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Analytical and numerical solutions are presented to elucidate the important physical as-
pects of the incoherent nonlinear interaction and propagation of high-intensity radiation in
an absorbing (or amplifying) medium. The properties of radiation-driven one-dimensional

density discontinuities or wave fronts are examined for monochromatic and broadband radi-
ation sources, and for a nonlinear absorbing medium characterized by a spectral absorption
cross section that is square, Gaussian, or Lorentzian. The effect of the angular distribution
of the radiation source is considered in detail. The results of the analysis show that the
propagation behavior of the radiation-driven wave front depends strongly on the spectral
dependence of the absorption cross section. The wave front propagates with a constant
shape and at a constant velocity ub only for monochromatic radiation or a square absorption
cross section. For a Lorentzian, uq-x ' at large values of the propagation distance x. The
absorption of intense radiation in a medium generally causes local heating, which can intro-
duce hydrodynamic disturbances that propagate behind, along with, or ahead of the
radiation-driven wave front. Conditions are derived for the amount of heat addition that is

required to produce these disturbances for a given velocity of the wave front.

I. INTRODUCTION

We consider in this work the nonlinear interaction
and propagation of high-intensity radiation in an ab-

sorbing medium. We will emphasize the situation in
which the medium is optically thick and limit the
analysis to one-dimensional propagation. Coherent
interactions between the radiation field and the
medium will be neglected. This problem has been
addressed by a number of investigators for the case
of monochromatic radiation. For a saturating two-
level system, the solutions can be written in closed
analytic form. ' Under certain conditions, they
are also valid for a medium with gain such as 1asers.
The results of these analyses show that for suffi-
ciently high intensity, a radiation driven density
discontinuity or wave front is formed that pro-

pagates into the medium. The medium is trans-
parent behind the front and opaque ahead of the
front. The wave front maintains a constant shape
and propagates with a constant velocity ub given by

Pp/no, where Pp is the photon intensity of the radia-
tion source and no is the number density of satur-
able absorbers in the medium.

For several applications of interest, the radiation
source may emit a broadband spectrum, for exam-

ple, a blackbody emitter. If the absorption spectrum
of the medium is narrow compared to the emission
spectrum of the source, the behavior of the propaga-

tion of the radiation wave is changed significantly
and depends strongly on the detailed spectral prop-
erties of the absorber and radiation field. This par-
ticular regime has been addressed by only a few in-
vestigators for which the published results ap-
pear to be conflicting and/or ambiguous. It is this
specific regime that we wish to address in this work.

Nonlinear radiation transport is encountered in a
number of scientific areas. Transport of mono-
chromatic radiation has been studied extensively in
the fields of lasers and saturable absorbers, ' prop-
agation through the atmosphere, nonlinear crystals,
and laser induced chemistry. " The transport of
intense broadband radiation has important implica-
tions in astrophysics, fireballs produced by a nu-
clear explosion in the atmosphere, ' and optical
pumping of lasers. ' Because of the specific ap-
plications, some of these analyses tend to obscure
the generic aspects of the phenomena resulting from
intense light sources. This paper will address the
general aspects of broadband radiation transport in a
nonlinear medium. We will consider in detail the
specific example of optical pumping of an iodine
laser in a separate paper.

II. NONLINEAR RADIATION
TRANSPORT EQUATIONS

Although we consider a one-dimensional
geometry, the transport of radiation is fundamental-
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ly a three-dimensional process that involves the an-

gular distribution of the radiation field. The equa-
tion for radiation transport in a linear medium and
the related field quantities are reviewed in the Ap-
pendix. Most of these equations can be carried over
directly to the nonlinear medium.

The radiation field is characterized by a scalar
photon spectral intensity function I„(r, t, Q), where

I„is the number of photons at time t in a frequency
range v to v+dv passing per unit of time through a
unit area located at position r and contained within
a solid angle dQ in the direction of a unit propaga-
tion vector Q. %e can now use the general formal-
ism developed in the Appendix and specialize to
one-dimensional propagation along a coordinate x.
The spectral intensity can then be written in the
functional form I„(x,r, 8), where 8 is the angle be-
tween Q and the propagation direction. Neglecting
the finite propagation time of the radiation, the ra-
diation transport equation can be expressed in the
form

where «„(x,r) is the net nonlinear absorption coeffi-
cient of the medium and I~ is the value of I„ that
results from spontaneous emission in the medium.
The expression for x„also includes the effects of
stimulated emission. Consequently, x„depends on
the population densities for both the lower and
upper state of the absorbing transition. Since the
population densities can depend on I„,in general, v,
is an implicit nonlinear function of I„. In order to
evaluate this nonlinear dependence, it is necessary to
considei the details of the interaction of the radia-
tion with the medium.

