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Delayed four-wave-mixing spectroscopy in molecular crystals: A nonperturbative approach
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The delayed or time-domain four-wave-mixing experiment is treated in the regime of in-

tense near-resonant pulses. The interaction with the radiation during both pump and probe
pulses is considered to all powers of the electric field amplitude. Analytical results are ob-

tained for an effective four-level system. These include the dependence of the coherence
amplitudes on the ratio of the pump-field intensities when there is a large vibrational
discrepancy between ground and excited electronic states and a general solution for the uni-

tary time development during the probe pulse. For the first time, delayed coherent anti-
Stokes Raman scattering is detected from highly dilute (10-ppm) guest molecules. Illustra-
tive examples are presented for the system of pentacene in benzoic acid at low temperature.
Vibronic-free induction decay and the effect of field inhomogeneity across the beam profile
are found to be essential for understanding the observed intensity and spectral distribution
of the signal beam in the region of optimum pulse intensity.

I. INTRODUCTION

A. Background

The class of coherent nonlinear optical phenorne-
na known as resonance-enhanced four wave mixing
has proven to be a versatile tool for the spectroscop-
ic dissection of the multilevel systems characteristic
of molecular electronic, vibrational, and rotational
degrees of freedom. By far the greatest number of
studies have been performed in the regime of weak
fields and steady-state response which is described
by the third-order nonlinear susceptibility 7( ' Refs.
1 —7. This tensor quantity describes the induced
material polarization at a certain observation fre-
quency which is proportional to a third power of
one, two, or three applied frequencies. For the case
of interest here the polarization is at u3 ——(2~i —co2)
in response to applied fields at coi and u2. It is given
by

I" '=X' '(A@3,mi, —m2, ui)E (co~)E(m~)

with

+R ++NB(3) (3) (3)

The relationship between this material property and
the states of the system is revealed particularly by
the positions and widths of resonances in X~

' as the
applied frequencies are varied. A background signal
accounted for by X~z arises from processes which

are nonresonant and thus nearly dispersionless in the
experimental range of co&, co2, and co3.

Of particular interest to us here are those cases
where (cubi

—~2) is equal to a vibrational energy
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FIG. 1. The relationship between the optical frequen-
cies and the guest molecule energy levels for delayed four
wave mixing. Four energy levels are indicated by solid
horizontal lines. States

~

a ) and
~

b) are the ground state
and a vibrationally excited state in the So electronic mani-
fold. States

~

c ) and
~

d ) are the corresponding states in
the electronically excited Si manifold. Initially all popu-
lation is in state ~a). (a) In ground-state CARS, the
preparation of coherence between

~

a ) and
~
b ) is

achieved by simultaneous pulses at cubi and coq where

(mi —m2) =co~ as indicated by the two arrows on the left.
The break in the center indicates the delay t& ~ On the
right the probe pulse at ru i causes emission at
~3-(2~i —m2). As drawn, this probe process is exactly
resonant at cubi

——~qq. (b) Analogous relationships are
shown for excited-state CSRS. As discussed in Appendix

8, the delayed version of excited-state CSRS does not re-

quire pure dephasing to be an allowed process in contrast
to the steady-state experiment described by X( '.
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difference in a ground or excited state and ~], u2,
and ~3 are all resonant or nearly resonant with elec-
tronic or vibronic transitions. ' Two possible re-
lationships of the frequencies to the system energy
levels are sketched in Fig. 1. The arrangement of
Fig. 1(a), where m] &~2, is resonant coherent anti-
Stokes Raman scattering (CARS), while that of Fig.
1(b) where co& gu2 is resonant coherent Stokes Ra-
man scattering (CSRS). The frequencies of Fig. 1(a)
are chosen for resonance with a ground-state vibra-
tton [(Ni —co2)=coy~)] whtle Flg. 1(b) shows reso-
nance with an excited-state vibration
[(co2 —co~ 1 =cod, ]. Other arrangements are possible.
Recent applications have succeeded in resolving in-
dividual vibrational resonances in both ground and
excited states in condensed phases. ' ' '

