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We present a fully-quantum-mechanical theory of the intracavity interaction of
coherent light with semiconductors. Interaction is assumed to occur via excitons. Using
a master-equation approach we include such effects as exciton-lattice and exciton-exciton
interactions. In the two cases of high and low exciton densities, steady-state analysis re-

veals bistability and hysteresis in the system. Bistability of a dispersive and absorptive
nature in both exciton number and output intensity, dependent on input intensity is
found. The bistability displayed in the high-density case agrees qualitatively with the ex-

perimental curves obtained by Gibbs et al. for GaAs. As yet the low-density bistability
has not been experimentally observed.

I. INTRODUCTION

Optical bistability has been predicted in several

systems. ' The first experimental verification in-

volved Na vapor, and since then it has been

shown that other systems, involving nonlinear

media ' ' and three-level atoms, should exhibit

bistability.
Recently, experiments by Miller et al. and

Gibbs, McCall, Vcnkatesan, Gossard, Passner, and
Weigmann9 illustrated the occurrence of the
phenomenon in semiconductors. The experiments
of Miller et al. dealt with InSb, in which the
mechanism for bistability was assumed to be a
pseudo-two-level system existing between valence

and conduction bands. Thus the theory follows as
in two-level atom bistability. Gibbs et al., howev-

er, conducted experiments using GaAs. In this

case, interaction between the light field and exci-
tons was seen to give rise to bistability. They
show' that excitons in GaAs exhibit Bloch-like sa-

turation.
Following the work of Hanamura" we present a

microscopic theory of the intracavity interaction of
coherent light and excitons. We start with a
many-fermion Hamiltonian, describing the semi-
conductor system. By means of a modified Maru-
mori transformation' ' we map the system to a
boson space in which the Hamiltonian is written in
terms of exciton operators.

To deal with infinite operator expansions in this
transformation we consider two limiting cases.
Firstly, the low-density case, in which the product

pao (p= exciton density, ao ——Bohr radius), is
small. This is not applicable to GaAs, but ade-

quately describes other systems, e.g., Cds. '

Secondly, we discuss the high-density case, a more
accurate description of GaAs.

We overcome the difficulties associated with a
many-particle system by using a reservior tech-
nique' to derive a master equation. That is, we

assume one exciton is strongly coupled to the field
and let all other exciton modes form a thermal
bath to which the exciton mode of interest is weak-

ly coupled. In this way we can also introduce radi-

ative damping of exciton and field modes in a con-
sistent fashion.

It is possible to identify terms describing
exciton-exciton interactions (i.e. collisions),
exciton-phonon, and exciton-photon interactions in
the resulting master equation. We may then ob-
serve the effect of such processes on the system's
behavior.

Utilizing the complex P representation, ' we
derive a Fokker-Planck equation from the master
equation. The corresponding stochastic equations
contain all information about the system's quan-
tum fluctuations.

The solution of the steady-state deterministic
equations (neglecting noise) reveals bistability. In
the low-density case, exciton-exciton interaction is
shown to be a necessary condition and purely ab-
sorptive bistability is possible if the exciton-exciton
collisions dominate. At high densities such in-
teractions are not necessary to observe dispersive
bistability, although they are still required for ab-
sorptive bistability.

Another theory of optical bistability in semicon-
ductors was recently presented by Goll and Hak-
en. ' They derive Heisenberg equations of motion
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for exciton operators: bilinear combinations of fer-
mion operators —in contrast to the boson operators
of our theory. Damping is included phenomeno-
logically. Their approach provides an alternative
description of bistability: the equations of motion

resemble optical Bloch equations. At high exciton
densities the results are similar to ours, but the
low-density bistability we predict is not predicted
by Goll and Haken.

II. THE MODEL

A. Low-density case: Hamiltonian

We consider the intracavity interaction of a coherent driving field with a semiconductor. It is assumed
that the interaction between light and semiconductor occurs via excitons, thus we develop our theory in
terms of these excitons. For convenience, discussion is limited to a two-band semiconductor. The light field
may then excite an electron from the filled valence band to the conduction band (thereby creating a hole in
the valence band) and so create an exciton.

The Hamiltonian for such a system takes the general form, ' '
H= fd xP (x)H, (x)f(x)+ , fd—xid x2$ (xi)P (x2}V(xi—xi)g(x2)g(xi), (2.1)

where H, is the single-particle Hamiltonian and V represents the Coulomb interaction potential.
As the semiconductor is characterized only by conduction electrons and valence holes we may, in a second

quantized theory, express the operators of the wave field as

P(x) Xak'pk(x }+ydk'q'k'(x }
k k'

(2.2)

where the qrk yk are single-particle wave functions (eigenvectors of H, ), ak is the fermion destruction opera-
tor for a conduction electron with momentum k, and dk is the fermion destruction operator for a valence
hole with momentum k'.