In the simplest approximation, we consider the
atomic medium to be a nondegenerate two-level sys-
tem. The population densities of the upper and
lower levels are given by n„(x, t) and n~(x, r), respec-
tively. Within a tate-equation description, the level
densities satisfy the equations

Bldg =R„—y„n„+(n~ n„)(ag„)—
Bt

rate into the level from all sources other than stimu-
lated processes, and y is a net loss rate of the level.
In general, o R, and y are determined by the chem-
ical kinetics of the medium. Although not indicated
explicitly, o„may also be an implicit function of
space and time. The net loss of photons from the
radiation field (absorption minus stimulated emis-
sion) for each spectral component is given by the
term (n~ —n„)o„I„—=a„I„. Spontaneous emission
results from the term involving y„.

If we neglect the effects of spontaneous emission,
the radiation transport equation for each spectral
component can be written in the form

BI„
cos8 = (ni n—„)o„I—„.

Bx

The neglect of the spontaneous-emission term is a
good approximation in the apphcations that will be
discussed.

Equations (2)—(5) constitute a closed set of non-
linear integro —partial-differential equations that
describe the nonlinear physica1 behavior of an ab-

sorbing or amplifying medium. We now consider
specific examples that yield simplified analytic solu-
tions.

A. Isolated taro-level system

In this case we assume that the pump and decay
rates of each level are slow compared to the time
scale for the interaction with the radiation field.
Under these conditions we let 8~0 and y~0. Sub-
tracting (2) from (3) and defining hn =(n~ —n„) we
obtain the equations

The factor of 2 in Eq. (7) arises because the system
is composed of two levels that are nondegenerate.

8. Steady-state approximation

We here assume the opposite limit to that in Sec.
IIA and let (8/Bt)~0. Then

M~cos8--
Bx

l+

cr„ is the frequency dependent absorption (or
stimulated. -emission) cross section, R is a net pump

where b,no —(R„/y„———R~/y~) is the initial popu-
lation difference in the system.
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C. Photodissociation or photoionization

In photodissociation, molecules in the ground
electronic state make a transition to an upper elec-
tronic state that undergoes dissociation on a short-
time scale. Under these conditions, to good approxi-
mation n„=0. We further assume that yI ——0, but
that recombination of the photofragments, which is
a source or pumping term for the lower state, may
occur. We assume a simple binary process in which
RI ——k, nI . The equation describing the dissociation
is then of the form

BllI
nl (o—„I„)+k, (n(0 nl )—

An equation of this form is also obtained for pho-
toionizatioQ pl occsscs.

III. SOLUTIONS OF THE NONI. INEAR
TRANSPORT EQUATIONS

From the above examples we find a large class of
nonlinear radiation transport problems that can be
described by equations of the general form

BI„
cos8 = —pl 0'~ I~ (10)

Bx

where I,o„I„1is given by Eq. (4). These equations
can easily be convcrtcd into a single
integro —partial-differential equation of the form

nr I—~„I„(o,r, e)
Bt

~ o„n(x', t)
Xexp —I " ' dx'

cosi9

integrate Eq. (10) over dQ. In this case the radia-
tion flux, Eq. (A3), is

S„=I I„dQ,
4m

and Eqs. (10) and (11)become

We consider a radiation source at x=O, and a cross
section of the form o„=o0g(v), where o0 is the
maximum value of the cross section and g(v)
characterizes the spectral dependence of the absorp-
tion. A formal solution of Eq. (14) can be written in
the form

r

S„(x,t) =S„(O,t)exp — n (x', t)0.(g (v)dx'
0

It is convenient to define an average center frequen-
cy normalized optical thickness ~ by

r(x, t) =o0 n (x', t)dx' . (17)
0

If we also assume a spatially uniform medium at
t=O with density n0, we can define the optical depth
g=(nao0) ' for which r(x, O)=x/g=naa0x Sub-.
stituting Eqs. (14), (16), and (17) into Eq. (15) gives
the result

Be B J S„(O,r}exp[ rg(v)—]dv .
Bt Bx

From Eqs. (17) and (18) we obtain the set

te

Bt
— - = —o0 J $„(O,r)[1—exp[ —rg(v)]]dv

gdvdQ .

