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Quantum theory of optical bistability. III. Atomic fluorescence in a low-Q cavity
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We specialize the quantum-statistical theory of optical bistability developed in "Optical

Bistability. II" to a low-Q cavity. From a linearized Fokker-Planck equation derived in

the positive I' representation, the steady-state correlation matrix and spectrum of fluctua-

tions are calculated. Expressions which normally assume a positive-definite diffusion ma-

trix are shown to be valid for nonpositive-definite diffusion. For absorptive bistability we

find agreement with results derived previously by quite different methods. More generally

we extend previously published results by including atomic and cavity detunings. We com-

pare the transmitted spectrum for dispersive bistability with that for absorptive bistability,

and photon antibunching in dispersive bistability is discussed.

I. INTRODUCTION

In the preceding paper of this series' (hereafter
referred to as OBIIi, a quantum-statistical model
for optical bistability was developed. A system of
homogeneously broadened two-level atoms interact-
ing with a single driven cavity mode (mean-field
limit * ) was considered. Cavity and atomic detun-

ings were included to provide a treatment for both
absorptive and dispersive bistability. Radiative and
collisional damping of the atoms, and losses at the
cavity mirrors, were modeled by coupling the atoms
and cavity mode to thermal reservoirs, and a
Fokker-Planck equation was derived following
Haken*s treatment of the laser. With the use of the
standard representation of laser theory the resulting
equation did not have positive-definite diffusion,
but it could be interpreted within the context of the
generalized representations introduced by Drum-
mond and Gardiner where positive-semidefinite
diffusion can be assured.

In OBII atomic variables were adiabatically elim-
inated via an Ito stochastic differential equation
equivalent to the Fokker-Planck equation, and a
theory for optical bistability in a high-Q cavity was
developed. In the present paper we treat the low-Q
limit where cavity field variables are eliminated.
From a linearized theory of Auctuations we calcu-

late the incoherent intensity, spectrum, and second-
order correlation function for the transmitted light.

Quantum-statistical treatments of absorptive bis-

tability in a low-Q cavity have been published by
Agarwal et al. and Lugiato. Agarwal et al. begin
with a master equation with the cavity field elim-

inated and derive quantum Langevin equations for
atomic operators. They perform a system-size ex-

pansion to calculate steady-state correlations and
the transmitted spectrum. Their results are shown
to correspond to those obtained using the
quantum-regression theorem and a Gaussian decou-

pling approximation. Lugiato arrives at the same
results from a linearized Fokker-Planck equation
derived in the %igner (or Weyl) representation. His
formalism has also been used to calculate the
second-order correlation function and to show that
photon antibunching' occurs in absorptive bistabil-
ity.

A quantum-statistical treatment for a low-Q cavi-

ty including dispersion has been presented by
Agarwal and Tewari. " They follow the method of
Agarwal et al. after adding a term describing
atomic detuning to the master equation. They do
not, however, include a cavity detuning, and there-
fore do not give a full description for dispersive bis-
tability. The first objective of our paper is to com-
plement the existing literature by presenting a gen-
eral quantum-statistical theory for both absorptive
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and dispersive bistability in a low-Q cavity includ-
ing both atomic and cavity detunings.

In addition, this calculation provides an illustra-
tion of the use of the positive P representation in a
circumstance where more familiar techniques—
following Haken's laser theory —lead to a Fokker-
Planck equation with nonpositive-definite diffusion.
Haken uses a representation based on normally or-
dered operators to transform an operator master
equation into a c-number equation. Gronchi and
Lugiato' and Agarwal et al. ' note that this
method leads to a Fokker-Planck equation with
nonpositive-definite diffusion and, moreover, that
the scaling argument used by Haken to drop the of-
fending terms does not work for optical bistability.
They circumvent this problem with a Fokker-
Planck equation based on sy metric (or Weyl)
ordering —an equation for the Wigner (or Weyl) dis-
tribution function. This equation has positive-
definite diffusion.

Drummond and Gardiner have described a new

class of representations, closely associated to that
used by Haken, with the usual integration measure
extended from the real line into the complex plane.
In particular, the positive P representation ensures a
positive distribution function and positive-
semidefinite diffusion. For this it does impose a
cost: The distribution function is now defined in
twice as many dimensions. However, in a linearized

theory, steady-state moments and the spectrum of
fluctuations can be calculated in the original space
by a naive application of familiar formal expres-
sions to a Fokker-Planck equation with

nonpositive-definite diffusion. The positive P repre-
sentation merely justifies this procedure. For the
special case of absorptive bistability we show that
our results, obtained in this way, reduce to those of
Aglrwal et al. and Lugiato.

In Sec. II, we briefly review the model from OBII
and derive the linearized Fokker-Planck equation
for a low-Q cavity. Steady-state correlations and

the spectrum of the transmitted light are derived
and discussed in Secs. III and IV, respectively. For
absorptive bistability recent calculations by Carmi-
chael' and Lugiato' have shown that fluorescence
perpendicular to the cavity axis has the familiar

spectrum of single-atom resonance fluorescence. ' '
In Sec. V, we briefly review the results of Ref. 14
and their generalization to dispersive bistability.
The second-order correlation function is derived in
Sec. VI and photon antibunching is found for a
wide range of atomic and cavity detunings. Our re-

sults and conclusions are summarized in Sec. VII.