In this way, we find the Hamiltonian for a many-fermion system in momentum space, "
H=QE, (pi)az, az, QE„(p2)d—z,dz,

Pg

P )F2~0
I I

P) ~P2

(2.3)

where

Rpi
E,(pi)= +E

2me

(m, represents the effective electron mass and Eg
represents the band gap energy},

E„(p2)=—
2@iII

(m~ represents the effective hole mass), and
represents the band gap energy),

4n.e
v(q) =

Egg H~„, ——fgt(x)A. pf(x)d3x, (2.4)

(Eo represents the static dielectric constant).
The first two terms in Eq. (2.3}describe the free

Hamiltonian. The third term describes interaction
between electrons and holes: the first term in
brackets concerns electron-electron interactions, the
second term concerns hole-hole interactions, and
the third term describes electron-hole interactions.
We note that this Hamiltonian is equivalent to that
derived by Haken. '

The Hamiltonian describing interaction between
light and semiconductor has the general form
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where A is quantized in terms of boson operators
a. Assuming it is possible to single out a particu-
lar mode of the light field (whose operator is given

by aQ we find in the rotating-wave approximation,

H;„,=Rg az, dz, ag+H. c. ,
P~P2

(2.5}

where g is the coupling constant which does not
depend on pi and p2 because of the single mode
approximation.

We also include a free Hamiltonian term for the
field,

At A,
HP @=AD@2

N = , (N—,+Ns),

N, =gptai ai, Ns g——yt d( dp
t

I I'

by deriving Heisenberg equations of motion for the
operators.

However, we wish to derive a master equation
for the system in order to deal with many-body ef-
fects and damping in a consistent manner. This is
only possible if the Hamiltonian is expressed in
terms of exciton operators which have a closed set
of commutation relations. This is most easily
achieved if we transform the fermion pair opera-
tors to boson operators.

and our Hamiltonian must include a term describ-

ing coupling between the external driving field and
the field mode,

B. Transformation to boson systems

Hn t'A[E e——xp( —icoL t)a —H. c.], (2.6}
Using a modified version of the transformation

due to Marumori et al. '

Ck= +5k p, p,y(k)ap, dp, ,
P~P2

(2.7)

where q is a wave function of the ground state of
a hydrogenlike exciton. This has the commutation

relation '

[&k &k]=l —o{Nao»

where N represents the concentration of electrons
and holes and ap represents the Bohr radius.
Thus, for small carrier densities we may treat the
operators CI, as bosons. However, in many cases
this approximation breaks down and other ap-
proaches must be employed.

Haken et al. formulate a theory of Wannier ex-
citons in terms of operators C, Ct and,

Thus, the external field drives the field (cavity}
mode described by a, which in turn is coupled to
the electrons and holes of the medium. So far, dis-
cussion has been in terms of electrons and holes
and not excitons as such. We now wish to formu-
late the system in terms of excitons.

For small radius (Frenkel) excitons, it is possible
to treat the fermion pairs a;dj- as pseudospin opera-
tors. ' ' This naturally leads to a theory very
similar to that of a two-level atom (i.e., Bloch-like
equations). However, semiconductors possess exci-
tons of large radius (Wannier} thus we must in-
clude effects of nonlocalized electrons and holes.

We could, following many authors, ' ' ' intro-
duce an exciton operator:

U=
~
0)(0 [ g —, , g b ttdtta

"
~

0)(0 I
On! n!

(2 g)

t
X 1+gb pb p

aP

—1/2
P, (2.9)

where P is a projection operator, equal to unity in
the boson subspace. We note that Eq. (2.9) gives
rise to an infinite expansion.

In his theory of Wamuer excitons, Hanamura"
uses a transformation due to Usui,

U'= (0){0~ exp grab ttdtta ~0}(0[,
(2.10)

(where b tt represents the exciton {boson} creation
operator, a~ represents the conduction electron
(fermion) creation operator, d)t represents the
valence hole {fermion) creation operator. ~0) is a
fermion state,

~
0) is a boson state), we form an

equivalence between fermion pair operators and bo-
son operators.

The transformation U is antisymmetrized in
such a way as to ensure a one-to-one correspon-
dence between boson and fermion states. The re-
sulting Hamiltonian is also Hermitian.

The theory of the transformation U is discussed
in Appendix A.

An important case of the transformation is,

Ua+ttUt= b tt gb rbtt„—b~
re
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which generates finite operator expansions. How-
ever, there is no longer a one-to-one correspon-
dence between boson and fermion spaces, and the
transformed Hamiltonian is not Hermitian.
Hanamura solves these problems by using an or-
dering procedure.

However, we avoid these difficulties by using the
transformation U and deal with the infinite expan-
sions by considering particular limiting cases.
Consider the expansion of the right-hand side of
Eq. (2.9) [see Eq. (A.16), Appendix A]:

(1 WP)gbt y b tt + , (1 —2V—2+W3)gb~ tt bH P bH. P.bH tt +. . . P;
IJ IJS

(2.11}

the terms increase in powers of b b, or exciton intensity. Thus for low-density systems, higher-order terms
will become negligible and we may expand to second order only:

=(2.11)~ b tt (1 V—2)b—ttgbHttb tt P.
lJ

(2.12)

Thus, applying the transformation U, we find, in the low-density case,

H ~HP,
where

B=Ho+H, &+H;„,+HD (2.13)

Ho g[Ec(P&) E——E(P2)]bp,—p, bp, p, QV(q)bp—, +qp, +qbp, p, +t02a a,
P 1P2

e
1 t 2bt &t bHE s =
2 g V(q)(b I bp +~ +bp p ~qb 2bp +—qp b )b, , bp p

P1P2%

P 1P2

V(q}(b,b, +b, b, )b, , b
pl+qp2 pl —qp2 plp2 —q pip2+q plp2 plp2

P 1P20

P1P2

p +qp +q p p pi+qp2 pipg+q pip2
P 1P2C

P 1P2

H;„=Pi ga g [bp,p,
—(1—v 2) g bp, p,b, , b, , ]+Hc.

