fourier-transformed generalized transport coeffi-
cient to real space r and time t. In that space, the
generalized transport coefficient, for example, the
viscosity q, appears as a kernel, q(r —r', t —t'), in
an integral equation relating the stress to the strain.
The name memory function arises because, as the
above kernel indicates, the system no longer
responds pointwise and instantaneously to the fluc-
tuations but nonlocally both in space and time. The
need for such delays in response arises when the sys-
tem cannot adjust fast enough to the fluctuations
and, in the case of the viscosity, that leads to viscoe-
lastic behavior. Evidence for such viscoelastic
behavior has been seen in the velocity autocorrela-
tion function, in the neutron-scattering function,
and in the transverse-current autocorrelation func-
tion. ' In the velocity autocorrelation function, for
example, at high fluid densities, anticorrelation
could be observed, indicating reversal of the direc-
tion of motion. Such reversal is not possible for a
particle moving in a medium of constant viscosity
since that would only lead to slowing down. Rever-
sal is, however, possible when the medium reacts
elastically or harmonically, because the fluid cannot
flow immediately; that is, it assumes the characteris-
tics of a solid for short-time responses.

It is precisely in such applications as calculating
the velocity autocorrelation function at high densi-
ties from a generalized hydrodynamic model that
these generalized transport coefficients will be enor-
mously useful. The idea is that once these general-
ized transport coefficients have been calculated for a
given fluid, they can be used in all sorts of hydro-

dynamic problems that need to be carried to a
molecular scale. Another good example is the struc-
ture of a weak (since the theory is linear) shock.
Through the generalized transport coefficients a
length scale has been introduced into the Navier-
Stokes equations which allows a correction to the
continuum approximation to be calculated when the
phenomena to be investigated involves dimensions
comparable to atomic sizes. In the velocity auto-
correlation function, for example, the generalized
transport coefficients introduced in the hydro-
dynamic model permit predictions of the behavior to
much shorter times (including negative behavior)
than the ordinary hydrodynamic model with con-
stant transport coefficients. " V&at prevents gen-
eralized hydrodynamics from predicting the entire
velocity autocorrelation function correctly is that ar-
tificial (from a molecular point of view) boundary or
initial conditions must be introduced in the solution
of the Navier-Stokes equations. Furthermore, at
such boundaries and under those conditions, gen-
erally large gradients are present rendering linear
theories invalid. However, there is no need to go to
such very short times, since kinetic theory gives a
rigorous description.

Only one application of generalized hydrodynam-
ics, namely, the dependence of the drag on the size
of the particle, has been worked out in detail and a
brief description is given in Sec. III. That applica-
tion is highly successful; however, the example is a
very simple model that is kept linear by making the
mass of the Brownian particle infinite since then it
is slowly moving relative to the particles in the
medium. Furthermore, the molecular boundary
condition of elastic scattering corresponds exactly to
the slip boundary condition imposed on the Navier-
Stokes equations. It is then perhaps not surprising
that generalized hydrodynamics predicts the friction
constant correctly even for a Brownian particle that
is as small as the solvent particles.

II. GENERAL FORMULATION

In linear generalized hydrodynamics the Navier-
Stokes equations, which express the five conserva-
tion laws of mass, momentum, and energy, are writ-
ten in terms of the first-order deviations of the mac-
roscopic thermodynamic variables that completely
describe the equilibrium state of the system, such as
density and temperature, from their mean. ' '
These deviations or fluctuations from the mean are
both space and time, or, alternatively, wavelength
and frequency dependent. The response of the sys-
tem to these fluctuations is then expressed in terms
of a generalized, that is, wavelength- and
frequency-dependent, coefficient in the constitutive
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law that empirically relates a flux linearly to a gra-
dient or fluctuation. Thus, in the case of a tempera-
ture fluctuation, Fourier's law of heat conduction is
arbitrarily generalized to a thermal conductivity
which depends on the wavelength and frequency of
the fluctuation. Such transport coefficients are, in

principle, measurable. For example, a space- and
frequency-dependent viscosity can be obtained in a
rotating cylinder viscosimeter by changing the annu-

lar distance between the two concentric cylinders
and the frequency of rotation.

Considering for simplicity a homogeneous, isotro-

pic, single-component system, the fluctuation in
density, 5p, about the mean po is, by standard defini-

tion, '
5p(r, t) = g m~5( r —r t(t) ) pu, —

where rl(t) is the position of particle I at time t, 5 is
the Dirac 5 function, and the sum is over all parti-
cles. As far as the temperature fluctuations, 5T, are
concerned, it is frequently more convenient to deal

with the kinetic energy density fluctuation
5e=pc„5T, where c„ is the specific heat at constant
volume. The definition of 5e is then

5e(r, t) = —, g ml(ut {u2),„—)5(r —rI(t)),
I

where ut is the velocity of particle I and {u2)„ is the
mean-square velocity. To complete the description
of the conserved variables, the momentum density
J (r, t) must be introduced:

J (r, t) =+mt vt5(r rt(t))—
I

and the corresponding linearized Navier-Stokes
equations are

P+V. J=O,
Bt

aV J + V 5e+P V 5p=aV~V J,
Bt pc„

Bvx J
Bt

85m TPT 85p =~v 5e,
p Bt

where the first equation expresses the conservation
of mass; the second of longitudinal momemtum
through the introduction of the bulk viscosity g,
a=(g+ —,g)/p; the third, of transverse momentum

through the introduction of the shear viscosity g,
v=g/p', and the last, of energy through the intro-
duction of the thermal conductivity A, , ~=A, /pc„.
The symbols PT and P& stand for the derivative of

the pressure with respect to the temperature and

density, respectively.
These equations may be written in more compact

form by introducing the Fourier transform of the

space variable, the wavelength k, and the Laplace
transform of the time variable s. In Fourier-Laplace

space the procedure by which the generalized trans-

port coefficients a, v, and x must be evaluated be-

comes apparent. This is most easily demonstrated

for the kinematic viscosity v since the transverse

momentum, as is apparent from the equations, is

uncoupled from all the other transport properties.
In Fourier space and ordinary time that Navier-

Stokes equation is rewritten as

—J k(t) = —k'v J k(t),
Bt

where J k ——kg Jk is the transverse current and the

subscript k indicates the Fourier transform

J k(t) = g ml vt exp[ i k —
rl (t)] .

Multiplying the above expression over the initial

fluctuations of the transverse current, J~(0), and

then averaging over all initial values allow's the

above equation to be solved for the autocorrelation
function of the transverse current,

F~={J„'(t) J,'(O)),

where the angular brackets indicate an ensemble

average:

FTT(k, t) =frT(k) e

where it has been assumed that v is independent of k
and t, and fTr(k) =FTr(k, O).

The transverse-current autocorrelation function is

as readily evaluated by a molecular-dynamics com-

puter calculation' ' as the longitudinal current au-

tocorrelation function, although unlike the latter
which is experimentally accessible through neutron

scattering, no direct experiment for measuring trans-

verse currents has, as yet, been devised. One of our

typical computer results for FTT at a given value of
k is shown in Fig. 1 and immediately leads to the
conclusion, since FTT is negative at intermediate
time, that the above representation for FTT is inade-

quate, being always positive. This result is similar
to the previously mentioned example of the negative
velocity autocorrelation function at high fluid densi-
ties which no simple hydrodynamic model can qual-
itatively account for unless viscoelastic effects are
introduced via a wavelength- and frequency-
dependent viscosity. This then is a vivid demonstra-
tion of the need to generalize hydrodynamics.

In order to obtain the generalized transport coeffi-
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Assuming that the Fourier-Laplace transform of
the hydrodynamic equations remains of the same
form, except that the transport coeffirients are func-
tions of k and s, is sufficient to explain, for example,
the negative structure in the transverse current
correlation function. In that space, the transverse
current equation is written

(s+k'v) Jk(s)=Jk(0),

where the tilde above the variables indicates the La-
place transform. Averaging over all initial fluctua-
tions leads to

If the viscosity is now assumed, for example, to have
a simple exponential behavior, that is,

FIG. 1. Transverse-current autocorrelation function di-
vided by its initial value for a hard-spheres fluid at
V/Vo ——1.6 and ko =2.28 as a function of mean collision
time per particle ~. Statistical uncertainty is indicated.

cients, for example, the generalized viscosity, the
above equation is simply inverted. This insures the
consistency of these generalized transport coeffi-
rients with hydrodynamics. This procedure, howev-

er, makes the calculation of the generalized trans-
port coeffirients cumbersome since no direct expres-
sion by means of a correlation function is avail-
able. ' To be sure, the above procedure reduces, as
will be demonstrated later, in the long-time and
long-wavelength limit to the usual autocorrelation
function expression for the kinematic viscosity,
namely

v= J (S~(t)S""(0))dt,
mkgT

where S~ is the xy component of the stress tensor,

dS = g mtxtgt
dt

and k~ is Boltzmann's constant. It is also true, as
will be shown, that the time- or frequency-
dependent viscosity is correctly obtained through

At)= f (S~(t')S"(0))dt'
mkg T

v(~) = co '"' (S"~(t)Sxy(0) )dt
mkg T

however, the wavelength dependence is not correctly
given by introducing in the above expression
(S"",(t)SP(0) &.

"

v(k, s) =v0(k)+ vi(k)/(s +a),
it is then easy to show oscillatory, including nega-
tive, structure in the transverse-current autocorrela-
tion function provided

(~ +k'vo)'«k'«vo+

The actual generalized viscosity will be derived from
the Laplace transform of the transverse-current au-
tocorrelation function, illustrated in Fig. 1, at a
series of k values; that is, its definition is

k v(k, s) =f~/FTT(k, s) s. —

To solve for the other generalized transport coef-
ficients is a somewhat more involved task since they
are all coupled, but the principle is the same as for
the viscosity. In Fourier-Laplace space the remain-
ing conservation laws can be written in matrix form:

s —1 0 &Pk(»

Pzk s +o.k PTk /pc„6pk(s)
0 —TP, /p s+~k'

6pk(0)

5j)k(0)

5ek(0}

where the mass conservati. on law, written in the new
variables as 5pk(t) = —i k J, has been used to elim-
inate the momentum density J. The dot indicates
differentiation with respect to the time variable.
The column vector on the right-hand side of the
equation represents the initial fluctuations of the
variables. These three coupled equations may be
successively multiplied by the initial fluctuations in
the density, the rate of change of density, and the ki-
netic energy density. After these equations are aver-
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aged over the initial configurations, the resulting
nine equations can be written in the form

s —1 Q

Ppk s +ak Pgk ~/pc„

0 —TPT/p s +ok

F F~

F „

0 f" 0

f-
In this equation the matrix of hydrodynamic coef-

ficients, which are to be determined, is multiplied by
a matrix of nine correlation functions, which are to
be calculated by molecular dynamics, resulting in a
diagonal matrix of initial fluctuations which are
known in terms of the equilibrium properties of the
system. The initial square of the density fluctua-
tion, f~, can be expressed in terms of the static
structure factor S(k):

f~=l/N(5p k5pk) =m 8(k)=mksT/P~(k) .