II. MODEL AND LINEARIZED THEORY
OF FLUCTUATIONS

We consider a two-level homogeneously
broadened medium coupled to a single quantized
ring-cavity mode excited by a classical driving field.
The ring cavity has input and output mirrors
aligned in the z direction, each with a reflective
coefficient R, where phase changes Pr and Ps ac-

company transmission and reflection, respectively.
The remaining mirrors are perfect reflectors and de-

fine a cavity round-trip distance denoted L+L,
where L is the distance of propagation in the medi-

um. The driving (input) field

(2.1)

with frequency coo, polarization e, and amplitude
8';, excites a cavity mode with resonant frequency
co, . The quantized cavity field is written

E(z, t) = ie(~, /2goV&)'

X[a(t)e ' a(t)e —' ], (2.2)

where a and a are photon creation and annihilation

operators, V~ is the quantization volume, and eo is
the vacuum permittivity (mks units are used

throughout). The medium comprises X two-level

atoms, with resonant frequency co, and dipole mo-

ment p(@=e p), distributed with uniform density
at fixed positions zj, j =1, ,N, throughout an in-

teraction volume VI ——V~L /(L +L). Collective
atomic operators are defined by

(2.4)

N + ik, zJ,= ge ''oJ, ,

(2.3)

J, = ga', ,
j=l

where a+ and o, are pseudospin operators for the
jth atom, satisfying commutation relations

[a+,o' ]=2cr,'5Ji, and [o+,o', ]=+cr+51k.
In OBII a Fokker-Planck equation has been de-

rived to describe the coupled system of atoms plus
cavity mode. Interactions with thermal reservoirs
model radiative and collisional atomic decay and
losses at the cavity mirrors. Using the positive P
representation (generalized to include atomic
operators), the correspondence between c numbers
and operators is

j2

a& a
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where j&, j2, j3, a~, and cx~ arc 811 1ndcpcndent

complex variables and the Fokker-Planck equation
reads

Apart from the fact that j3 is complex and j],j2
and a

& a2 are not complex-conjugate pairs, this for-
mulation follows Haken's treatment for the laser.
Classical averages in the space of c numbers give
normally ordered quantum averages,

+ —
~ ~ Dg, g (g) &(g,r)

Y

(J~+J~J" a 'a')= Jd (P(g')J'$j)j", a2a', . (2.14)

Throughout quantum averages ( ) are taken with
respect to the rotating density operator

~J, = yi—(I+ig V l+2gJ3al

AJ, =—yl(1 i5)j—2+2gj 3a2,
p, (t)= exp[icoo(J, +a &)r]

yp(r)exp[ —irido(J, +«)r]

~J, =—
y~~ J3+

2
g(J—l a2+J2a l }

A, =—a(1+i/)al+gjl+~S';,

A = —«(1 ip }a—2+jg2+lrS'

Dj j 2gj 1 A 1

Dj j —2gJ2a2,

(2.7)

It is shown in OBII that Eq. (2.5} is equivalent to
a Fokker-Planck equation with positive-semidefinite
diffusion. Theres atomic varlablcs werc adlabatlcal-

ly eliminated from the corresponding Ito stochastic
differential equation. Here we follow the same
methods, but rather adiabatically eliminate the field
variables —in the *'bad cavity" limit. ' %'e have

al ——(1+iiI}) ' S';+Lj l
K

N
DJ, ,j,=y~~ J3+

2
—g(Jla2+J2al»

4

g,a2=(1 ip) '—S'l+ —j2
K

(2.15)

E
DJ, ,J, =DJ, ,J, =(2yl. y~() j 3—+

2 and the resulting equations for j~, J2, and J3 are

all remaining D~ g are zero. Here yI~ and yj are

longitudinal and transverse atomic relaxation rates,

is the cavity relaxation rate,

(2.10)

1s thc atom-field coup11ng constant»

dJ)

dt
= —yi(1++ Vl

+1 . j3 S'l+ jl +I;,2g . — L
1+i Jl

dJ2

dt
yi(l —+V2—

+ 1,. j3 @'l+ j2 +I'J. .
2g

(2.16)

5=(co, r00)lyi— (2.11) yll J3+2 -g
1 yjl+ ~j2

* 4

are atomic and cavity detunings, and

S' = i(2e, V& j—Am )'~ 2eS /(I Jt)'~2. . g 13)

2g s a

(1 y2) JlJ2 J3

where I J, , I j,, and I j, are Gaussian random vari-

ables with
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(r, ,(i)r, (&')& =, J, T(', + J 5(i —r ),