»P2 P1P2

H~ ifi[E exp( itot——t }a H. c—.) . —

The last two terms of H, I, are included to account for the effect of the Pauli exclusion principle. " They
stem primarily from antisymmetrization requirements. This Hamiltonian is essentially equivalent to that of
Hanamura. Following Hanamura, we utilize the transformation

1
bp p =g ~ 5k p~ p+Y(aP~+PPZ)C„k,

vk
(2.14)

where v is the volume of the system, y is the quantum number of the hydrogenlike state, a =mI, /(m, +m~),
P =1—a, and f„(P) is the wave function of the state v of the hydrogenlike state. In particular, fs(X)
(ground-state wave function of the hydrogenlike state) is 8'}/qrao /(1+X2ao)2. The transformation (2.14}di-
agonalizes the excitonic harmonic part of the Hamiltonian to
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Hp=g Es —es ++ CzsC&k= g—llvkCvRCvk ~

Rk (2.15)

where k is center of mass momentum 6b is the binding energy of nth excitonic state, M =m, +m~, and Ez
is the band gap energy. The Hamiltonian then becomes

H =QQ„sC„kC„k+e]za a+ g M]C„s+&C„k sC„kC„k
v, k p, k, k',

p
VqV qP

M2C a C r r I C~kCv'kt
8»+Pg —Pg +0 8 ~k +Pg —Pg —0

P~, k,k', v, v'
I

Pg ~Ig~P ~f

+ih[E exp( ie]t, t—)a H.c—.]+R[ga(r]ck rqck—ckck)+H c ], . . (2.16}

where

M] —— V(q)[f'„{a(p&+k+q)+Pp~)f'„( (ak'+p ~ q)+Pp—~)
2U

+f {a(k'+pg)+P(pg+q}}fp {a(k+pg )P(pg —q))

—2f&(a(k+pq+q)+Ppq)f & (a(k'+pq )+P(pq +q))]

Xf (a(k+pz)+Ppz)f» (a(k'+pa )+Pp'z ),

Mg —— V(q) [f„'(a(k+pg )+P(pg —q) )f„' (a(k'+pg )+P(pg+q ) )
2U

f'„(a(k+pq—+q)+/pe )f„' (a(k'+pq —q)+Ppq)

2fp(a(k+pp—+q)+Ppg )fy (a(k'+pg )+P(pp+q))]

Xf„{a(k+p~)+pp~)fy(a(k'+pz }+ppz),

where summation is implied over all indices and

1 1— 2 2~{ap]+P{p]—k)), rp y~ f(a——p]+P(p] —k))
~ f (ap]+P(p] —k)) .

U vv vP] P&

In deriving H;„, we have assumed it is possible to
single out a particular exciton mode k. That is, we
assume all other modes are so wealdy coupled to
the field that we may ignore them. We have also
dropped the summation over the quantum number
v, assuming we are dealing with one level of the
exciton only (ground state). The terms M], Mq
describe interaction between all exciton modes.
This gives rise to damping which can be attributed
to collisions between different excitons.

H,„~r ~;C;r; +H.c. , (2.17)

where ~& represents the reservoir operator.

As well as this, we assume there is damping of
excitons via coupling to the crystal lattice, i.e.,
phonons. We treat these phonon modes as a reser-
voir in thermal equilibrium weakly coupled to the
exciton mode we are considering. The Hamiltoni-
an describing this process takes the form
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This is similar to the exciton-phonon coupling

model considered by Toyazawa. In his extensive

papers, ' he derives the Hamiltonian

H,„lh~ ——p w(k, k', p)(D& k k +DI, k+k )

pc, k, k'

X Cq, kCV, k (2.18)

where D& „represents the boson creation operator
(phonon), p, v refer to mode and wave number of
phonon, Ckk represents the creation operator (bo-

son) for exciton, A, represents the internal quantum

number, and k represents the wave number. The
two Hamiltonians will be equal if we make the

identification

(2.19}Ifield damp ~ 4Tj +H.C. ,
4

j
where ~& represents the reservoir mode operators.

DIg k kCAk~7; .

Thus the reservoir mode is a combination of exci-
ton and phonon modes, and damping of a particu-
lar exciton occurs via another exciton mode and
not solely through the lattice.

To include damping of the field mode in our
theory we assume modes in the cavity form a
reservoir to which the field mode is coupled:

C. Master Equation

The Hamiltonian derived in the previous section is that of a many-body system, so in order to perform
any quantitative calculations we need to reduce its complexity.

This is accomplished by assuming one exciton mode only is of interest, and is strongly coupled to the
field. All other exciton modes then form a thermal reservoir, weakly coupled to the mode of interest. We
can then use the quantum theory of damping' to derive a Markovian master equation.

We thus write the Hamiltonian (in a frame rotating at frequency coL, } as.