Similarly, thermal averaging leads to

f"=k mkttT,
PP

f„=ksc„(k)T [= 2 (ksT) for hard spheres],

and frT =2f , the factor "of 2 arising because there
are two transverse modes and only one longitudinal
mode.

Even though there are nine correlation functions,
there are only three independent ones, corresponding
to three hydrodynamic modes involving three
separate transport processes. Because of the homo-

geneity and isotropy of the fluid, and because corre-
lation functions which differ only by differentiation
of the quantities to be correlated are simply rdated,
the correlation function matrix has symmetry prop-
erties leading to only three independent elements.
These three independent correlations can be taken to
be F~, F„,and F~. The others are related by

F (k, t)= F, (k, t)=F~(k,—t),
F. (k, t)= F(k, t)=F (k,—t),
F (k, t)=F (k, t), "

FIG. 2. A schematic illustration of a density fluctua-
tion in a fluid. The ordinate represents the magnitude of
the fluctuations and the abscissa represents position in the
fluid. The two curves labeled t~ and tq represent the fluc-
tuation at two different times, such that t2 —tl ——5t g O.

lated to the initial density fluctuation f~. The time
dependence of PT arises through the coupling of
Inomentum and energy transport, F~, which re-
quires introduction of a new transport coefficient, P,
which vanishes in the long-wavelength limit:
Pr ——Pr(k)+P(k, s), where P(0,s)=0. The origin of
this transport process is demonstrated in Fig. 2,
where a density Auctuation is shown at two times,
t& & t2. The figure shows that the rate of change of
the density is different at different positions. The
rate of change of the density is largest at the peak
(in the center of the fluctuation) and is zero at the
nodes. This results in a stress in the fluid which is
coupled to the kinetic energy through the P d V work
term in the energy balance equation. This stress
takes a finite time to relax and the rate of relaxation
is governed by P(k, t). In the limit that k~0 (long
wavelength) this stress vanishes. For present pur-
poses there is no need to separate out the new trans-
port coefficient and thus only PT(k, s) will be dis-
cussed.

All the thermodynamic variables must be general-
ized. This is evident from the hydrodynamic disper-
sion relation which results when the determinant of
the hydrodynamic coefficient matrix is set equal to
zero; naIDcly,

and F~=F~p. Thc thrcc corresponding transport
coefficients to be determined are then a(k, s), ~(k,s),
and PT(k, s). It may seem strange to make the ther-
modynamic quantity PT a function of time, but the
only other possibility ~ould be to make the
compressibility P& time dependent and that is incon-
sistent with the fact that Pz can be shown to be re-

T' PT(k, s)
C, (k,s)=Pp(k)+-

p pc„(k)

defines the generalized adiabatic sound speed or a
generalized ratio of specific heats, y(k, s), C, =yP&.

3For hard spheres, c„=—,k&/m and is thus indepen-
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dent of k. However, the specific heat at constant
pressure is k and s dependent:

c&(k,s) =y(k, s)c„.
The explicit expressions for the three transport

coefficients obtained by solving the matrix equation
are

s +a(k, s)k~=f ( F~F„F,z—)/D,

s +a.(k,s)k2=f~«F /D,

TPT /p = f~—«F,& /D,

where D =f~(F F,z F„F—) is the determinant
of the nine correlation functions.

A. Free-streaming limit

In order to demonstrate that the above formalism
gives known expressions for the transport coeffi-
cients, in various asymptotic limits, some of the sit-
uations will be evaluated in detail. The first such
limiting case is the free-streaming one where k ~ Do

while s remains finite. The small k expansion will
not be considered because of the complexity intro-
duced by its nonanalytical behavior. For hard
spheres, in the high k limit, collisions can be ignored
and particles move in straight lines. The correlation
functions then become, after performing averages
over the Maxwell velocity distribution,

F~(k, t)=m e

where x = —,vpk t and v p =kg T/m. Similarly,

F,z(k, t) = vox F~(k, t),—

Ffg(kit) 2 U()( 1
3

X + 3
X )Fpp(kit)

FTT(k, t) =2vok F~(k, t) .

The free-streaming transport coefficients then fol-
low from these correlation functions by Laplace
transformation followed by substitution into the de-
fining expressions. Due to the somewhat complex
functional form of the Laplace transform of the
free-streaming correlation functions (they are related
to error functions) only the asymptotic limit for
large time (s =0) is considered here. Accordingly,

D(k, O) =f~(k)F„(k,0)

and, therefore,

k v(k, 0)=frT(k)/FTT(k, O),

k ~x( k, 0)=f„(k)/F„(k, 0),
k a(k, O)

=f"(k) [F~(k, O) —F~(k, 0) /F„(k, O)]/f~(k),

TPr(k, O) f„(k) F~(k, O)

p f (k) F„(k,O)
'

k]c(k 0) 6 2

vp 5 7T

ka(k, 0) 4

vp 5 2

TPy (k,0)
2 7

pvp 5

1/2

1/2

while TPT/pvp ——1 for an ideal gas. For this reason
the adiabatic sound speed also does not approach its
ideal-gas limit CI but

C, =(—„,)' CI -0.863CI,

where CI =5Up/3. Furthermore, in the free-
streaming limit, the specific-heat ratio y= —„=1.24.