(ri (r)rJ (r')&= g. j, 8";++j, 5(t —r'),
2 2 1 ip K

r

N &I . &i . 2g(r,. (r)ri (r')&=
y~~ ji+ g — . ji+ . jz

2 1 ist—s 1+i/ ir(]+pi) Jij2 5(r —r }

(rJ, (t)ri, (t') & =(ri, (&)rJ, (t') & =(2yi —
y~~ } jg+—

r

and all remaining correlations are zero.
The steady-state mean-field theory for optical

bistability in a ring cavity follows from solutions
to Eqs. (2.16) with the time derivatives and Gauss-
ian noise sources set to zero. The basis for our
linearized theory of fluctuations is a Fokker-Planck
equation corresponding to the Langevin equations
obtained after linearizing Eqs. (2.16) about this
steady state and substituting steady-state solutions

ji, ji, and jq into Eqs. (2.17). We define a scaled
time r =yet and new variables

I

and

e=I (1—l'5)e X /(1+5 +X ),
f =(1—I )X'/(1+5'+ X'),
g=2IX /(1+5 +X ) .

We have defined

~=y((/2yl

C=JVg /2iiyi aL/4(1 —R)——,

(2.23)

{2.24)

(2.25)

Ji
j —= J2

J3

r

Ji —Ji.SS
Jz —J2
J3 —J3

8/Bj,
8/8j2
8/Bj

(2.18)

where a =Np co, /eoRVzy& c is the resonant absorp-
tion coefficient and Yexp(is))~) and Xexp(ip„) are
the dimensionless driving field and mean cavity
field amplitudes:

"=l2g+;/{y~~yy)

The Fokker-Planck equation reads =(1—R) ' 5' /8' (2.26)

where

a 0 b

A= Oa' b'
C C

e f
D= f e'

0 0
with

d.
0
0

Qp (j r)= j Aj+ j Dj P(j r),r
(2.19)

(2.20)

(2.21)

Xe'~'=2g(a &/(y~)yi)' i

R }-i/2& ' r g /g

where @',=(4/2p)(y~~yg)' is the saturation ampli-
tude and 8', is the transmitted field amplitude. For
given C, 5, s)), and Yexp(i((sz), the complex ampli-
tude Xexp(iP„) satisfies the state equation

Ye "=Xe ' (1+i/)ip ip»

+ (1—i5)

1+l5 Y i(py p»)a= . —e
1+ists X

b=iv 2rXe {2.22) III. STEADY-STATE CORRELATIONS

(2.27)

.~~/2X
—iy„

1
1+i5 2C
I+i/ 1+5i+Xi

d =2I

In Eq. (2.19),ji, j2, and j3 are independent com-
plex variables. It can be shown that the restrictions

j3——j 3, ji
——j ~

—as in Haken's laser theory —lead
~ A Q ~ ~ Q ~ 4
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to a Fokker-Planck equation with nonpositive-
definite diffusion. Using the positive P representa-

tion, Eq. (2.19) is interpreted within a six-

dimensional space where, defining j „, j y, j„,and

jy by

3 =jx+~ jy y

(3.1)
] ~y ~t

3 =2(3x i3y) t

This is precisely the equation we would obtain by
strictly following Haken's treatment for the laser-
to Eq. (2.19) with jq ——jq, j~ = i,' —and naively

overlooking the fact that represents a
nonpositive-definite diffusior

To solve Eq. (3.8) we write

u l8 U

()P
O'T

( j„,jy, r)=

with

XP( jxs jyy~)

it is shown to be equivalent to'

3x jx
A

3y 3y,

3x D
2%

3x
~y
3y

(3.2)

where

, U U Z

with

a =av(jiji) = (J J
U=av(J, J, )„=(J,J &„,

w =av(j 2j~)„=(J+J
z =av(jq jq )„=(J,J, &„

gx
J

(3.3) J,=—(J,—(Jg&„) .Z ~ Z Z SS

(3.11)

8X8X 8X8y
D=

8y8" 8y8"
Equation (3.8) then corresponds to the following set
of coupled matrix equations:

D=(B +iBy)(B +iBy) (3A)

This equation has an explicitly positive-semidefinite
diffusion.

The solution to Eq. (3.2) is a Gaussian in six di-

rnensions and the steady-state correlation matrix

a 0 u

Oa u*

e 0 u

0 c* u'

T

b 0 U 1 e

Ob' U* 2& e*

G Gxy
6= yx yy ~ G "=av( j& j„)»,6 G

satisfies the equation

]
AG+GA =—D.

(3.5)

(3.6)

b* b U

+
C C U

=0, (3.12)
e b

a+a' 0 w 1 2j
0 d Z 2Q g

We use av( )„ to denote classical steady-state aver-

ages. We are only interested in physical correla-
tions, however; namely, those corresponding to nor-
mally ordered quantum averages [Eq. (2.14)]. We
restrict our attention to the physical correlation rna-

trix
~~T

G=av( j j )„=(6 —6 y)+i(G~+Gy") .