A quite different approach to studying vibrational
transitions at cu] —co2 is the method of delayed or
time-domain four wave mixing. In these experi-
ments the system is first prepared in a state of vlbla-
tional coherence. This may be accomplished for in-
tense Raman modes in concentrated systems by
stimulated scattering of a single picosecond
pulse. ' ' A more general approach, and the one
taken here, is excitation by simultaneous pulses at co[
and ~2. ' ' After a variable delay t&, a probe pulse
at co] is scattered off the material excitation giving
rise to emission at ~3. This pulse sequence is depict-
ed in Fig. 2. Again the energy diagrams of Fig. 1

are relevant, but now there is an actual time order-
ing as suggested by the break in the energy levels
which separates preparation and probing processes.

Experimental studies with the sequence of Fig. 2
have been made on vibrations in concentrated organ-
ic liquids, ' ' ' both vibrations * and librons in
pure molecular crystals, and on vibrational bands in
the gas phase.

Previous theoretical analyses of the time-domain
experiment of Fig. 2 have been made by using per-
turbation expansions in the field amplitudes. For
example, the preparation process during the first
two pulses has been treated by invoking an effective
Hamiltonian quadratic in the electric field which
acts on the two-level vibrational system' ' [ ~a)
and

~

b ) in Fig. 1(al]. In another approach,
second-order time-dependent perturbation theory
was used on a system with an arbitrary number of
intermediate levels [~ c) and

~

d ) of Fig. 1(a)] to ob-
tain an expression for the prepared coherence be-

tween states
~

a ) and
~

b ) which is quadratic in the
fields. The probe process (coherent Raman
scattering) has been treated as linear in the probe
pulse field amplitude. ' ' A similar perturbative
approach is taken in a very recent work which cata-
logs those transient four-wave-mixing processes
which occur with three pulses up to third order in

l ~
TIME

FIG. 2. Pulse sequence for delayed four wave mixing.
Experiment begins with the simultaneous arrival at the

sample of two pulses at frequencies ~] and co2 traveling in

the directions k] and k2 and persisting for a time ~.
After a variable delay t] a probe pulse follows of length
~', frequency co&, and direction k &. Pulse widths in ~ and
~' are typically 6 psec (FWHM). Signal consists of the
coherent emission near the frequency A@3

——{2~&—~2) in

the direction k3 ——k&+ k
&

—kz which occurs both during

and after the probe pulse. Pulse sequence is repeated
every 100 msec.

the fields.
In the steady-state or continuous-wave CARS and

CSRS experiments it is essential to work at low in-

put powers in order that the frequency dependence
of the signal, in fact, reveal, through the X' ' formal-
ism, the energy differences and relaxation processes
of the field-free system. Several groups have com-
mented on the broadening of line shapes seen as the
laser power is increased. ' ' ' In practice, the
power at ~i and ~2 is reduced until no further line-
shape changes are observed. Theoretical predictions
of saturation effects in CARS have recently been
made for various regimes of pulse intensities and re-
laxation times using either higher-order perturbation
theory or by considering a system of three levels
and calculating steady states ' and slowly decay-
ing transients. A recent discussion of CARS sa-
turation effects covers the two-level limit on various
time scales."

B. Motivation

In the delayed experiment the use of intense
saturating fields is not only permissible, but highly
desirable. The information on the transverse relaxa-
tion of the prepared coherence comes not from the
frequency dependence of the signal, but from the de-

cay as a function of the delay t] during which no
perturbing fields are applied. Thus power broaden-
ing is not a concern. Rather, a principle experimen-
tal concern is the optimization of the pulse parame-
ters with respect to the signal intensity.



DELAYED POUR-%AVE-MIXING SPECTROSCOPY IN. . .