Figure 3 illustrates the approach to the free-
streaming limit for the k-dependent viscosity at long
times. The deviation from the free-streaming limit
can be observed to be much more pronounced for
the high-density system at a given kyar value. This is
a clear indication that the particle diameter times
the wave number is not a good measure of the
relevant time scale. A better indicator would be the
wavelength A, as compared to the mean free path l.
Thus, at V/Vp ——1.6, if l =k, , then ko =122, while
for the same wavelength at V/Vp ——3.0, ko. =27. At
similar values of A, /l the deviation from free stream-
ing becomes comparable; only when A, /l is sma11er
than one do the free-streaming effects predominate.

B. Short-time limit

The short-time behavior is correctly given by ki-
netic theory. The initial values (t =0, or equivalent-
ly, the zero frequency moments) of the generalized
transport coefficients are obtained from the first

where

FJ(k,O)= f FJ(k, t)dt .

These expressions are easily evaluated for the free-
streaming correlation functions:

' 1/2
kv(k, O) 2

Up
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FIG. 3. Viscosity at zero frequency divided by its free-

streaming (k = ac ) value for two densities as a function of
ko. Closed circles are for V/Vo ——1.6 and the open cir-

cles are for V/Vo ——3.0. Uncertainties are indicated by
vertical error bars.

P?lf~(0)= g (~ k'V~(0)(u,' —(u'),„)e ~)
1*9

P?l
-+

g((k v~) (u~ —(u'),„)e ~} .
P~I

The second term is easily evaluated by noting that
only the p =q terms smvive in the summation, re-

sulting in k (ks T) . The first term is more compli-
cated because uz(0) is singular for hard spheres but

can be readily evaluated as an average over the col-
lision rate I which, in turn, can be expressed in

terms of y =PV/NksT —1, since I =6yuo/Wmo
The result is

TP, (k,s = ~) k, r 3yj, (k~)
1+

P ??l ko

Similarly, the other initial values are

derivative of the corresponding correlation func-

tions. These are obtained by expanding the various

correlation functions in powers of 1/s (which is

equivalent to a small r expansion) and evaluating the

resulting t =0 statistical averages. For example,

f~(k) f~(k)F (ks)—

The first two terms in the expansion vanish

[f~(k)=f~(k) =0] because they represent the ini-

tial values of cross correlations between the con-

served variables p, p, and e. Similarly, the leading

terms for the other correlation functions are

„(k) f„(k)

k v(0)= —I' 1 —3
A(«)

kyar

k s(0)= —,I'[1—jo(ko)],

k a(0)= —,I'[1—3j)(kyar)],

where j„(x) is the nth spherical Bessel function, "
and the prime above the Bessel function denotes a
derivative (with respect to the argument). In the
low-density, free-streaming limit (I'~0, k~00),
the above initial values vanish except that Pr(k, s)
assumes its ideal-gas value as expected. To calculate
further derivatives at t =0 requires knowledge of the
triplet distribution function and, hence, can be done

only approximately at an arbitrary density.

F(k)= ~ + ~ + ~ ~ ~

(k) (k)

s s

These Taylor expansions are substituted into the
general formulas for the transport coefficients lead-

ing, for example, to

TPr(k, s = ao ) f (k)

f (k)

The value for f"(k) was given earher. The evalua-

tion of f. (k) takes some care in the case of hard-

spheres because of the discontinuity in the potential.
Starting with the expression for the correlation func-
tion I' (k, t), taking its time derivative, and setting
t =0 leads to

C. Green-Kubo limit

The generalized transport coefficients must have

the feature that, in the limit k~0, s —+0, they
reduce to the ordinary transport coefficients given

by the Green-Kubo relations. 3 The Green-Kubo
relations express the transport coefficients as auto-
correlation functions of the Auxes or double time
derivative Eof the current autocorrelation functions.
These, in turn, are obtained from the general matrix

equation, which can symbolically be written as

[s I+M(k, s)]F(k,s)=f(k),

where the matrix of hydrodynamic coefficients has
been rewritten as D(k, s) =s j +M(k, s),
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M(k, s)/s=M(k, s) in order to keep track of the s
dependence explicitly. The double time derivative I:,
symbolized in Laplace space as 6, can be written as

—G(k, s) =M(k, s)f (k)

X [1+(—s) 'M(k, s)

+(—s) '[M(k, s)]

+ ( —s)'[M(k s)]'+
= —M(k, s)f (k)[1+M(k,s)/s]

Expansion of the denominator for finite values of s
leads to

from which it can be seen by matrix multiplication
that the elements in the higher powers of M(k„s) are
proportional to higher powers of k. Therefore, in
the k~O limit, only the first two terms have to be
kept: Explicitly,

Pg~k2
—G(k,s)=

0

f"—
PP

af k"
—Pqf . T/p

PP

0

Pzf~k /pc,

ltf„k

0

PrP+~k
p

—C,f"k

PCl)

—T I'r f„k' 0
p p&u

0 0

to lowest order in k.
Identifying and collecting matrix elements leads

to

—lim 6"(k,s) =a(O, s)m v0+ —C, m v0,
k 0k4 5

—lim G„(k,s) =a(O, s)f„+— C,f„,
I'p(0, s)—lim G (k,s) = f„,k~0 k P&l)

1—lim Gzz (k,s) =~(O,s)frr
k ok~

After the k —+0 limit is taken, the s —+0 limit can
be taken; however, the 1/s singular terms on the
right-hand side have to be transferred to the left-
hand side in order to incorporate them into thc
correlation functions. This allows the limit to be
taken and is achieved by rewriting these terms as
transforms through the use of the identity

l/s= f e "dt .