{ii &„= (JJt'+gz)z((J )'—(g ('),

where
(3.13)

P =bc

Solving this set of equations is a straightforward ex-
ercise. We find

From Eqs. (3.3)—(3.7) it can be shown that G satis-
fies the matrix equation

b' e'
Q=(a +d) 1—

a d

bc

a+a (3.14)
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and

[e —b(2Ã(J, X }„)]/ (3.15) 16.0

1
~&.J.} =

2& «[g 2c( 2N—( J J }„)]/d .

(3.17)

0.0
0.00 1.24

For absorptive bistabthty (5 =p —())

checked Eqs. (3.13), (3.15), and (3.16) against
Lugiato's results [Eqs. (5.12a), (5.12b), and (5.12c)
in Ref. 7] and find perfect agreement. For I =1-
purely radiative atomic damping —our results also

agree with those of Agarwal et al. This agreement

provides explicit verification of our use of the posi-
tive I' representation to justify Eq. (3.8} with its im-

plied neglect of a nonpositive-definite diffusion.
Amongst the various steady-state correlations the

result of most physical interest is that for
(J+J }„.This gives the incoherent transmitted

intensity. With the full transmitted intensity divid-

ed into coherent and incoherent contributions we

have

80

0
4.5

I

6.5
I

8.5
X

FIG. 1. The ratio of incoherent and coherent transmit-

ted intensities for C=20, 5=1.0, and tI = —2.0. Turn-

ing points in the bistability curve are at X= 1.71,
7'=23.3 and X=4.30, 7=21.2. (a) Lower branch with

(i) I =1.00„(ii) I =0.80, (iii) I =0.50, and (iv) I =0.10.
(b) Upper branch with (i) I"=1.00, {ii) I =0.10, and (iii)

I =0.01. The dashed curves are for the limit I ~0 [Eq.
(3.20)].

T,'„', /N' (1—R) = (2iY(J J } ) .
NI

%e have plotted the ratio XI T;'„',/T,",h in Fig. 1

for C =20, 5 = 1, P = —2, and various values of I .
These parameters give bistability, and the behavior
for other parameters satisfying the bistability condi-
tions

4(C+5y —I)' & 27C(1+5')(I+/'),
(3.19)

2C) 5$ —1,
are sirni1ar. The divergences in Fig. 1 occur at the
turning points, d F/dX =0, of the S-shaped bistabil-

ity curve (see Ref. 20) plotted from Eq. (2.27). Here
the linearization introduced in Sec. II breaks down 7

the steady state is no longer locally stable. As I de-

creases, corresponding to an increase in phase des-

troying atomic collisions, the divergences are nar-
rowed. Note that as I ~0, along the lower branch
[Fig. 1(a)],

final

T;'„', /T', *,h develops a local minimum,

and in the limit

SI' T;'„',/T,",s ——4C'/[ (1+(()')I'
+ ( I +5')( I +P '+ 2C)]

This is a monotonically decreasing function of X;
the divergences now have zero width.

IV. TRANSMITTED SPECTRUM

The argument used to justify Eq. (3.8) applies in

a similar fashion to a calculation of the spectrum of
fluctuations. In the six-dimensional ( j „,jy) space
we define
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and the corresponding spectrum from Eq. (4.3) it can be shown that

C(co)= f dr e '"'G(r)

)s given by

C(co) = (A —icoI6) 'D(A +icoI6)
2m%

(A —iGI3) 'D(A +icoI3)
2mB

(4.S)

where I6 is the 6)&6 identity matrix. We use G to
indicate a dimensionless frequency complementary
to ke dirnensionless time ~. Then, in like manner
to the relationship between Eqs. (3.6) and (3.8), with

G{r)=av( j(r) j )„=[G (r) G~'(r—)]

where I3 is the 3X3 identity matrix. This is again
precisely the equation we would obtain from Eq.
(2.19) if, with j1——j1', j,=j;, we naively overlook
the fact that D represents a nonpositive-definite dif-
fusion.

Corresponding to the separation of coherent and
incoherent intensities in Eq. (3.18), the spectrum of
the transmitted light is written

+i[G "(r)+G~"(r)],

(4.4)

T„(G)=T,",h5(co )+T';„',P (F)),

where

(4.6)

P (co)=(J+J ),, f dr e '"'(J+(r)J )„

=(J,i &;, dr e ' 'av{j~(r)j, )„2'

and from Eq. (4.5) we find

C(co)21——
~
A(ico)

~
Re[ 2bc'e*[(a+ico )(d+ico ) be]—

2~%

+/ [ I
{a+&~)(d+&~)—bc I'+

I
bc

I
']+g lb{a+i~) I']

with

A(ico)=(a ico)(a' —ico)(d —ico) bc(a—' ico—) b*c'—(a i—co) . —

Here the spectrum is normalized with respect to the dimensionless frequency G,

f dco a(co)=1, f dco T„(co)=T,",h+T,'„', .