This form of thc equations cleally indicates that
while the final result depends on x and t, the charac-
ter of the solution also depends strongly on 8 and v.
In order to explore this behavior we now consider
solutions for several special cases.

A. Colhmated radiation
in a nonlinear absorber

For this situation we assume I„is strongly peaked
in the positive x direction. Since for normal col-
limated radiation the main contribution (at all x and
t neglecting scattering) occurs for cos8=1, we can

=G'goal (x, f) .
Bx

For any g(v)„ the integral in Eq. (19) can be evaluat-
ed (numerically if required) as a function of z. The
equation can then be solved to obtain r(x, t). Substi-
tution into Eq. (20) then gives n (x, r }.

A square cross section is defined by the functional
form, g(v) =1 for va —(hv/2) & v~ v0+(hv/2) and
zero otherwise. Numerical results for a square cross
section (or monochromatic radiation), a Gaussian
cross section, and a Lorentzian cross section are
shown in Figs. 1(a)—1(c), respectively. The fraction
bleached,
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1. Monochromatic radiation

In the case of a square cross section analytic solu-
ns to the radiation transport equations can be ob-tlons to t e ra la

tained in closed form. From Eq. , w. (19), we obtain the
result

= —o+II(t)(I —e '),
Bt

$0(t) = f S„(0,t)dv=Sohv .
00

(24)0

Thc last equality assUmes ~„18 ln cpln c endcnt of v in
h b d idth hv. The same equations apply to the

case of monochromatic radiation, provided w
llimated monochromatic intensity as

S =S LLY5(v—vo). The solution o Eq. 1sf . Q3) is sim-p=0&
ply

0.0
0 12 14 16 18 202 4 6 8 10

t1 0;X0

e' —1={e'—1)exp —f o+0(t')dt', Q5)

wher~ rII ——x/g. Substitution of Eq. (25) into Eq.
(20) gives the results

0.8
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X —40/n0

(26)
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exp(oo@)—1 =exp ——[exp(os&I)—

FIG 'J Bleaching waves propagated
limated radiation with (a} a square absorpo tion cross sec-
tion (or monoc rona ich t' radiation), (b) a Gaussian absorp-
tion cross section, an c ad ( ) a I.orentzian absorption cross

,~ is shwvn as a function ofsection. Fraction bleached b i
~ 0f0 in each case at sixthe dimensionless vanable noo~

ferent times corresponding to the designated values o
[defined by Eq. (22)j.

(21)fs =1 n(x, t)lno, —

f 0' x at scvcral propag18 shown Rs 8 fUnctlon 0 Pf0

uch that theThese times were chosen suc t ation times.
absorbed by an optically thin targe t is theenergy 8 sor

i n i.e., the curves are 18-same for each cross section, l.e.,
beled by

r,= f, &o„i„&„yt'.
Y =cr 4 (see Sec.F 8 squafc cf088 section, Y0= 0Of 8

rentzian cases will nowIIIA1). The square and Lorcntzia
be discussed in detail.

where the photon fluence 4(t) is defined as

4 (t) = f P(t')dt' .

et QI andTh' lt as first derived by Bellman
Nodvik in 1963. A similar calculation

rted by Ovchinnikov and Khartsiev inwas 1'cpo slcv ln
1965. The solutions give explicit expres

'

n (x, t) and 4(x, t) in terms of 40——4(x =0) and the
1 d th g. In order to gain physical insightoptica ept

defineln O Cst these solutions we take
=p~ /n and consider the behavior of q.E . (26) inU~ ——0 n0, an

these condl-h 1' 't lg &1 or oII@0»1. Under these c
b the radi-tions, the fraction of absorbers removed y e

ation field can be written in the form

fb = 1+exp

This rcpIcscnts 8 dcnslty wave drive yvcn b thc fad18-
tlon 1Cf ld th8t propagatcs with 8 velocity Ub and ex-
hibits a constant shape wave front wi ph' kn s of the order of g. This wave is also re-
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ferred to as a bleaching wave since the absorption
behind the wave front is reduced by the radiation
field. Retaining the time derivative in Eq. (A5), the
exact expression for ub is foci(go+cno), so that in
the limit of high intensity Ub

—+c as it should.