There are other reasons for using high power. In
a system with nearly degenerate vibrations it allows
one to simultaneously excite coherence between
several pairs of levels and observe beats as well as
decay as t& is incremented. In a system with a con-
tinuous distribution of vibrational frequencies it
would be desirable to eliminate the inhomogeneity

by an echo pulse at ti/2 which mould reverse the
sign of a component of the vibrational coherence
and cause rcphasing at ti limited only by the trans-
verse relaxation time. Finally, there are coher-
ences whose relaxation times do not appear in X' ' in
the absence of pure dephasing. ' ' ' An example
is the observation of excited-state vibrational de-

phasing with the CSRS arrangement of Fig. 1(b).
As we will see, the use of short pulses in a delayed
CSRS experiment will make this an allowed process
at any temperature.

In all of these cases pcrturbative treatments of the
dynamics during the pulses offer little or no gui-
dance as to the feasibility of the experiment or op-
timization of the experimental parameters. The
steady-state J' ' formalism is entirely inappropriate
since the pulses in time-domain are nearly always
comparable to, or shorter than, the relaxation times

being measured; a steady-state situation is not
reached. Perturbative treatment of transients leaves
open the question of how to determine and describe
the region of optimal pulse intensity ~here one
would like to perform the experiments.

C. Outline

Thc appr'oach takcrl herc is to treat thc illtclaction
with the fields nonperturbatively. In order to do so
it is necessary to limit the Hilbert space to some fi-
nite and tractable set of states. It is furthermore
desirable to work in an interaction representation in
which temporal and spatial dependence of the ap-
plied fields due to pulse propagation is removed.
Harniltonians for such an approach are derived in
Sec. II for a four-level model.

In Sec. III A a general form for the dependence of
the four-wave-mixing signal on the pulse parameters
is derived. This formulation poses a number of
dynamical problems to be solved. In Sec. III 8 the
preparation process depicted on the left-hand side of
Fig. 1(a) is treated for the case of a 1arge vibrational
discrepancy between ground and excited states. The
probe process is simpler and is treated analytically
for an arbitrary vibrational discrepancy in Sec. III C.
Section IV demonstrates the applicability of delayed
CARS to the molecular mixed crystal system of di-
lute pentacene in benzoic acid. Low-temperature vi-
brational dephasing times are measured and power
broadening and saturation effects are demonstrated.

The saturation of the probe process on resonance is
considered in detail and shown to depend on an in-
terplay of free induction decay (FID) and field inho-
mogeneity effects. Section V indicates some addi-
tional applications for the nonperturbative approach
and summarizes.

II. EFFECTIVE HAMILTONIANS

A. The internal Hamiltonian

~0=~.
I
~ &&~

I
+~b I

b & &b
I
+~.

I
C &

x&e i+a)d id&&d
i

. (2.1)

It is convenient to rearrange the terms to obtain a
form which eliminates one parameter:

A 0
——a)gA, +~gX, +(J/2)(2A, X, ) . (2.2)

A term proportional to the identity operator has
been dropped in going from (2.1} to (2.2}. This has
no effect on the dynamics and amounts to choosing
a zero average energy. The remaining orthogonal,
diagonal, traccless operators may be related to the
number operators of (2.1) and to pseudospin opera-
tors44 4'

by

The Hamiltonian for the system in the absence of
applied fields is implicit in the energy-level diagram
of Fig. 1. The origin of these levels and their
description in terms of the electronic and nuclear
coordinates will be of no consequence for the calcu-
lations, but will appear only through spectroscopic
parameters. It will be assumed, however, that no
additional states are significantly populated on the
time scale of the experiment. One type of system
~here this will frequently be a good approximation
is that of the dilute guest in a mixed molecular crys-
tal. The other vibrational states can be neglected be-
cause in the frequency range of interest the signal is
dominated by resonant processes which leave these
nonresonant states unperturbed. Intersystem cross-
ing to a triplet state is assumed to remove a negligi-
ble fraction of the molecules from the singlet mani-
fold on the subnanosecond time scale of the pulse se-
quence of Fig. 2. The repetition rate of the sequence
will be kept low enough so that the initial condition
is always that of equilibrium. The coupling of the
four-level system to the lattice will be described,
where necessary, by phenomenological relaxation
rates. The understanding of these rates in terms of
phonon scattering processes is one application for
the experiments analyzed here.