H=%iC C+A5ta a M2C C—CC+Rg(ria C r2a C C—C)+iAEa

+ X XiCkiCkiCki+C C y X2Ck Ck +C C y X3Ck Ckt+a yX4+j
k1'k2k3 k), k2 k), k2 j

+C QXgrk+H. c. , (2.20)

where 5l, 5q are detuning terms, 5l ——0—apL, 52=~2—~L

X,=M, —M2, Xt=Mi(k, =k2 —2q}—M2(k, =k2+2p~ —2pt —2q),

X3™i(ki +q= k2 }™2(p2 p2 +q =0)™—2 (k2 k, +p——,—p,' +q )

and rj represents the boson reservoir operator of the form (2.19), X4 represents the coupling between field
mode and reservoir, r» represents the exciton-phonon reservoir operator as in (2.17},and X& represents the
coupling between exciton mode and exciton-phonon reservoir.

We have ignored the summation over the internal quantum numbers, assuming it is possible to consider
the exciton ground-state only. The last five terms of Eq. (2.20} describe coupling of field and exciton modes
to reservoirs.

Applying standard methods of the quantum theory of damping' we then find the master equation —the
equation of motion for the density operator p:

iM2
i5i[C+C—p] i52[a a,p—]+ [C C CC p] ig[(ria C r2a C—CC)+(r, C —a r2C C Ca),p]—

+[E"'—&'",p] + +, +
ex —ex ex-phon field damp

at
(2.21)
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where

=Kl, ([Cp,C ]+[CpC ])+Kl b([C p, C]+[C,pC])
at ...

+K2,([CCp, C C ]+[CC,pC C ])+K2b(C C p, CC]+[CtCt,pCC])

+K,([CtCp, C C]+[CtC,pCtC]),

where Kl, eg——(coo} IX1 (coo)
I nl, (1+nl b}(1+nl,), g(coo} represents the density of states of reservoir

modes and ct)p represents the exciton resonance frequency. n l„n ib, n i, are thermal populations of various
reservoirs (n 1,jn 1b+n 1,};in general, n = [exp(lllol/ks T}—1] . Also,

Kl,b=~g(olo) l&1(o) I "l,b"l.c K2a=e'g(ohio) l&2(olo} I (1+"2. }(1+"2,b)

K2,b=e'g(olo) I&2I n2, n2b, K3=e'g(ohio) I&3(o) I (n3, +n3b+2n3, n3b) .

(A detailed derivation of these expressions can be found in Ref. 15.) Thus, Kl, K2, K3 describe the strength
of exciton-exciton interactions (collisions), and

=K5 t(1+n,„}{[cp,ct]+[cpct]}+n,„{[ctp,c]+[ctpc]}},Kq eg'(co——o) I x5 I

2

ex-phon

at
=K4[(1+n)([apa t]+[a,pa t])+n([a tpa]+[a t pa]) }, K4 eg(olo—)—

I g4 I

2 .
field damp

D. Fokker-Planck and Langevin equations

We can evaluate the system's quantum fluctuations explicitly by transforming the operator master equa-

tion into a c-number equation, the Fokker-Planck equation. This is derived via the generalized P representa-

tion. ' We write:

I ~1,~2&&P1',P2 IP= fP(rrl, p, , ol2,p2), , daldplda2dp2 (C-+al, a~a2, C ~pl, a ~p2} .
Pl P2 I &1 ~2

Using this transformation, we find the Fokker-Planck equation

a~ a 2
[Xlo 1+~r21r 1P1+

igloo

2 ig2(P2lxl+2+1Pl }]
Bt Gal

a 1 8+ (y2&2 E+ig 1&1 ig2&lalP1—)+ 2(K1&—1+2ig2&1&2}
Ba2 Bal

a2
+— (K2alpl+ri)+ (ig2al)+ — 2K4n+c c P, . .

2 BEX1~ 1 al a2 2 81228
(2.22)

where c.c. means al ~Pl, a2~P2, i ~ i, and—

l =l5l —4K2,b+K3+Kl, a Kl,b+K5 Va +l gb, gl =gal &g2 =P2g,

X=2[K2, K2 b (1/A)—M2]=—X, +1Xb,

Kl ——2[(l /A)M2 K2, —K2 b
——K3],K2 ——8K2 b+2K3,

g=8K2 b+2Kl b+2K5n y2 ——K4+i52——y, +iy~ .
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In deriving this equation we have assumed it is possible to neglect derivatives higher than second order.
As noted in Ref. 16, Eq. (2.22) is not a Fokker-Planck equation for a real positive P. However, there exists,
nevertheless, a corresponding Langevin equation:

a1
Pl
a2

pi

—rI~I —X~I~IpI —lgi~2+lg2(p2~I+2 2~Ipl}

—rlpl —X'pI~IpI+igip2 ig2(~2pl+2p2&lpI)

r2+2+E lgl+I+lg2txIIxlpl

r2p2+E +Iglpl Ig2plrtIPI

K1a 1 +2lg2a1a2

K2a Ipl +ri

ig1a

lg2P I 2K4n 0

K2&IPI +9 lg2t I

K IP I
—2lg2PI P2 0 —Ig2P I

'1/2 '

f1(t}

$2(t)

fs(t)

$4(t)

(2.23)

where the g; (t) comprise a Gaussian stochastic process:

((I(t)g; (t') ) =5&5(t t') . —

III. STEADY-STATE BEHAVIOR

A. Lour-density case

The Langevin equation [Eq. (2.23)] corresponds to a low-density system. As a first approximation, we
can neglect noise and investigate the steady-state properties of such a system by considering the determinis-
tic equations (pl~aI, p2~a2}:

~I = —rI~I —x~I
I ~I I

' —igI~2+ig2(~2~1+2 21&1 I
'»

~I = —rI~I —x '~I
I ~I I

'+igI~'i —ig2(~2~1 +2 21&1 I
'}

a2 r2a2+E ————igla i+ig2aI I aI I

a2 ———r2a2+E +iglaI igiaI I aI —
I

Steady-state behavior is found by setting aI ——a2 ——aI ——a2 ——0 in Eqs. (3.1), algebraic manipulation yields

I r2 [(rb+xbII I )(gin I
—gl )+i(r, +x,II I )(3g2nI —gl )]+i(gzIII —gl } (3giIII —gl )

II=n1
I(3g2ni gl)(g2nl gl}l'

(rb+Xbni )' (r.+X.n I
)'

n2 ——n1
(3gin I —g I ) (g2n I

—g I }

(3.1a)

(3.1b)

(3.1c)

(3.1d}

(3.2)

(3.3)

where I=
I
E I, the steady-state input field inten-

sity, n I
——(

I aI I
), the steady-state exciton intensi-

ty, and n2 ——(
I a2 I )„, the steady-state output field

intensity.
To determine the possibility of observing bista-

bility in this low-exciton-density system, it is
necessary to perform a stability analysis. However,
the highly nonlinear nature of this four-dimen-
sional system renders such an analytical calculation
intractable.

As a first approximation, we consider the very-
low-density limit:

f2n1 gl ~ 81 s 3g2n1 g1~ g1

[i.e., we set g2
——0 in Eqs. (3.1)].

We then find

n1I=
2 (an1+bn1+c),

f1
(3.4)

n1
2 [(rb+Xbtll } ~(rH ~XHIII }](35)
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3.0 ~ I ~ I 50.0
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b- 20.0
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INPUT INTENSITY II)
60.0 100.0

20.0 40.0 60.0

INPUT INTENSITY II)
80.0 100.0

FIG. 1. Variation of exciton number with input in-.

tensity in the low-density limit (y, =y, =yq ——g& ——1,
yg

———10, g2
——0.01, g, = 1, gg ——5).

FIG. 2. Variation of output intensity with input in-
tensity in the low-density limit. (Data as given for Fig.
1.)

where

u =(y,xb+ydX. )'+(y,X. ydX—b)',

b =2[(y,yb+ydy, }(y,Xb+ydX, }

+(g l+r.r. rdy—b)(r.X. Xby—d }l,
c =(rcrb+rdl I ) +(gl+rrr~ ydyb)

Linearized stability analysis (Appendix C) shows
that such a system will exhibit bistability in exci-
ton number (nl ), dependent on input intensity (I).
As output intensity depends parametrically on I
through n i, we expect a corresponding bistability
will be observed in output intensity n2, dependent
on input intensity I.

The conditions for bistability are determined by
requiring the equation BI/Bn

&

——0 to have real posi-
tive solutions. This implies

2b&0, 4b —12ac)0

for bistability to occur. This will obviously be sa-
tisfied for a large range of parameters. We note
that the bistability depends solely on exciton-
exciton interaction.

Let us consider the absorptive limit, yb ——yq ——0
(no detuning). In this case, b=2(gl + y, y, )y,X,
which is negative only if y, is negative, as all other

I

parameters are positive. This requires either very
large values of the thermal occupation numbers of
the reservoir modes, or strong exciton-exciton in-

teractions. Thus purely absorptive bistability is
possible when exciton-exciton collisions become
dominant.

If we now include a nonzero value of g2 into the
system, we do not expect the bistable behavior to
change significantly —as long as g2 « 1 and n

&

remains relatively small.
Figures 1 and 2 show plots of n i vs I and n2 vs

I for small g2. (The values of n l at the points A,
B, C, D in Fig. 1 correspond to the values of n i at
the points A, B, C, D in Fig. 2.) Dotted arrows
indicate expected bistability. That is, from Appen-
dix C we find that the middle branch of Fig. 1 will

be unstable as BI/Bn i &0, and the top and bottom
branches will be stable, as BI/Bn &0. Bistable
transitions occur at the points A and C on Fig. 1

as dIiBn l
——0 at these points. (A similar argument

can be applied to the behavior indicated in Fig. 2.)
We see then that bistability is possible in a low-

exciton-density system. However, in the experi-
ments involving GaAs, exciton densities are too
high to justify the neglect of higher-order terms in
the expansion, Eq. (2.9).

Thus we need to consider the high-density case
separately.

B. High-density case

The explicit form of the interaction Hamiltonian obtained from Eq. (2.5} and using the bosonization
transformation (2.9) is

H;„,=Ega(elCt e2CtCtC)(1+e3CtC) ' +—H. c. , (3.6)
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where

l
Xf(api+B(pi k»— &2= g If(api+PV i —k})

I
'f »(aV i+P(i i

—k}),
l

0 uvv,P~ P~

l
&3=—X If(api+P(s i

—k})I'.
U

We now set

C=A+i, , C =A +A, ', (3.7)

1 (yb+~bal }
n2=

4 +(y, +X,ni)')

where A is a boson operator, with (A ) =0, and &

is constant defined such that A, =(c). Thus the
large density limit corresponds to large A,, and we
can expand perturbatively about the deterministic
solution.