2. Broadband radiation

~here hv is the full spectral width of the absorption
feature. The solution of this equation is given impli-
citly by

'o G(r')
oooo(t)

2

For broadband radiation, the frequency integra-
tion in Eq. (19) usually must be performed numeri-

cally for an arbitrary g(v) and S„(O,t). If we as-
sume that S„is slowly varying compared to g (v), we
can perform the change of variable 6=2(vo —v)/b, v
and rewrite Eq. (19) in the approximate form

Br &Ao
J [1—exp[ —rg (5)] Id',Bt 2

(30)

' il2

fa = — &o~'o(i) .1 m

2 x

From the functional form of fb, it is clear that the
moving wave front does not exhibit a simple wave
propagation solution. If we take a given point on
the wave front, where fb is constant and calculate
an effective velocity Ub ——dx/dt, we obtain from Eq.
(36) the value

1
Ub =

fb

m'x

where us go/no ——is the velocity of the bleaching
wave for monochromatic radiation. The velocity of
the front is different at each value of fs and in-
creases with x. Physically, this occurs because radi-
ation in the far wings can propagate into the medi-
um with the speed of light and produce nonlinear ef-
fects at a slow rate deep in the medium. These ef-
fects directly add to the wave-front behavior at the
peak of the absorption feature as propagation
procexis. If we had retained the time-dependent
term in the propagation equation, the limiting velo-
city would approach the velocity of light.

G(r) = f [1—exp[ —rg(d, )]Ida . (32}

Note that the total time dependence of r(x, t) is
determined by 4o(t).

If we now consider the example of a Lorentzian
of the form g(h)=(1+5 ) ', the integral in Eq.
(32) can be evaluated directly to the result

G(2r) =ore '[Io(r)+Ii(r)), (33)

where I„(r) is the nth order Bessel function. Substi-
tuting Eq. (33) into Eq. (31) gives the expression

f '0" eddy m=—0040(t) .
'~2 3'[Io(3»+Ii(y)l

which when substituted into Eq. (20) gives the result

It is then expedient to numerically evaluate this in-

tegral and differentiate v with respect to x to obtain
n (x, t). As indicated in Fig. 1, the wave fronts have
constant shape and constant velocity only for a
square cross section or monochromatic radiation.

We can easily demonstrate the physical behavior
of the Lorentzian result in the limit that v » l. Us-
ing the asymptotic form of I„(w)-e'/(2m+)'/, the
integral can be evaluated directly to give

'2

B. Nonco11imatcd radiation

r„(e)=r„(T ) 1 —exp-
cose

+I~(T, )exp
VP8

cosH

where v'~ =x„d is the optical thickness along a per-
pendicular distance into the slab.

We now consider several situations of interest:

We now consider the effect of the angular depen-
dence of I„on the radiation transport, first for a
linear medium and then for a nonhnear one. Con-
sider a medium at temperature T contained in an
infinite slab of thickness d. Behind the slab is a
blackbody radiation source at temperature T, with a
radiation intensity I„,(T, ) as shown in Fig. 2. We
wish to calculate the intensity at the slab surface
which is located at x=O. With the appropriate
charge of variables in Eq. (A9) to fit the geometry of
Fig. 2, the intensity is given by

d/cos8 S

I„(8)=f «„I (T )exp —f «.„ds" ds'

d/cos8
+I (T, )exp —J «„ds" . (38)

If x„and I are constant throughout the medium,
the solution of Eq. (38) is
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FIG. 2. Intensity distributions for radiation emitted
from the surface of a slab of temperature T that is il-
luminated from the back surface by a blackbody source of
temperature T, . Optical thickness v of the slab here is
unity.

(i) T «T, . If r «1, then I„(8)=I (T, ) so
that thc radiation from the surface of the optically
thin slab appears to be blackbody with a tempera-
ture T„both with respect to the angular and spec-
tral distribution of the radiation. For ~ g 1, the
radiation near 8=0 appears to be blackbody; for
larger values of 8, the radiation intensity is substan-
tially less that of a blackbody. This behavior is
shown schematically in Fig. 2.

(ii) T »T, . If r„ lcos8«1, then

FIG. 3. Comparison of the bleaching waves in a
Gaussian absorber obtained with isotropic radiation
(dashed curve) and with collimated radiation incident at
three different angles with respect to the normal to the
slab (cos0=1.0, 0.5, and 0.2). Curves shown correspond
to a time such that fo ——5 [see Eq. (22)].

penetration is deepest and consequently the bleach-
ing wave front is most diffuse for normal incidence
of collimated radiation.

The radiation from an emitting source of finite
optical thickness w will also be anisotropic and, in
addition, attenuated, viz. ,

I„(8)=I (T, )(l —e ) .