This leads, in the thermodynamic limit, to the fol-
lowing transport coefficients:

f [(S~(t)S (0) & Ikey TC, ]dt,—
mk~ T

, f (g'(t)g'(0)&
e„kg T

T2
y

, f (Q'(t)P(0)&«,
p(k, T/m)

v(0, 0)= f (S"s(t)S"'(0)&dt,
mk~ T

where Q is the kinetic heat flux and J is the mass
Aux. The difference between these expressions and
the ones in the literature is due to the choice of the
ensemble' and the use of the kinetic energy heat
Aux rather than the total energy heat flux. The
latter is usually used for calculation of the thermal
conductivity.
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III. RESULTS

The simulations were carried out on a system of
500 particles in a periodically repeated cubic cell.
The length of the cube is unity and the hard-sphere
diameter 0. is varied to give the desired system den-

sity. In the simulation procedure the time correla-
tion functions are generated at prescribed k values
and at about 100 fixed time intervals. The results
are then averaged over a number of time origins,
separated by about one mean-collision time. The
length of a run was typically 10 total collisions or
4&(10 collisions per particle. At specified time in-
tervals (typically 5 &(10 collisions) the correlation
functions are stored away. It is this raw data which
is analyzed separately and from which the general-
ized transport coefficients are extracted. Similarly,

the kinetic-theory generalized transport coefficients
were obtained from the kinetic-theory correlation
functions given in an earlier paper.

The k-dependent zero frequency transport coeffi-
cients, the structure factor, the sound speed, and ra-
tio of specific heats for three hard-sphere densities
are given in Tables I—III. All the transport proper-
ties decrease smoothly with wavelength and are an
order of magnitude smaller when the wavelength is
comparable to the size of a particle, ko-2~. The
sound speed and the ratio of the heat capacity show
a dip and a peak, respectively, around values of
k0.-2m, where the structure factor S(k) has a peak,
most prominently at V/Vo ——1.6. Figure 4 shows
the features of the hard-sphere sound dispersion
curve co(k)=C, (k)k. The curves have a striking
resemblance to the phonon dispersion curves in

a(k)~
a(0)

y(k)'

TABLE I. Wavelength-dependent thermodynamic and transport properties at V/Vo ——1.6.

cr S(k)'
s(k)' Pr(k) g(k) k(k)
CI Pp(0) g(0) k(0)

0.00
0.76
1.52
2.28
3.04
3.80
4.56
5.32
6.08
6.84
7.60
8.36
9.12
9.88

11.4
12.9
13.7
15.2
16.7
18.2
19.8
25.1

50.1

60.8
76.0
91.2

0.0254'
0.0271
0.0295
0.0365
0.0509
0.0798
0.145
0.336
1.026
2.586
1.517
0.855
0.657
0.625
0.916
1.27
1.21
0.852
0.856
1.10
1.11
1.073
1.020
0.985
0.990
1.000
1.000

2.74'
2.32
1.89
1.53
1.45
1.29
1.14
1.07
1.03
1.23
1.50
1.20
1.24
1 ~ 19
1.18
1.31
1.40
1.23
1.26
1.29
1.33
1.33
1.31
1.30
1.30
1.28
1.24

8.05'
7.12
6.20
5.02
4.15
3.11
2.17
1.39
0.77
0.53
0.77
0.93
1.06
1.07
0.88
0.79
0.83
0.92
0.94
0.84
0.85
0.86
0.88
0.89
0.88
0.88
0.86'

1.00
0.84
0.66
0.46
0.36
0.23
0.12
0.053
0.021
0.035
0.069
0.059
0.072
0.066
0.053
0.060
0.070
0.061
0.066
0.062
0.066
0.066
0.066
0.066
0.066
0.064
0.059'

1.00
0.96
0.88
0.70
0.59
0.48
0.34
0.23
0.17
0.12
0.10
0.084
0.075
0.062
0.049
0.037
0.033
0.028
0.024
0.021
0.018
0.013
0.0048
0.0039
0.0029
0.0024
0

1.00
0.79
0.53
0.36
0.27
0.18
0.14
0.10
0.064
0.046
0.040
0.036
0.033
0.030
0.024
0.018
0.016
0.015
0.013
0.011
0.0088
0.0069
0.0029
0.0023
0.0018
0.0014
0

1.00

0.85
0.62
0.46
0.33
0.19
0.12
0.055
0.036
0.036
0.035
0.039
0.035
0.026
0.016
0.014
0.014
0.012
0.011
0.0085
0.0062
0.0023
0.0021
0.0015
0.0013
0

'Statistical error is 3%.
Statistical error is 6%.

'ko =0 values were obtained frown the hard-sphere equation of state.

2S'

Pz.( 00 )/Pz (0)=0.6Nkg T/PV.
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a(k)b
a(0)

S(k)'

TABLE II. Wavelength-dependent thermodynamic and transport properties at V/Vp ——3.0.