As a function of the dimensioned optical frequency m, the normalized spectrum is given by y] T„(G ) with

co =(co —coo)/1'1.
In principle, the incoherent spectrum W(G) can be decomposed into the sum of three Lorentzian com-

ponents with

cled [co
—Im(A~)]+ p~

C(G)p) ——
21r& „=1 [co —Im(kq)] +[Re(Aq)]

(4.10)

where the A,„are roots of the cubic equation A(A, ) =0, and a„and P„are real coefficients. For absorptive bis-

tability (5 =p =0) we have obtained a (co) in this form and compared our results with the work of I.ugiato,
and, for I =1, with the work of Agarwal et aI. Our results agree, a further explicit confirmation of our
methods. With nonzero atomic and cavity detunings this decomposition is generally not practicable. Howev-

er, it can be made for the weak-field limit X»» 1+5:
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and

2C . 2C
A, , =A,', =a= 1+, +i 5 —P1+{(' 1+P'

A,3
——d =2I

(4.11)

a, = —aq ———— I X
~

a
~

Re(a)/Im(a),1 X
2 1+5

P~= [(1—I )+ —,IX
~

a
~

Re(a)],
1+5

Pq
——— IX ~a

~

Re(a),1 X
1 +52

a3 ——p3 —0,
with

(J+J )„=f cko C(co)g)

X
[(1—I')+I X ~a

~

Re(a)]/Re(a) .
2N 1+52

(4.12)

(4.13)

~

a
~

d —2Re(bca')

Y dY
X dX

2I (1+5'+X')(1+/')-' . (4.14)

Note the two types of terms appearing in Eqs. (4.12)
and (4.13), terms in (1 —I )X /(1+5 ) and
I X4/(1+52). Both must be retained. For
(1—I )-1&&X the former is of dominant order,
while for (1—I ) «X «1 the latter is of dom-
inant order [see feature 2(c) below]. We have

dropped terms in (1 —I )X /(1+5 ) which are al-

ways of second order.
For absorptive bistability there has been much in-

terest in collective features in the transmitted spec-
trum, ' ' ' features such as (Fig. 2).

(1) Linewidth narrowing at the instabilities—
turning points d Y/dX =0 in bistability curves Y vs

X.
(2) A spectral component with a broad coopera-

tive linewidth along the lower branch.
(3) Premature merging of the Stark sidebands'

along the upper branch, with the sidebands becom-
ing higher than the central peak.

For various sets of parameters satisfying the bi-
stability conditions [Eqs. (3.19)] P(co) is plotted
throughout the bistable region in Figs. 2 —7. Here,
corresponding collective features are illustrated for
dispersive bistability.

(1) It may be shown that

I

Then the linewidth of one spectral component van-

ishes at each turning point, since, with d Y/dX =0,
the cubic equation A(A. )=0 [Eq. (4.9)] has a root
A, =O. We find linewidth narrowing occurs as in ab-

sorptive bistability; Figs. 2 —5 illustrate this on both
the upper and lower branches. Only the beginning
of the process is shown. In each example a close
enough approach to the instability concentrates the
entire spectral density in a single central peak with
narrowing linewidth.

(2) A broad spectral component is present along
the lower branch in dispersive bistability (Figs.
2 —5). However various new features distinguish
this case.

(a) The cooperative linewidth is modified by the
cavity detuning in the manner indicated by Eqs.
(4.11). The factor ( I+.P )

' expresses the effect of
cavity detuning on the enhancement of the collec-
tive radiation reaction field by the cavity. It ori-
ginates in the terms (I+i/) '(g/s)j, z in Eqs.
(2.15), which contribute to the decay of fluctuations
in the collective polarization via nonlinear terms in

Eqs. (2.16).
(b) The broad component along the lower branch

is generally a doublet associated with complex-con-

jugate roots to the cubic equation A(A, )=0; A, &, and
A,z in Eqs. (4.11). This is well illustrated in Figs.
3(a) and 5(a), while in Fig. 4(a) the doublet is not

resolved, as the splitting is less than the broadened

linewidth. For P =0 in Eqs. (4.11) the splitting by

+5 corresponds to that in ordinary resonance

fluorescence with a detuned driving field. The
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FIG 2. The 1ncohcrcnt part of thc tran81Mttcd spectrum fo C=
the bistability curve are at X=1.05 F= = . , = . . a

1 c spectrum for C= —. —. , = . . Turn1ng po1nts 1A

a ower branch, (b) upper branch.

contribution proportional to P is due to the detun-

ing between the collective polarization and the cavi-

ive radiation reaction field [Eqs. (2.15) and (2.16)].
Note that in Figs. 3, 4, and 5 the broad spectral

component remains as R cloUblct alon thc
cac tUIIIlg po1nt thc cllblc

f rth
=0 has onc root A, =0

urt er roots
, as note above, Rnd t%'o

0.03

FIG. 3. The incohcrent part of thc tran81Mttcd s ectrum
the bistabihty curve are at X=1.34, Y'=1 —. , — . . a

I = I.OO. Turning points in
a ower branch, (b) upper branch.