%'ith these considerations the system Hamiltonian
can be written in bracket notation and frequency
units (rad/sec) as
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~.=-, (ln&&& I+ Ib&&b I

—Ic&&c
I

—ld&&d I)

=(I,"+I, )=(I, +I, ), (2-3a)

&.=-, ( In & &~
I

—
I
b &&b I+ I

c &&c
I

—
I
d &&d

I
)

=(I, +I,'d)=(I,'"—I, ), (2.3b)

~.x.=-, (ln&&a
I

—
I
b&&b

I

—lc&&c I+ ld&&d I)
(Iob Icd) (Iac Ibd) (2.3c)

(2.4b)

(2.4c)

These represent, respectively, an average electronic
quantum, an average vibrational quantum, and one-

half the vibrational energy discrepancy between

ground and excited states.

The last equality on the right of each of Eqs.
(2.3a)—(2.3c) expresses a linear dependence among
the population difference operators I,'J. These opera-
tors are defined as

I"= , (lt&&t-I —
I j&&jl)

The coefficients of (2.2) are related to those of (2.1)

by

(2.4a)

where

E' '(R, r, t)

=Eo '(R, t, )cos(k r —co t+P ) . (2.61)

The first two terms of (2.6a) are both at frequency

~1, but have propagation vectors ki and k 1
differ-

ing from one another in direction.
The amplitude factors Eo '(R, t, ) account for the

spatial variation of the field as a function of radial
distance R from the beam center and for the rela-
tively slow (picosecond) amplitude modulation as
the pulse rises and falls, The time variables appear-
ing in amplitude factors of position-dependent fields
or in material system operators will always implicit-
ly be retarded times, e.g., t, =k .r/m . For the
present, the arguments (R, t„) will be dropped and
these factors will be approximated as square waves
in both time and space corresponding to the ideali-
zation of plane waves which are either on or off. In
Sec. IV integration over a more realistic beam cross
section will be necessary.

Significant fractional absorption or frequency
conversion of the applied fields is neglected, as is
any action of the induced fields on the system.
These assumptions are valid for sufficiently dilute

systems in the absence of host resonances.
%ith these considerations, the interaction (2.5)

may be expanded in the eigenbasis of 4 0 as

B. The optical interaction

The Hamiltonian describing the interaction of the
system with the optical frequency fields is treated
semiclassically and in the dipole approximation. In
frequency units this is

P,„,(R, r, t)=R 'p E(R, r, t),
where p is the dipole moment operator within the
four-level system and E(R, r, t) is the applied laser
field. This field will be due to three monochromatic
(transform limited) beams with different propaga-
tion directions:

Defining Rabi frequencies

and assuming
(a) [a)

(2.8a)

P,p,(r, t)

=~ ' X X&tlt Eo"'lj&
o, =1,1',2 i j

X cos( k r —to t+ P )
I

t ) (J I
.

(2.7)

E(R, r, t) =E"'(R,r, t)+E" '(R, r, t)

(2.6a)
I

as is the case for linearly polarized fields and states
of definite parity, (2.7) can be rewritten in pseudo-
spin operators as

A,~,(r, t)=2 g icos(k r co t+P )eg~.'IJ—
a= 1, 1',2i ~j

=2 g g[cos(k r+P )cosset t+sin(k r+P )since t]e'J 'I. J .
a=1, 1',2i &j

(2.9a)

(2.9b)

Only off-diagonal operators,

I'J= —,(
I
~)&j I+ I j&&t I ),

(It&(J
I

—lj&&t I), (2.10b)
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are kept in (2.9), again consistent with states of
definite parity.