Cs(k)' Pz.(k)b ~(k)b g(k)bko y(k)'
Cg Py(0) g(0) A,(0)

0.00
0.62
1.23
1.85
2.46
3.08
3.70
5.55
6.16
6.78
7.39
8.01
8.63
9.86

10.5
11.1
12.3
13.6
14.8
16.0
20.3
40.7

0.144'
0.149
0.165
0.193
0.230
0.303
0.415
1.18
1.35
1.26
1.11
0.975
0.905
0.892
0.933
1.00
1.07
1.05
0.965
0.950
1.00
0.992
1.000

1.89'
1.85
1.53
1.39
1.28
1.31
1.26
1.53
1.37
1.34
1.35
1.33
1.57
1.24
1.27
1.26
1.29
1.34
1.22
1.26
1.27
1.27
1.24

2.80'
2.73
2.36
2.08
1.81
1.61
1.35
0.88
0.78
0.80
0.86
0.90
1.02
0.91
0.90
0.87
0.87
0.87
0.86
0.89
0.87
0.87
0.86'

1.00
0.96
0.72
0.58
0.44
0.40
0.32
0.27
0.19
0.21
0.22
0.23
0.24
0.21
0.21
0.21
0.21
0.22
0.19
0.21
0.21
0.21
0.20

1.00
0.96
0.78
0.69
0.58
0.47
0.40
0.22
0.18
0.16
0.14
0.13
0.12
0.10
0.091
0.085
0.075
0.068
0.059
0.055
0.041
0.020
0

1.00
0.76
0.48
0.39
0.28
0.22
0.17
0.092
0.071
0.066
0.056
0.050
0.048
0.041
0.038
0.035
0.030
0.027
0.025
0.023
0.017
0.008
0

1.00
0.82
0.68
0.64
0.54
0.38
0.30
0.096
0.086
0.073
0.072
0.067
0.063
0.061
0.056
0.051
0.041
0.036
0.036
0.032
0.023
0.011
0

'Statistical error is 3%.
'Statistical error is 6%.
'k =0 values were obtained from the hard-sphere equation of state.
'y(~)= —'„'.
'c, ( )/c, =( —,",, )'".
Pq( 00 )/Pp(0) =0.6Nkg T/PV.

TABLE III. Wavelength-dependent thermodynamic

V/Vp ——10.0.
and transport properties at

0.00
0.41
0.83
1.24
3.30
4.12
4.95

S(k)'

0.550'
0.557
0.572
0.598
0.819
0.936
1.03
1.00

y(k)'

1.68'
1.63
1.44
1.30
1.26
1.26
1.23
1.24

Cs(k
c

1.35'
1.32
1.23
1.14
0.96
0.90
0.85
0.86'

P~(k)b

Py(0)

1.00
0.96
0.79
0.64
0.51
0.48
0.43
0.44'

r](k)
g(0)

1.00
0.83
0.56
0.47
0.19
0.15
0.12
0

A,(k)
A,(0)

1.00
0.56
0.30
0.24
0.082
0.066
0.054
0

a(k)
a(0)

1.00
0.73
0.61
0.43
0.18
0.12
0.11
0

'Statistical error is 3%.
'Statistical error is 6%.
'k =0 values were obtained from hard-sphere equation of state.
'yt m)= —„.
'C, ( )/CI ——( —, )'

Pz.( oo )/Pz. (0)=0.6Nkg T/PV.
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I TABLE V. %'avelength-dependent transport properties
from kinetic theory at V/Vq ——3.0, and the ratio 8 of the
transport properties calculated by molecular dynamics to
that predicted by kinetic theory at different wavelengths
at V/Vo ——3.0.

0.4— /
Xj--~

OI, l I, i

0 2 4 6 8
I

lo

0.76
2.28
6.83

15.0

0.055
0.48
1.17
2.04

0.12
0.71
1.30
2.50

0.11
0.92
1.09
2.43

1.80
0.93
0.45
0.42

R {PT}
ko

FIG. 4. Adiabatic sound speed as a function of ko for
two hard-sphere densities: V/Vo ——1.6 (), V/Vo ——3.0
(0 ). Solid lines represent the free-streaming result at the
two densities.

0.0
0.62
2.28
6.83

15.0

1.01)
1.043
1.045
1.003
1.013

1.00)
1.056
1.045
1.03'
1.00'

1.01)
0.957
1.056
0.995
1.05'

1.0
1.056
1.119
1.005
0.97)

11quid hcl1uIIl.

Thc gcncra11zcd transpoIt coefficients al c com-
pared with those calculated from the generalized
Enskog equation in Tables IV and V; results for the
vlscoslty arc contrasted as %c11 1n Fig. 5. Thc dcv1a-

tion from the kinetic theory, as expected, gets small-
er at larger k values. Also, as expected and shown
in Table V, as the density is reduced, the kinetic
theory agrees better with molecular dynamics, such
that the results at V/Vo ——3 are, within the statisti-
cal error, indistinguishable from molecular dynam-
ics. Furthermore, the deviation of the thermal con-

ductivity from kinetic theory even at the highest
density 1s quite sIQall.

Figure 6 compares the lowest thermal and viscous
eigenmodes for hard spheres at V/Vo ——1.6, ob-
tained from the roots of the determinant of the hy-
drodynarnic coefficients, between s kinetic model,
which is equivalent to the Bhatnager-Gross-Krook
(BGK) 01 Krook model, and s morc COIIlplctc

solution of the generalized kinetic equation. The
curves labeled 0 represent the diffusive thermal
mode, snd the curves labeled S correspond to the
shear mode. As indicated by the figure, the thermal

TABLE IV. Wavelength-dependent transport proper-
ties from kinetic theory at V/Vo ——1.6, and the ratio R of
the transport properties calculated by molecular dynamics
to that predicted by kinetic theory at different wave-

lengths at V/Vo ——1.6.