—0.15

—0.12

F
—0.09 —0.09

0.66

-I0

j
0.00

'!.'|0

-20

0.00

52
"/ 1428 ll, 0 14 28

gO and $ p f O Turning pOlnts tn the bistabt t )'FIG 4 Tge mcohere&~ part o~ the transm~t~ p
b h p —0 99 (c) lowerY'=20. 1 and X=5.99, F=12.3. (a) Lower branch, I =1.00; (b) 1ower rane,curve are at X=1.43, 7=20. 1 an = . , =,— ' r nc

branch, I =0.10; (d) upper branch I =1.00; (e) upp«br»c,



(a)

CHAEL, ALLS, DRUMMOND AND HASSAN

—0.18

—0.12

0.09

q0 21

!—0.18

0.15

0.12

0.00
,00 —0.18

0.06

0.03

-32 -16

CV

16 32

—,0.12

—0.09
-16

-0.06

16 32

32

0.96

—0.80

0l8

0.00
5.O0

0. 00
5.375

~l
lU

9 -l 5 0 I 5 90

FIG. 5. The incoherent art of tp o the transmitted spectrum for C=20, 5= . , an = —. . '
n s in e0, and P = —2.0. Turning points in the h'-

P =2.0.
r=o 10 ~d) b h r=100nc, = . ; (e) upper branch, I =0.10 wh, w ere or clarity we use 5= —1.0,



QUANTUM THEORY OF OPTICAL BISTABILITY. HI. . . .

1+5' 2C

I+/' 1+5'+X'

At the turn1ng point along the lower branch in Figs.
3(a), 4(a), and 5(a) we find A, =4.11—
11.90-i

(c T
+i 7.98, and 5.25+i 8.89 respect' 1pcc 1vc y.

dcncc on
c hc broad doublet shows 8 t dws 8 scnslt1vc dcpcn-

ence on dephasing atomic collisions. For purely

58
radiative atomic decay (I'=1) F' 3(igs. (a), 4(a), and

(a) are symInetric about @=0. Kith a 1+
in I a dram

1 8 % chRngc
a ramatIc asymmetry is introduced in F

4(b) and 5 b.
uc 1n 1gs.

tie chan
( ). At weak fields this asymm t 1-me ry 1s 1t-

angcd» F1gs. 4(c) and 5(c) where I has been
reduced b 90y %. This behavior can be understood
from Eqs. (4.12).
(1—I )X /1

; p1 differs from pz by a term

when I =1, but it
/ +5 ). This term vanishes d ll1 cntlca y

ut it dominates the spectrum when
(1—I')&) —,IX ~a

~

Re(a). In Figs. 4 and 5,

ig. ( ) that the asymmetry is reduced
as X increases, while for the larger value of (1—I )

reduce the asymmetry. Note that this effect must

p trum for ordinary resonancealso appear 1Q thc s cc
uo1 csccncc—obta1ned by tt C =

above results. There
~
a

~
Re(a)=(1+5 )

' and
the asymmetry should be seen for
X g~2(1+5 )(1—I )/I.

(3) As in absorptive bistability, far above the in-

stability on the upper bran h th hc e 1nco erent spec-
trum tends to the Stark tri let of or
nance uorescence [Figs. 6(a) and 7(a)]. As the
instability is approached the sidebands migrate t-m1grate to-

couI'sc to
central peak, again followin d'ff

o that 1Q rcsonancc Auorcsccncc. Various
behaviors are possible for the same atomic detuning,
as evidenced by Figs. 3(b), 4(d), and 5
ea ures characterize the differences bet hween t cse

(a) In absorptive bistability the Stark sidebands
merge with the central peak before the instability is
reached. In dispersive bistability this may or may

linewi
not be the case. Equation (4.15)
inewidths and splitting in the linewidth narrowing

region for the spectral components other than the

0,00

80 g0 0 40 80

K

0.00
0

-30

FIG. 6. The inccoherent part of the transmitted
trum alon the u

1 e spec-

g e upper branch showing Rabi sidebands
growing relative to the central peak th
approached, C=2O and ( ) 5=1.O,

a as t. e Instabilit

5 =—1.0, P = —1.0, I =0.10.
a = . , =&O, r=&OO b
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(b) In absorptive bistability the sidebands become

larger than the central peak immediately before
linewidth narrowing sets in [Fig. 2(b)]. Agarwal

and Tewari noted that this did not occur when11

they included dispersion (5+0,$ =0). Figures 3(b),

4(d), and 5(d) indicate that, in fact, two different

behaviors are possible in dispersive bistability. As
the instability is approached along the upper
branch, before the region of linewidth narrowing,

either the sidebands grow at the expense of the cen-

tral peak or the central peak grows at the expense of
the sidebands. This distinction is clearly illustrated

in Figs. 6(a) and 7(a). The change in relative peak

heights is accomplished to varying degrees before
linewidth narrowing sets in. In Fig. 3(b) the side-

bands have grown, but not quite to the height of the

central peak. In Figs. 2(b) and 4(d) they become

higher that the central peak.
Note that along the upper branch the incoherent

spectrum is not sensitive to small changes in I as it
is along the lower branch. However, larger changes
introduce an asymmetry, as illustrated in Figs. 4(e),
5(e), 6(b), and 7(b).