Substituting Eq. (3.7) in Eq. (3.6},we expand the
denominator to first order and keep terms of order
A. and A, only:

(3.14)

where

lcd Xc~b
a 1 +ldll a2 +Xd+a

2 2

3

drab

Xd+b
a3 ycyg a4 —ye~/ +4&C 0

H~„, ————gae2(e3
I

A,
I

)

(C)=ia.(3a(
I

A, I2} '~2
I
k

I
2+at{

I
A, I2) '~2A2)

(3.10)

where e =ge2e3 ' /2.
Utilizing the definitions (A ) =0, (C) =&=a,

and (a ) =a2, we combine Eqs. (3.9) and (3.10)
with the deterministic equations corresponding to
the rest of the Hamiltonian [Eqs. (3.1}with

gi ——g2 ——0] to find

ai ———yiai —Xai I ai I

2

+i'(
I ai I )

'~ (3a2 I ai I +a2ai), (3.11)

ai —— y2aq+E+2ia'a—i( I ai I ) (3.12)

and complex conjugate equations. These can be
solved in the steady state to yield:

(a)+nia2) +(a3+a4n))I=
4c

(3.13)

)&A, »[(3At+2A, »)A, +A){,»]+H.c. (3 g)

This Hamiltonian contributes the following
deterministic terms ( ( ) denotes average value):

(a)=is(( I)i,
I )

'~ ){,[(3A+2A, )A, »+AtA, ]),
(3.9)

C. Steady-state curves

Figure 3 shows the variation of exciton number
n

&
with input intensity I. The graph is a combina-

tion of two curves; the upper part representing the
high-density case [Eq. (3.13}],and the lower part
describing the low-density case [Eq. (3.2)]. It is
necessary to include both theories, as neither is ap-
plicable over the whole range of the exciton num-
ber n&.

In these two distinct regions, the respective
theories accurately predict the system's behavior.
However, in the intermediate region (indicated by
broken lines) we are unsure of the applicability of
either theory. We expect the actual behavior of
the system to follow Fig. 3, except in the inter-
mediate region, where we assume a smooth transi-
tion between high- and low-density behavior will
occur.

We expect that the point G in Fig. 3 will corre-
spond to a point of critical instability and a bi-
stable transition will occur as indicated.

As we are unsure of the precise behavior of the
system in the region around the point E in Fig. 3,
the stability analysis necessary to determine the ac-
tual nature of the hysteresis was not performed.
Such investigations are proceeding. Nevertheless,
we do expect a transition to occur in the neighbor-
hood of the point E, and that bistability will arise
as indicated in Fig. 3.



M. L. STEYN-ROSS AND C. W. GARDINER 27

3
8x10

~ 6.10'-

CO

X:

4x10 -,
I
I

C) I
I

2X10 IX I

UJ I

I
I
I

I
I
I
I
I
I
I
I

el

a t

i, 2x10'
l

4x10'

HIGH DENSITY
THEORY

)I LOW DENSITY THEORY

I I

6x10' 8 x10' 10'

INP UT I NTE N 5 IT Y I I )

FIG. 3. Exciton number vs input intensity, including the effect of high density of excitons. Broken lines indicate re-

gions in which the theories break down (y, =0.5, yq =—5, y, =1, yp= —5, ~=0.0037, g& =34, 82=0.0073, X& =10
gg ——10 ).

8x10'-

CV

C

)- 6x10'-

Vl

LLJ 4~ 4x10—

2x10'—

0
I

L 6x10'

I
I
I

,
'E

1.2x10' I & 1.8x10'
I

2.4x10' 3x10'

IN P UT IN TEN 5 ITY ( I )

FIG. 4. Output intensity vs input intensity including effects of high exciton density. Broken lines correspond to re-

gions in which the theories break down. (Data as given for Fig. 3.)



27 QUANTUM THEORY OF EXCITONIC OFTICAL BISTABILITY 321

Figure 4 shows the corresponding variation of
output intensity n2 with input intensity. (The
values of n ~ at the points E, F, G, H in Fig. 3 cor-
respond to the values of n& at the points E, F, G,
H in Fig. 4.) The upper and lower curves were ob-
tained from the high- and low-density theories,
respectively. Again, broken lines indicate regions
in which neither theory is valid. As I is increased,
exciton number r ~ varies as in Fig. 3, until at I2 a
transition occurs, indicated by EF. We thus expect
similar unstable behavior in output intensity nz at
I2. this is indicated by the arrow EF in Fig. 4.
Similarly, the transition GH at I2 occurs in Fig.
4. Again, the possibilility of observing bistability
required BI/Bn ~

——0 to have real, positive solutions.
This results in the condition

—(aia2+aia4} &0.

In contrast to the low-density case, a nonzero X
is no longer necessary for bistability. However, ab-

sorptive bistability still requires y, &0, i.e., dom-
inant exciton-exciton interaction.

Thus, bistability and hysteresis in output intensi-

ty dependent on input intensity is also displayed.
We note that behavior follows the experimental
curves of Gibbs et al. , showing output intensity
vs input intensity for GaAs.