0.76
2.28
6.83

10.0
15.0

0.0
0.76
2.28
6.83

10.0
15.0

0.052
0.34
0.72
0.73
0.81

1.44,
1.467
1-55s
1.10'
1.147
1.097

0.11
0.47
0.62
0.84
0.90

1.052
1.015
1.055
0.95'
0.956
1.025

0.13
0.78
0.48
0.90
0.85

1.555
1.52

1.42
0.875
1.12

1.12

6.0
3.3
0.40
0.53
0.56

8 (Pg)

1.0
0.955
0.93'
0.626
1.12

0.806

l

8
ka

FIG. 5. Viscosity at zero frequency as calculated by
molecular dynamics divided by the viscosity as calculated
by the generalized Enskog equation as a function of kg at
V/Vo ——1.6. The k =0 data point was taken from the
literature (Ref. 26). Typical uncertainties are indicated.
Sohd line is drawn as a visual aid.
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1

I
I

-0.5LLJ

N

-10—

I

15
I

20
I

0 5 10
ka

FIG. 6. Lowest eigenmodes Z~ as a function of ko for
a hard-sphere fluid at V/Vo ——1.6 for thermal diffusion D
and the shear viscosity S. The eigenmode is multiplied by
~E, the mean collision time. The dashed curve represents
the result for a low-order kinetic model (Ref. 21), while
the solid curve represents a more complete kinetic model.
The molecular-dynamics results for the viscosity are
represented by circles.

modes agree quite well for the two kinetic models up
to values of ko -10, where the lowest thermal mode
for the generalized kinetic equation drops out (as in-
dicated by the ending of the solid line); for larger
ko, the next higher mode governs the thermal relax-
ation process from the generalized kinetic equation,
while for the Krook model the lower thermal mode
continues on past k0=20. At ko-7 the thermal
mode is very small; this is the source of de Gennes
narrowing in the frequency spectrum of S(k,co) as
will be discussed in a subsequent paper. The results
for the thermal mode from molecular dynamics are
statistically indistinguishable from the generalized
kinetic model on the basis of the agreement estab-
lished earlier for the thermal transport caefficients,
especially in the region near ko-7. The viscosity
mode for the Krook model drops out at about
k0 =15; however, this mode exists beyond ko =20
for the generalized kinetic equation. Also plotted in
Fig. 6 are the eigenmodes for the viscosity as calcu-
lated by molecular dynamics. The rnolecular-
dynamics results were determined by Laplace

transforming the transverse-current autocorrelation
function and then linearly extrapolating to negative
values of the Laplace variable in order to find the
singularity. This method cannot be practically used
for the thermal mode because it must first be dis-
tinguished and numerically separated from the other
two characteristic modes of the system —a process
which introduces large uncertainties into the results.
Therefore, only the viscous mode is explicitly given
here. According to the figure, the viscous mode
fram molecular dynamics deviates slightly from that
calculated from the generalized kinetic theory for
ko & 10; for ko & 10 the molecular-dynamic results

0.8—

(5

o.6—

0.4—

0.2—

0
0

I i I

4 6
I

8

ko

FIG. 7. Dependence of the shear viscosity at zero fre-
quency (divided by its k =0 value) on wavelength at
V/Vo ——1.6. The molecular-dynamics results (closed cir-
cles) and the kinetic-theory results (open circles) are com-
pared to the results of a mode-coupling calculation (Ref.
22) (two triangles). Error bars are indicated. Dashed
curves are drawn as a visual aid.

0.5

0.4—

O~~ O2—

0.1—

0 Y I I

0

{ko)~

FIG. 8. Dependence of the shear viscosity at zero fre-
quency on wavelength at small wavelengths for
V/Vp = 1.6. Dashed line is a straight-line fit. Error bars
are indicated.

for the viscosity approach the kinetic-theory results.

Comparison of the molecular-dynamics results for
the shear viscosity with mode-coupling theory,
which represents an improvement over kinetic
theory, is presented in Fig. 7. The graph shows that
although mode-coupling theory makes corrections in
the right direction it is not quite quantitative yet.
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1.0

0.6—
I

0.2
I

0.4
I

0.6
I

0.8 1.0

of the medium, the generalized viscosity can be uti-
lized. A simple description of the small k depen-
dence of the generalized viscosity, namely,

v(k)/v(0)-(1+a'k )

which, as Fig. 8 illustrates, fits the molecular-
dynamics results reasonably well, can be substituted
into the nonlocal stress-strain relation of the Stokes
theory. The drag on the sphere then becomes sim-
ply23 25

FIG. 9. Dependence of the drag, F, measured relative
to the Stokes value, F„on size at V/Vo ——1.6, where 02 is
the diameter of the solvent particles and o i2 is the average
diameter of the Brownian and solvent particles. The
molecular-dynamic measurements (circles) are compared
to the solid line which represents the prediction of gen-
eralized hydrodynamics. Numerical uncertainties are in-
dicated.

One application of the generalized viscosity in a
hydrodynamic problem will be outlined to demon-
strate its potential use; namely, the prediction of the
dependence of the friction coefficient of a heavy
particle in a fluid on its size. Stokes has shown that
the drag on a macroscopic sphere which is slowly
pulled through a fluid is proportional to the radius
of the sphere and the viscosity of the fluid. The
value of the proportionality coefficient depends on
the boundary conditions between the fluid and the
sphere. However, if the size of the sphere ap-
proaches the size of the particles in the fluid then
Stokes's expression must be generalized, since con-
tinuum hydrodynamics no longer applies. To ac-
count for the initial indication of the atomic nature
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0
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drag -1—a/0 i2,
Fstokes

where Oi2=(oi+o2)/2 is the average diameter of
the test particle 0.