Results for sources with four different optical
thicknesses (for simplicity assumed to be indepen-
dent of v) are shown in Fig. 4. It can be observed
that the effect of anisotropy is much greater than
the effect of the reduction in integrated energy since
the greatest loss, owing to the finite thickness of the
source, occurs for the most penetrating normal rays.

Under these conditions I„(8}«I (T ). For r
& 1, I„(8)=I ( T )[1—exp( —r„ /cos8}], which is
also shown in Fig. 2. Under these conditions, the
radiation is characterized by the medium and is not
blackbody in the forward direction but approaches a
blackbody distribution at some 8 & 0.

%e finally consider a nonlinear medium with
T (..(..T, . This is the situation of greatest interest
for optical pumping. As a specific example we as-
sume a Gaussian absorber and solve Eq. (12) numer-
ically. The bleaching wave for isotropic irradiation
of the slab is compared with the results of collimat-
ed radiation incident at three different angles in Fig.
3. The energy density at the surface U„(0,t) is the
same in each case and the value of Yo, defined by
Eq. (22), is 5.0 for the curves shown. The optical
thickness to a given depth into the slab increases as
the incident ray becomes more oblique. That is,

0.8
X
O
Fu 0.6

O 0,4I-

t 02

I I I I ~ i

0 2 4 6 8 10 l2 14 16 18 20
neo'e x

FIG. 4. Comparison of the bleaching waves in a
Gaussian absorber pumped with radiation sources of vari-
ous optical thicknesses (v = 00, 1.0, 0.5, and 0.2, as la-
beled). For v. ~00, Yo——5.
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IV. HYDRODYNAMIC DISTURBANCES
IN THE MEDIUM

In certain situations involving radiative transfer,
the medium behind the bleaching wave can be heat-
ed by the kinetic processes related to the interaction
of radiation with the medium. In particular, photo-
lysis and recombination lead to heat addition to the
medium. This leads to a temperature and pressure
gradient across the wave front. If the heat addition
is sufficiently large, unsteady hydrodynamic distur-
bances can be radiated from the surface of the wave
front. Under certain conditions, these disturbances
can occur in the form of propagating shock waves
that move ahead of the radiation front and modify
the thermodynamic properties of the medium.
These in turn modify the radiation transport. A
correct description of the radiative transfer requires
a self-consistent treatment of the hydrodynamics of
the medium. %'e consider below a simplified analyt-
ical treatment to establish the change in the gas
dynamic properties that occur across the wave front
and the maximum heat addition that can occur in
the medium before the onset of hydrodynamic dis-
turbances in the flow.

A more general analysis of thermal waves has
been reported by Ahlborn and I.iese using a simi-
lar analytic approach. %e cast our results in a dif-
ferent representation, however, that provides broader
physical insight into the hydrodynamic characteris-
tics of the radiation driven wave front.

In this analysis, we assume that the radiation
driven wave front propagates with a constant shape
and at a constant velocity D =go/no Behind . the
wave front, the various kinetic processes in the
medium result in the addition of thermal energy q
per unit mass of gas. For purposes of analysis, we
consider this heat addition to occur over some well-
defined volume immediately behind the front. If the
propagation is assumed to be one dimensional, the
wave front and local gas dynamic conditions are
shown in Fig. 5. %e now choose planes A and 8 in
the upstream and downstream gas flow, respectively,
that are sufficiently far removed from the wave
front that the gas flow there is spatially uniform.
The objective is to determine the gas density p, pres-
sure P, internal energy e, and gas flow velocity U at
plane 8 in terms of the unperturbed values at plane
A. The temperature of the gas is contained implicit-
ly in e(T). For the purposes of this analysis we con-
sider the unperturbed gas to be stationary and we
take uo to be zero.

Conservation of mass, momentum, and energy
give the familiar Rankine-Hugoniot equations,
which can be written in the form

PIED —oI I =p&, (42)

PI I

I

PI I

v,
I

I

I

EI

HEAT ADDITION

LABORATORY FRAME

Po
I

I p0

I

vo
eo

I

Ui = (D vi)

PI
I

p I

I

I

I

I

NAVE FRAME

Po
u =-D

I
0

I
+0

FIG. 5. Schematic diagram indicating the relationship
of the gas dynamic variables in the laboratory and wave

reference frames.