IV. DISCUSSION

We have presented a theory of light-
semiconductor interaction which adequately in-

cludes effects such as exciton-exciton interactions
and radiative damping. We were able to model the
system in the two limiting cases of low and high
exciton densities. Steady-state analysis showed the
system exhibits bistability in both exciton number
and output intensity, dependent on input intensity.
Recent experiments concerned only the latter bista-
bility.

At low intensities, dispersive and absorptive bis-
tability were shown to depend critically on
exciton-exciton interaction. Thus, such interac-
tions provide the nonlinearity necessary to produce
an intensity dependent refractive index. We also
see that these exciton-exciton interactions generate
the cooperative effects necessary for bistability.

At high densities, in the dispersive limit, bista-
bility was shown to occur without the presence of
exciton-exciton interactions. The nonlinearity in
the system causing bistability was due to interac-
tion between light field and medium. We see from
the expression for H;„, that this involves the in-

teraction of a photon with two or three exciton.
producing cooperativity in the system. This agrees

in essence with the suggested bistability mechanism

proposed by Gibbs et al. : light absorbed just
below the exciton resonance frequency produces

carriers, thus changing the absorptivity and polari-

zability of the medium, leading to an intensity

dependent refractive index.
Purely absorptive bistability is also predicted at

high densities and again is seen to require strong
exciton-exciton interactions. So far, only dispersive

bistability has been experimentally observed.

At present, excitonic bistability of output inten-

sity dependent on input intensity has been observed

in GaAs only in the high-density limit. Our work,

however, shows that bistability can occur in other
materials having lower exciton density.

Finally, we point out that, although our formu-

lation includes all fluctuations, the results present-

ed are only for the limit of small fluctuations. The
evaluation of the effects of fluctuation terms on

our results is in progress.

APPENDIX A: BOSONIZATION
TRANS FORMATIONS

This appendix is a summary of the principles
and techniques of bosonization transformations in

many-fermion systems. The detailed treatment of
systems of identical fermions upon which this ap-

pendix is based is given by Janssen et al. ' The
method itself in this form was first set out by

Marumori et al. ' The major difference in our
treatment arises from our generalization of the
method to deal with electron-hole systems, i.e., sys-

tems of two different kinds. The principal formu-

las are unaltered, but there are changes in technical
details. The results can all be proved using meth-

ods almost identical to those used by Janssen et al.
The operator

(A1)

maps directly from a fermion space to a suitably

antisymmetrized boson subspace. That is, we as-
sume the semiconductor system, described in terms
of electron and hole operators, is characterized by
the anti-symmetrized basis vectors:
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)m)=a, dp, a dp ~0), (A2) follows:

where
~
0) is the fermion ground state and a~ and

dp, are electron and hole fermion operators, respec-

tively, for the single-particle states a;, p;.
The operator U [Eq. (Al)] maps the state (A2)

to a correctly antisymmetrized boson state,

U fm) /0)= /m} /0),
U /m) /0)= [m) /0) .

By introducing the operator

Bap b+p P bzy bsp bsy
t t t t

l4

(A4)

(A5}

(A6)

)m}= g( —ly'Pb~, p,
. b~ p ~0),

P
we can write Eq. (A3} in the alternative form:

(A3) (m)= ' Btp ....B.P„)0), {A7)

where
~

0) is the boson ground state and b p is a
boson operator; P is a permutation operator, gen-

erating all permutations of indices (a~, . . . , a„)
with the indices (pb. . . , p„) fixed (or vice versa).

The set of boson states given by Eq. (A3} is in
one-to-one correspondence with the fermion states
described by Eq. (A2), and the operator U maps as

i.e, the 8~,~, generate the desired permutations

when acting on the boson ground state (for further

discussion, see Ref. 26).
We also define the projection operator P which

projects out the nonantisymmetrized components
from each boson state,

B., ~0){0~B.p
lN

(n)}3 1 l a s
1

(A8)

From Eqs. (A4) and (AS) we see that the
transformation preserves normalization of states:

(m'
/

UtU
f
m) =(0 [

(m'
/

UtU
f
m)

f
0)

=(0~(m'(m) ~0)=5 ~

(A9}

(m'
/

UU
/

m)=(0
/

(m'
[ UU

/
m)

/
0)

(Alo)

Thus the projection operator acts like unity in the

boson subspace.
The matrix element of an arbitrary operator T,

between fermion states is thus given by

(m [ T [m') = (m [
UtUTUtU

I
m')

=(m /X fm'),

where W= UTU~ is the boson image of T. Thus

the matrix element of any operator is unchanged

under the action of the operator U.

(Al 1)

=(0[ &m'[m& [0}=s

Equations (A9} indicate that U U behaves as unity

in the fermion space, and UU~ as unity in the bo-

son subspace. Also, from Eqs. (Al) and (A8) one

may easily show

UU'=P.

Pairs of fermion operators are transformed as

follows:

Ua„a„Ut= g b+„zP,
P

Udqd„U = gbpqbpP,
P

""(1+N)'"

(A12}

(A13)

=Pb~„(1+N)'~2, (A14)

(A15)

We note that the transformation of the electron-
hole pair, Eq. (A14}, involves the function

(1+N)'

This expression is expanded using the formula,

f(N) ~ Ns ~ f(r){—1)

k —o -o r!(k —r)! (A16)

where:: denotes the normally ordered product.
Equation (A16) is proved in Appendix B.

where p' and p indicate summation over electron
and hole states, respectively, and

N=gb pb~.
aP
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Transformations of fermion pairs such as

Ua a U, Ua dU

are not required in our problem, since we can use
the fermion anticoinmutation relations to relate
any term to the expressions a&a„, d&d„, a&d„, or
a&d„. This occurs because the Hamiltonians used
can only produce electrons and holes in pairs.