&
and a bath particle a2. The com-

0.24—
II 1.2

0.20

3

0.16 1.0
0

0.12—
I

0.8
I

1.0
I I

0 0.4 0.6
~/I

FIG. 10. Frequency dependence of the hard-sphere
shear viscosity at V/Vo ——1.6. Solid line represents the
mode-coupling prediction at kyar =2.5 and the dashed line
is the kinetic-theory prediction. Closed circles are the
molecular-dynamics results at kcr=2. 28 and the open
cirlces at ka =3.04.

FIG. 11. (a) Time dependence of the shear viscosity di-
vided by its initial value at V/Vo ——1.6 for eight values of
k: kcr=0. 76, 1.52, 2.28, 3.04, 3.80, 4.56, 5.32, and 6.83,
corresponding to the plotting symbols: 0, 0, 6, ~, Cl, P,
T, W, respectively. The error bars are indicated. (b)
Same as (a) except the short-time dependence comparison
to generalized kinetic theory (solid curves) for a few
selected k values. For the largest kyar value (6.83) the gen-
eralized kinetic-theory result is indistinguishable from un-

ity.
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parison to molecular-dynamics data, where the drag
was directly simulated under slip boundary condi-
tions is given in Fig. 9. The value of a/cr of 0.30
found from the viscosity data in Fig. 8 fits the drag
data in Fig. 9 with the correct intercept down to the
value of the size of the Stokes sphere comparable to
that of the solvent. From this example, the remark-
able conclusion can be inferred that generalized hy-
drodynamics through the introduction of a nonlocal
transport coefficient can be quantitatively applied at
the molecular level.

The time dependence of the generalized transport
coefficients is obtained by an iterative procedure
from the inverse Laplace-transformed general ma-
trix equation:

F(k, t)+ f M(k, t —t')F(k, t')dt'=f(k) .

To numerically solve for M{k,t), the integral is
written out in quadrature form:

n'=0

where the argument k has been omitted for the sake
of clarity and 8'„are the quadrature weights. The
expression is then solved for M(t„) in terms of f
and M {tn ) at earlier times:

M(4) = f F(4)—1

8'pb t

2.2—

2.0

1.8

1.4

1.2

1.0
0

FIG. 12. Same as Fig. 11 except at V/Vo ——3.0 and
kcr=0. 62, 1.23, 1.85, 2.46, 3.08, and 3.70. Solid line

represents the results of generalized kinetic theory at
ko =0.62 and the dashed lines represent the long-time
molecular-dynamics limits.

2.0

1.9—

1.8

n'=1 1.7

X

To start the iterative procedure, the initial values
M{0) must be known and have been given earlier
from the short-time expansions of the correlation
functions. The time dependence of the generalized
bulk modulus, a, and the new transport coefficient
related to PT could not be reliably obtained because
of the statistical fluctuations in the molecular-
dynamics derived correlation functions. Neverthe-
less, it is apparent that TPT/pUp is time dependent,
varying between —, to unity in the free-streaming
limit.

The frequency dependence of the shear viscosity
derived from the time dependence is compared to
generalized Enskog theory and to mode-coupling
predictions in Fig. 10. As the figure demonstrates,
the frequency dependence of the kinetic theory
differs markedly from mode-coupling theory.
This is due to the inclusion of many-body effects in
the mode-coupling theory which leads to long-time

0 1.5

1.3

1.2

1.0
0

FIG. 13. The time dependence of the thermal conduc-
tivity at V/Vo ——1.6 for three values of k: ko =0.76 (~),
1.52 (0 ), and 2.28 (6). Dashed lines represent the long-
time limits of the molecular-dynamics results and the
solid line represents the result of kinetic theory at
kcT =0.76.
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2.8

2.6

2.4

2.2

2.0

1.2

1.0-

FIG. 14. Same as Fig. 12 except for the thermal con-

ductivity at V/Vo ——3.0.

correlation (small frequency j corrections in the
viscosity correlation function. As can be seen from
the mode-coupling theory comparison to molecular-
dynamic results, that theory does not entirely take
into account all of the many-body effects.

Figure 11(a) gives the time dependence of the
shear viscosity for hard spheres at a series of wave

numbers at Y/Yo ——1.6 and in Fig. 11(b) these are
compared to generalized Enskog theory. The kinetic
theory predicts that the asymptotic value for the
viscosity is reached in very short times (four col-
1isions) compared to the molecular-dynamics data.
The viscosity at this density is thus a slowly relaxing
function of time. This slow relaxation leads to large
viscosities near solidification and can be associated
with the negative structure in the transverse-current
correlation function. In contrast the viscosity at
Y/Yo ——3.0 relaxes fast and agrees with kinetic

theory (Fig. 12). The thermal conductivity (Figs. 13
and 14) relaxes in about four collisions, even at the
highest densities and is in near agreement with ki-

netic theory. This is consistent with earlier find-

ings that the k =0 thermal conductivity is in good
agreement with kinetic theory predictions at all den-
sities.

Except for the viscosity at high density, all of the
transport coefficients relax to their long-time
asymptotic values in about three or four molecular
collisions. This means that constant transport coef-
ficients are sufficient to use in time-dependent hy-
drodynamic problems when time scales larger than
three collisions are of interest unless the shear
viscosity at high density plays a role.
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