024 P

0. 16

—008

Iooo

- 30 -1'5 0 15 30

FIG. 7. The incoherent part of the transmitted spec-

trum along the upper branch showing Rabi sidebands

shrinking relative to the central peak as the instability is

approached, C=20 and (a) 5 =1.0, P = —2.0, I =1.00;
(b) 5 = —1.0, $ =2.0, I =0.10.

dominant peak. Corresponding to Fig. 4(d),
X1——4.06, k2 ——3.06—the sidebands have merged
with the central peak. Corresponding to Figs. 3(b)
and 5(d), A, 1 2

——2.48+i 1.78 and A, 1 2
——2.78+i 7.78,

respectively —the sidebands have not merged with
the central peak.

V. FLUORESCENT SPECTRUM

F„(~)=F,",„5(co)+F,'„',W'(co ),
where

(5.1)

For absorptive bistability it has recently been

shown that the spectrum of the fluorescent light—
emitted perpendicular to the direction of
propagation —does not exhibit collective features
similar to the transmitted spectrum. ' ' To first
order the fluorescent spectrum is just the spectrum
of ordinary resonance fluorescence for atoms driven

by the mean cavity field. This result may be gen-

eralized to dispersive bistability: With the use of
the arguments of Ref. 14, and beginning with Eqs.
(2.16) (setting I J ——I& ——I~ =0) to replace Eqs.

(11) and (12) in Ref. 14, only the matrices A and 8
and steady-state correlations y„'~„(Ref. 14) are now

altered. Again, collective effects will enter only as
corrections of order 1/N to the spectrum of normal

resonance fluorescence, now in a detuned driving
fie . Including atomic and cavity detunings th

uorescent spectrum detected at a position r,
summed over atoms at positions r~ in an observa-

tion volume U—
i
r —r

i
=R r —r. =RJRJ—'i=

given by

2
'2

Fss k p
( p && R, ) y R, —,I (1+5')X'/(1+5'+X')' (5.2)
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2
'2

ko
P,„',= g (p, XR, )XR, —, 1 —I", , X'/(I+5'+X'),

0 ~) ~ ~ 1+52+X2

P '(aI) = f' '
~

A'(iG)
~

2RC(A'(iaI ) I
c'(b' «e' b'f—')+(a'+i')[(d'+i')f' b' ~—g']] ),

2m'

A'(iaI ) =(a' ir0—)(a'* i'—)(d' iaT—) b'—c'(a' * i'—) b' —~c' *(a' i'—),

VI. PHOTON ANTIBUNCHING

a'= 1+i5,
b'= i~2I Xe

C =i+I /2X8

d =2I

1 —i5
8 I

1+i5

ye "X (1+5 )/(1+5 +X )

f'= —, I —I X /( I+5 +X ),1+5'+X'

One of the most interesting results coming from
thc study of ordinary resonance fluorescence has
bccn thc prcdiction and obscrvatlon of photon
antibunching in the fluorescence from a single
atom. Casagrande and Lugiato have looked for
photon antibunching in absorptive bistability. Us-

ing the quantum-statistical theory developed by
Gronchi and Lugiato, * for purely radiative atom-
ic decay (I =1) they find antibunching along the
lower branch in both the "good cavity" and "bad
cavity limi(s. For the bad cavity llmlt %c may
now extend this investigation to dispersive bistabili-

ty.
The normalized second-order correlation function

for the transmitted light is given by

g'= —i—,&I /2(1 —i5)e "X /(1+52+X )2 . =av(a 2a ~ )„/av(+2~] )„,2 2 2 (6.1)

Note that the only dependence on the cavity detun-

ing P is in the determination of the mean cavity
field intensity X via Eq. (2.27).

and after adiabatic elimination of the field variables

[Eqs. (2.15)], and linearization about the steady
state [Eq. (2.1 8)]

g,',"(0)—I=(I/Xl )gc'(I+y')-' 2Ã(J, J )„/X' —Re .'e "»(& J ),./X'
+i

In the derivation of Eq. (6.2) odd moments —e.g., av{j2j «)„—vanish since the j& are Gaussian distributed, and
'tllc tcrnl Rv(J IJ I )qq (J +J )qg llas bccII dropped as It Is of order 1/N

Uslllg Eq. (6 2) RIld tltc I'cslllts for (JyI )I Rnd (J J )gs calculated ll1 Scc. III, wc IIlay cvRIURtc

g,', '(0)—1 for arbitrary atomic and cavity detunings. For absorptive bistability (5 =P =0) we recover the re-

sult published by Casagrande and Lugiato. A typical example of results showing photon antibunching-
g»'(0) —1 gO—for nonzero atomic and cavity detunings is given in Fig. 8. As Casagrande and Lugiato ob-

served, photon antibunching occurs along the lower branch for I = 1, and is reduced and eventually eliminated

as I decreases. In the limit I ~0,

IYI [g,',"(0)—1]=SC'/[(1+/')X'+( I+5')(1+/'+2C)],

which is just twice the expression for NI'T,'„', /T,",h in this limit [Eq. (3.20)]. We have not plotted g„(0)—1

along the upper branch, as there photon antibunching does not occur and the behavior is similar to that in Fig.
1(b).
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Antibunching appears to be strongest at X =0 and it is useful to view the general result for g,', '(0)—1 in

the weak-field limit X ««1+5,

g,', '(0) —l=(l/NI )SC (1+5 ) '(I+/ )
' (1—I ) 1+ —I (I+/ )