TI„' Tt=I,' cos[(p+y)t) I»—
' sin[(p+y)t],

C. The generalized rotating frame

In order to remove the rapid time dependence of
~.„(r,h) at the optical frequencies, a generalized
rotating-frame interaction representation can be en-
tered through an operator

T=exp(i Wt),

W=aA, +pX, +y(2A, &, )

defined by some parameters a, p, and y whose
choice will depend on the specific case. The Hamil-
tonian in this time-dependent frame is found by
transforming (2.2) and (2.9) and adding the accelera-
tion correction:

4 "(r,t) = TA OTt+ TA,~( r, t)Tt+iTTt

=(4 0 W)+T—A,~,(r, t}T (2.13b)

=4 0 +A Op, ( r, t) . (2.13c)

In order to calculate the term A,p,(r, t), the ac-
tion of T on the off-diagonal operators is needed.
The coInmutation relations for the pseudospin
opcI'ators arc Rs follows

[ylj Ilg] hIIJ

(p, q, f =x,p,z oi' cyc11c pcITllutation)

TI,' Tt=I„'"cos[(p y—)t] I„'—»n[(p y—)t],

TI„T =I„cos[(a+p)h —I» sin[(a+p)t),

(2.15e)

TI„Tt=I„cos[(a—p}t]—I„sin[(a —p) t] .

(2.15fl

Similar expressions hold for the I„'~ operators with x
and y subscripts exchanged and the sign of the angle
reversed. For example,

TI»"T =I»"cos[(a+y)t)+I„"sin[(a+y)t] .

Substitution of the operators n„jr~ for the opera-
tors I„'J in (2.9) gives the explicit forIQ for A,p, ( r, t).

D. Coherent averaging theory

The reason for transforming to a rotating frame is
to obtain a time-independent approximation to

(r, t), which can be used to calculate the dynam-
ics during the pulses to all orders in the field. This
cffcct1vc HRIQiltonian 18 givcQ by coherent RvcragiQg
theory as

where
[Ilg glk] h IJk

2

ik & jk[I„"»,I„'»]= I»', —

[I„",I,'"]= I»", —
Q s g 2 P

[gi& yak)
z 2 x

[Iv,I,' ]=0,

(2.14c)

(2.14d)

(2.14e)

(2.14f)

'(r)=(1/t, )f M (r, t)Ck, (2.18)

W"(r)=( h/2t, )f—f [P r(r, t),Mr(r, t'}]Ch'dt.

The lowest-oIder term or average Hamiltonian is
found by substituting (2.13) into (2.18):

A""(r)=A Or+(1/t, )f P;~„(r,t)Ch (2.20a)

[I»J,Iq ]=0 . (2.14g)

The rotating-framc tiIne-dependent operators needed
1n A Op, ( r, t) RIc found from (2.14a) Rnd (2.14c) to bc

TI„"Tt= I "cos[(a+y) T]—I» sin[(a+ y) t]

TI~Tt =I„cos[(a y)t] I„sin[(a y—)t], — —

(2,20b)

The average Hamiltonian A ' will account for the
resonant and near-resonant interactions while 4
gives a first approximation to the power-dependent
optical Stark (Bloch-Sicgert ) effects. The range of
usefulness of the expansion (2.17) is lar(Iely limited

er such rapid convergence holds depends on the
choice of T and the resulting cycle time t, and will
become clear only when A "is calculated.
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E. Specific rotating frames
and average Hamiltonians

I. General considerations for specifying T

The parameters a, P, and y which define T can
now be specified by requiring that there be nonvan-

ishing contributions from A, ,(r, t) for processes
that are near resonance. This occurs when thc fre-
quencies of (2.9) match the rotating-frame modula-

tion frequencies of the individual transition opera-
tors which Rppcar Rs the arguments in (2.15). A fur-
ther requirement is that at exact resonance between

one of the applied frequencies and a system energy
difference, tlie diagoiial teriii M() = (~()—W) of
(2.13) have identical matrix elements for the states
so connected; that is, there is a level crossing in the
interaction representation, This latter requirement
specifies the direction (sign) of the rotations which
define T.