poDIII =P1 —Po

p~Q i =poQo,
2 2Pi+pi~ & =Po+po~o ~

Pi Q1 PO QO
&~+ + +g =&o+ +

pt 2 po 2

In addition, we must specify the equation of state of
the gas which can be written in the functional form
P=P(e,p). Up to this point, the analysis is identi-
cal to that of the conventional propagation of a gas
dynamic discontinuity in a gas. For the radiation-
driven wave, however, the physical situation is quite
different. The velocity of the wave front is constant
and any gas dynamic disturbances or discontinuities
are driven by the temperature discontinuity. In a
shock wave the pressure gradient drives the shock
forward and leads to discontinuities in the other
Aow variables. The shock velocity can adjust itself

2
V)

poD ~I ~0+ Plol+0 '
2

It is convenient to transform to the reference frame
moving with the velocity of the radiation front. In
this frame the wave front is stationary and the gas
streams through the front with a velocity uo ———D
and exits plane 8 with a velocity u&

———(D —
U& ), as

shown in Fig. 5. The conservation equations in this
frame now become
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to satisfy all three conservation equations over the
complete range of the variables.

Usually the upstream conditions of the gas pp, Pp,
ep, and up are known. %e then have the three
Rankine-Hugoniot equations plus the equation of
state to determine the four equivalent downstream
variables. If the equation of state and e(T) are
known, it is possible to obtain a solution for all of
the unknown variables in terms of the heat addition

q and the upstream conditions of the gas. Usually,
this evaluation must be performed numerically.

In order to provide physical insight into the pro-
cess, we consider the situation of an ideal gas for
which P =pRT and e=C„T, where T is the tem-
perature, C„ is the specific heat at constant volume,
and R is the gas constant. It is convenient to elim-
inate 8 and normalize all velocities to the local
sound speed in the gas co through the relation

eo ——AT =yP/p,

where y=Cp/C„, the ratio of specific heats at con-
stant pressure and volume. The internal energy is
now given by the relation e=(y —1) 'P/p. In anal-

ogy with conventional gas dynamic discontinuities,
we also define a local Mach number M =u /eo. %'e

will also consider a "Mach number" for the radia-
tion front Mp ——D/cp even though there is no gas
dynamic motion.

From the continuity and momentum equations we
obtain

poup —(Pi —Pp)2

u) =
ppu p

From this relation it is clear that ppup p(P& —Pp)
for steady-state flow, which is a simple statement
that the dynamic pressure of the flow pouo must
exceed the pressure gradient across the discontinui-
ty. If this is not the case, steady-state flow does not
obtain with a single discontinuity. In a simple gas
dynamic situation with no heat addition, the veloci-

ty of the discontinuity adjusts itself to ensure that
this condition is always satisfied. %ith radiation
driven waves uo is fixed and (Pi —Po) is determined

by the heat addition. Consequently, a transition to
unsteady flow occurs when u& ——0. %e will return
to this point.

The remainder of the analysis parallels that of
Ref. 21. The effect of heat addition to the flow is
best measured in terms of the total energy in the
upstream flow qp, where

2
up

qp —Cp To+ e

2
(S0)

Using Eqs. (4S)—(48) we obtain the result that

y —1 2

qo Mp 1+yM)
1 y —1 M2+

2 o

(S1)

where 1 & q g m. A plot of Eq. (S1) is sho~n in Fjg.
6. The solutions indicated by the dotted curves are
not allowed because of entropy considerations. It is
clear from the physical situation that for q=1 there
are no gas dynamic discontinuities and the solution
is confined to the line Mi ——Mo. As q increases, all
other solutions are allowed. For Mp y 1 and q ) 1,
the functional form for M& is double valued. Ini-
tially, the solution is confined to the curve for which
M» 1. As q increases, any formation of compres-
sion waves in the medium can effect a transition to
the compression shock curve for which M& ~1.
However, this requires a finite formation time to es-
tablish a steady-state flow. From this figure it is
clear that for any given value of Mp, q can increase
until M& ——1. At this critical value q, the flow be-
comes unstable.

The dependence of q on Mo can be determined
from Eq. (51) by setting M~ ——l. It is more con-
venient, however, to compare the value of q~ with
the internal energy Cp Tp in the upstream flow, since
qo varies with Mo. From Eq. (50) and the definition
of qo, one can derive the relation

qm

Cp To

A plot of q /CpTp for y=1.4 is shown in Fig. 7.
As is well known, the net effect of increasing q at a
constant Mo is to accelerate the gas if Mp g1 and
decelerate the gas if Mo ~ 1.