2C

1 +P 2

(1—5 )(1—P ) —45$+2C(1 —5$)
X [I+2C/( I+/ ')]'+ [5—$2C/(1+(( '}]'

For 5 = —((} (including absorptive bistability, 5 =((}=0) this reduces to

g„(0)—I =( I/Nl'}SC2(1 —2I') 1+ I+/' (6.5)

and photon antibunching occurs for 0.5 « I & 1. More generally, the appearance, or not, of photon antibunch-

ing is determined by competition between the terms in Eq. (6.4) with coefficients (1—I ) and I . The former is
always positive, and hence, for any C, 5, and P the largest effect occurs for I =1, as observed in Fig. S. How-

ever, photon antibunching may not occur, even for I =1, depending on the sign of the term with coefficient
I . For each C and I, setting g'„'(0)—1=0 gives a quadratic in 5 whose roots 5

~
'2 (P ) define a boundary in

(5,$ ) space separating regions of photon antibunching and no photon antibunching —for I = 1,

5)'p ($)=(1—P ) '[ —(C+2)(t+[(I+/ )(I+/ +2C)+P C2]'~2] .

Figure 9(a) illustrates this subdivision of (5,$}
space for I =1 and C =20. As I decreases the area
in (5,$) space for photon antibunching eventually

shrinks to zero. For each C, antibunching occurs
for some (5,$) if

l

4(C+2)/(C+4) «0.5 and photon antibunching
therefore persists in dispersive bistability after it has
been eliminated in absorptive bistability. This is il-

lustrated by the subdivision of (5,$) space in Fig.
9(b).

I y 4(C+2)/(C+4)' . (6.7)

If I (4(C+2)/(C+4) no photon antibunching
occurs, for any (5,$ ). Note, for C & 0,

44—

22

Ch

FIG. 8. Photon antibunching along the lower branch
for C=20, 5=1.0, P =—2.0, and (i) I =1.00, (ii)

I =0.80, (iii) I =0.50, and (iv) I =0.10. The dashed
curve is for the limit I ~0 [Eq. (6.3}].

VII. SUMMARY AND CONCLUSIONS

%e have used the quantum-statistical theory of
optical bistability developed in OBII (Ref. 1) to cal-
culate steady-state correlations, and the spectrum
and second-order correlation function for the
transmitted light in both absorptive and dispersive
bistability in a low-Q cavity.

These calculations are based on a Fokker-Planck
equation derived in the positive P representation. '
This representation gives explicitly positive-
semidefinite diffusion; an important property, since
for optical bistability, the Fokker-Planck equation
derived following Haken's laser theory has
nonpositive-definite diffusion. ' ' The outcome of
our formalism is, however, that expressions for
steady-state correlations and spectra which naively

overlook this nonpositive-definite diffusion are, in
fact, correct. Using these expressions, for absorp-
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tive bistability our results agree with those of
Agarwal et al. , Lugiato, and Casagrande and Lu-
giato, who use quite different methods.

For dispersive bistability the transmitted spec-
trum exhibits collective features similar to those in
absorptive bistability; however, there are a number
of differences in detail. The broad collective com-
ponent along the lower branch is generally a doub-
let, with its collective linewidth modified by the
cavity detuning. This doublet is very sensitive to
phase destroying atomic collisions. For weak in-
cident intensities, small departures from purely ra-
diative decay introduce a dramatic asymmetry.
Along the upper branch, for the same atomic detun-

ing and different cavity detunings, the Rabi side-
bands may either grow or shrink with respect to the
central peak as the bistability region is entered from
above —they may or may not merge with the central
peak before the upper instability is reached.

Photon antibunching occurs along the lower
branch in dispersive bistability for a wide range of
atomic and cavity detunings. The largest effect is
for purely radiative damping, and with the in-

clusion of collisions there exists a value of the col-
lisional decay rate beyond which antibunching does
not occur. Generally photon antibunching remains
in dispersive bistability —for some atomic and cavi-

ty detunings —when the effect in absorptive bistabil-

ity has already been destroyed.

-12

-16

FIG. 9. The subdivision of (5,$ ) space into regions of
photon antibunching and no photon antibunching in the
weak-field limit for C =20. The solid curves mark boun-

daries where g,', '(0) —1=0. Regions labeled a have
g'„'(0)—1 g0 and regions labeled b have g'„'(0)—1&0:
(a) I = 1.00, (b) I =0.5.
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