We note that the transformation U is in essence
a modification of the transformation developed by
Marumori et al. , '

described by operator U& as it does not preserve
normalization of states and there is not a one-to-
one correspondence between fermion and boson
states.

APPENDIX B: PROOF OF EQ. (A16)

(81)

We wish to show that if b; (i = 1, . . . , n} are in-

dependent boson destruction operators, satisfying

(b;,bj ]=5&J

eo 1 1

(2n}!!v'(2n —1)!!

x gb~popa~ ~0)(0( .
cxP

(A17}

with

N= gb;bI.

and if f(z) is expressible as a power series in z,
then

(82}

The operator U~ was used to transform electron-
electron pairs and thus is not directly applicable to
our semiconductor system.

To bosonize a similar excitonic system, Hanamu-
ra" used a transformation due to Usui,

p p r!(k —r}!

(83}

where:: indicates the normally ordered product.

U~ ——[0)(0[exp gb pdpo ~0)(0~ .
aP

However, we did not use the transformation

(A18)
abi~ ~ bi ~Pi s

Ba;

and note that for any function P(a ),

(84)

Proof. Represent the creation and destruction
operators by

exp(A, g b; b;)P(a }=exp(la V )P(a)=P(e"a)=/[a+(e" —1)a] B(5)

HI (eh, 1)k

k=o

(a& ) '(a2} ' (avoca, )"(5jaa2) ' .
5 gr;, k k!P(a} (86}r ~!r2!r3!~ ~ ~

and reverting to the notation b;, b;, plane. Doing so we deduce Eq. (83}.

HI (ek 1)k
exp(AÃ)= g, :N:

k=o

Io k ekF( 1)k F—
p p r (k r)

(87)

(&8)

APPENDIX C

1. Stability analysis
of the very-low-density system

In such a low-density system (g2 ——0) we linear-
ize the deterministic Eqs. (3.1) by substituting

We can write most functions f(z) in the form

f(z)=fd7Le E(A, ) (89}

for some F(A, ) and some contour in the complex

a ~
——ap+5a, a2 ——Pp+5P (C1)

(where ap Pp are the deterministic means of a„
a2, respectively; 5a, 5P are small deviations from



M. L. STEYN-ROSS AND C. W. GAItDINER 27

these means), and retaining only constant terms
and terms linear in Sa, SP in Eqs. (3.1). In this
way we find the linearized equations

Sa = —(yi+2X
I ao

I
)Sa X—aoSa i—g, 5P,

Sa»= —(yi+2X Iao I
)Sa —X ao Sa

SP= y—ESP ig-iS

Sp'= y—25p'+igiS '
Equations (C2} yield the dispersion equation

moA, +miA, +m2A, +m3A, +m4 ——0, (C3)

+igiSp (C2) where

mo ——1, m i ——Rey2 —Re( —yi —2X
I ao I ),

m2 2gl I
X

I
(

I ao
I

) + I yi I + I yi+2X
I
ao

I
) —Re( —yi —2X

I ao I )Rey2

m3=gimi —IX I
( lao I

) Reyz —
I y2 I

Re( yi——2X
I ao I )+

I yi+2X lao I I Rey2

aI
m4 ——

Bnq

obtained from Eq. (3.4).

2. Stability Conditions

(1) mo&0 ~

(2) mi &0,

(3) mimi —m3 &0,
2 BI(4) mi(mimi —mi) —mi &0,

Bnq

(C5)

The Hurwitz stability criteria for this system are
thus,

damping~

mo=» 0

mi —+Re(yi}&0,

m2- [Re(yi )]',
mi-[Re(yi)] Re(y2),

BI »
m4

———, (y~-+—y,}[Re(yi}]2
Bn] g)

and in this limit we also find

(C6)

(5)
"

9n&

2 BI
m3(m]mg m3) m ] +0

Bn~

and critically unstable when

dI
dn)

In fact, in the realistic limit of large excitonic

The system exists in a stable state only when con-
ditions (1)—(5) are satisfied. Given that the
parameters can be chosen in such a way that all
these conditions are met, conditions (4) and (5) im-
ply the system is only stable when

&0
aI

Bn~

m im 2
—mi -[Re(yi }] &0,

mi(mim2 —mi}—mi -[Re(yi)] &0,2 BI 5

Bni

so that conditions (1), (2), (3), and (4) are satisfied.
On a curve of I vs n& the value of BI/Bn& is

equal to the gradient of the curve and BI/Bn i
——0

corresponds to a turning point. Thus, on such a
curve, the system will be unstable on branches of
negative slope, stable on branches of positive slope
and transitions will occur at the turning points.
Clearly, this is the same behavior as usually found
in bistable systems, e.g. the nonlinear polarizability
model.

We thus conclude that this low-density system
will exhibit bistability in exciton number n ~,
dependent on input intensity I.
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