—NO SHOCK WAVE

DISCONTINUITY

--- EXPANSION SHOCK

COMPRESSION SHOCK

y =1.4

0

FIG. 6. Plot of the Mach number M~ behind the wave
front as a function of the wave Mach number Mo for
various types of gas dynamic discontinuities.
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~O

E
cr

0
0

FIG. 7. Maximum stable heat addition to the flow

(normalized to the thermal energy in the medium) as a
function of the velocity (Mach number) of the wave front.
Unstable flow obtains in the parameter space above the

curve.

The use of Eqs. (45)—(48} leads to the following
relations for the downstream gas:

Tt Mi 1+yMp2 2 '2

To Mo 1+y

Pi 1+yMo

1+yM i

pi Mo 1+yM i

pp M2i 1+yMo2

For given values of q and Mo, Mi is uniquely deter-
mined from Eq. (51}. Substitution of Mo and M~
into the above equations yields the values of T&, P&,

pi, and ui. The maximufn values of these variables
are obtained by setting M i

——1.
We note that for large velocities of the bleaching

wave (Mp»1), the temperature and pressure in-
creases are large, but the density change is small and
simply accommodates the change in material veloci-

ty to assure conservation of mass. In the limit of
large Mo, p, /po=(1+ y)/y. Consequently, it is a
good assumption to neglect the number-density vari-
ations resulting from hydrodynamic effects in calcu-
lating the kinetic processes behind the radiation
front when Mp & 1. This is not the case if Mp && 1.

If q &q, Mi ——1. In order to satisfy the conser-
vation laws, additional pressure waves will be gen-
erated to decrease the value of Mo. In a gas dynam-
ic flow this condition is referred to as "choked
Aow. " If Mo is supersonic, additional shocks will be
established upstream to decrease the value of Mp to
a subsonic value. This situation differs from a

Chapman-Jouguet detonation where the heat addi-
tion owing to the chemical reaction drives Mi to un-

ity but adjusts the detonation velocity of the shock
front to give the appropriate value of Mo.

If Mp-1, even a small heat addition to the gas
can lead to hydrodynamic disturbances emanating
from the radiation driven wave front. For example,
for Mp ——2 and y=1.4, T /To-1. 1. Therefore, a
10% increase in the gas temperature is sufficient to
generate unstable hydrodynamic disturbances in the
Aow under these conditions. However, for most ap-
plications of interest, the radiation intensity is suffi-
ciently large that the bleaching wave velocity is
much greater than the speed of sound in the medi-
um. Typically Mp & 10 and Eq. (52) goes over to the
limit

qm Tm 1—1- Mo.
Cq To To 2(y+ 1)

Consequently, unstable hydrodynamic disturbances
will not form under these conditions.

The above analysis is based on the assumption of
steady-state Aow. A more accurate evaluation of
hydrodynamic effects involves the consideration of
the time-dependent evolution of the disturbance
under the conditions of unsteady Aow. If the veloci-

ty of the bleaching wave is sufficiently large such
that Mo»1, a temperature and pressure discon-
tinuity will occur in the medium, but a finite time is
required to establish a density discontinuity and
conditions of steady state. Also time-dependent hy-
drodynamic disturbance can occur for any finite
value of q if Mo g 1.

A time-dependent analysis has been performed by
Ishii and Ahlborn for radiation transport in an
atomic iodine laser. The parent iodine-containing
molecule acts as an absorber for ultraviolet (uv) radi-
ation from an optical pumping source. The mole-
cule dissociates with time in the presence of the ra-
diation field to produce an inverted population of
iodine atoms for the laser. Depending on the inten-

sity, the uv radiation may simply attenuate in the
absorbing medium or can propagate into the medi-
um as a bleaching wave. Their analysis assumed a
monochromatic pump source. The results indicate
three different operating regimes can occur: (a) a
subsonic mode Mp ~1 in which the heat addition
due to photolysis drives a supersonic shock wave
ahead of the photolysis wave, (b) a supersonic mode
Mo & 1 in which the absorption or photolysis front
propagates faster than the local sound speed so that
no shock or any hydrodynamic disturbance can
develop ahead of the radiation wave front, and (c) a
Chapman-Jouguet mode where the shock wave is at-
tached to the absorption front.
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These results are in qualitative agreement with the
steady-state analysis presented above. The superson-
ic mode (b) corresponds to the supersonic curve in
Fig. 6 for which Mo y 1 and Mi y 1. The
Chapman-Jouguet mode corresponds to the
compression shock curve for which Mo&1 and
M& & 1. The subsonic mode is a nonsteady solution
that is derived from the subsonic curve in Fig. 6 but
cannot be predicted by a strict steady-state flow
analysis. This problem has also been addressed nu-
merically in our laboratory using a fully time-
dependent tmo-dimensional hydrodynamic calcula-
tion. The results indicate that the use of a steady-
state flow analysis with adiabatic heat addition is an
excellent approximation for most conditions of in-
terest. Even in the subsonic regime, the system
achieves a nem steady state after a few acoustic tran-
sit times that only differs slightly from that predict-
ed by the previous analysis.

The assumption of a monochromatic pump source
for the iodine laser may not be a good approxima-
tion for a quantitative description of the propaga-
tion of the bleaching wave. Other effects such as
chemical kinetic processes in the medium also
strongly influence the behavior of the bleaching
wave. A detailed analysis of the iodine laser, includ-
ing the effects of a broadband optical pump source
and the medium kinetics, will be considered in a
separate paper.
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APPENDIX:
LINEAR RADIATION TRANSPORT

In this appendix, me review the derivation of the
equations for radiation transport in a linear medi-
um. ' The results used to describe nonlinear radi-
ation transport are similar. The radiation field can
be described in terms of a scalar photon spectral in-
tensity function I„(r, t, Q), where I„dv d Q is the
number of photons at time t in a frequency range v
to v+dv passing per unit of time through a unit
area located at position r and contained within a
solid angle dQ in a direction of a unit propaga-
tion vector Q. The emitting area is normal to Q.
The subscript v designates a spectral quantity. The
spectral photon density U„( r, t) is then

Now consider the propagation of photons through
a plane with a normal n that makes an angle 8 to
Q. The vector photon flux S„(r, t) is given by

S„(r,t)= f I„(r,t, Q)QdQ .

The scalar component of the photon flux along the
normal is n S which can be written in the form

S„(r,t,n)= I„(r,t, Q)cos8dQ .
4m

From this definition, the value of S„depends on the
orientation of the surface, i.e., n.

Consider the transport of radiation along a path
that is aligned in the direction of Q. Conservation
of photons requires that I„satisfy the equation

(A4)

mhere 6„ is the net gain in the number of photons
over the losses. The photon losses are due to absorp-
tion while the photon sources are due to stimulated
and spontaneous emission processes. The absorption
in the medium can be characterized by an absorp-
tion coefficient x„'(r,t) which depends on the num-
ber of molecules in the absorbing state. It is also
possible to include the effects of stimulated emission
by defining a net absorption coefficient ~„(r,t)
which now depends on the population density in the
upper state as mell as the lomer state. Since these
population densities in general depend on I„, the
value of x„ is also an imphcit function of I„. For
spontaneous emission, we define a spectral intensity
I which can be related to the absorption of the
medium by Kirchoff's radiation laws. The result is
that the net absorption in the medium can be re-
duced to a term of the form s„(I„—I„). Equation
(A4) may nom be written in the form

(A5)

A continuity equation for the radiation field can be
obtained by integrating Eq. (A5) over all directions
Q. Using the definition of U„and S~ we obtain the
result

(A6)

A useful solution of Eq. (A5) can be obtained as
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follows. %e consider a propagation path of the ra-

diation along a coordinate s so that V~8/Bs. A
simple transformation to the retarded time
t'=t —s/c in Eq. (A5) results in an equation of the

form

BI~ = —~ (s,&'+s/~)(I, —I„,) .
Bs

%hen integrated and transformed back to the origi-
nal coordinates Eq. (A7) has the formal solution

s —so

C

s —s
exp — K~ s, t — ds

So C

s —s' s —s s —s"+ +~ s «t Ivs s «~ — e&p —,&„s «~ — ds ds

where so is the coordinate of the photon source. In many cases of interest, the propagation time over the
length of the medium is short compared to the time scale for changes in the source or in the medium. %e see
from Eq. (A8) that this condition is formally equivalent to allowing c to approach infinity in Eq. (A7). Al-
though the time-derivative term is important for temporal changes in a propagating pulse, in most of the dis-
cussion related to present applications, we can neglect the finite propagation time of the radiation. The radia-
tion field can then be written in the form

S S S

I„(s,t)=I„(sc,t)exp — x„(s",t)ds" + tr„(s', t)I (s', )exp — «„(s",t)ds-" ds' .
So So S

These results are applied to radiation transport in one dimension. The only modification required for nonlinear
radiation transport is that v„may be an implicit function of I,. In linear radiation transport, the solutions of
the transport equations can be obtained for each spectral component I„,5„, and U„. For nonlinear radiation
transport, the solution will contain frequency-convoluted terms involving a„and I„.
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