2. 88$0PlollN-NhQPlNcf groQNd-Stet@ CARS

Q. E/EPllnQtl, ng tke tsPle dependence Qt QP1 Qnd QP2.

For the frequencies in the neighborhood of those in
Fig. 1(a), these conditions give

detuned froIn exact electronic resonance by an
amount 6 such that

~& ——~„—6= —(m&+J/2) —4,
a)2 ——a),b —6= —(a)g —a)g )—6 .

With these substitutions the diagonal term of (2.13)
bccoHlcs

+[(to» I/2)—+tt k)(I,—' +I, )

+[(to» —I/2)+tc)I,' I . (2.26)

b. Large Uibrational discrepancy, three-level aUer-

age Hamiltonian. The form of (2.26) suggests that
the specification of the rotating frame be completed
by setting

For this choice, the transformation T will be labeled
T3. Doing so and, in addition, using the identity

Iad+Ibd i (Iad+Ibd+Iad)+ ~ (Iac+Iba)

(ts+ y) =—tot,

(a-P) = -cot .

(2.21a)

(2.21b)
transforms (2.26) to the form

3 (2gy3)(IQc+Ibc)
This is a set of only two equations for thc three
parameters spcclfylng thc gcncrallzcd rotating
frame. A third equation

ls introduced for convcnlcncc, leaving K unspecified
for now.

The difference between the frequencies will be
tuned to the ground-state vibration

while thc individual ffcqucnclcs 631 Rnd 632 may bc
I

Note that none of the parameters of (2.2) remain,
having all been transformed away.

It is still necessary to evaluate the contribution of
thc optical terms to thc Rvcragc Hamiltonian (2.20).
For the preparation period the terms in (2.9b) from
beams 1 and 2 are finite. Substituting (2.21), (2.22),
and (2.27) into (2.15) completes the specification of
A,~,(r, t) in (2.13). Integration over any long t, in
(2.20) gives

(r)=e,",'[I„cos(ki r+P, )+Is"sin(ki r+Pi)]

+e'b, '[I cos(k2. r+p2)+Is sin(k2 r+pq)) . (2.30)

The spatial dependence can now be removed by the
further transformation

E(r)=exp[i(ki*r+Pi)Az)

Xexp[i[(ki —kp). r+(Pi —42)]X,] . (2.31)

The desired average Hamiltonian, independent of
thc trivial time and space dcpcndcncc duc to pulse

l

pl'opagatlon ls

4 3
' E(r)[a(t ' ——oA+,~,(r ] )J'(r)

(2gy3)(1+e+Ibe)+ (l)Iae+ (2)Ibe

No« that
~
d ) is an eigenstate of (2.32) and that the
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last term in parentheses commutes with 811 operators
in the subspace spanned by Ia), lb), and lc).
This tcITIl docs Qot affect thc dynamics which ls en-
tirely within the lower three states of Fig. 1(a); thus,
thc subscript 3.

In order to rely on (2.32) for a calculation of the
system dynafnlcs during thc prcpafatlon pulse lt 18

necessary to first establish the conditions under
wllIcll thc hIgllcr-order corrccttoII tcrnls of (2.17)
csn SRfcly bc neglected. Thc largest coffcctlon will
conIc froIII 4 I ( r ) (2.19) for those 'tcrIIls whcl'c thc
integrand is of constant si n. There are no cross
terms between terms of A 0 even though they are
stationary, since they all commute with one another.

From the area of integration in. (2.19) cross terms
T3

between P 0 and A,p, ( r ) will be no larger than

I
I~3',o,.p(l I

& I.«~I" (2.33)

while those between terms of A Op, (r) will be no
larger than

(a) (P)
I,.p(,.p(ll &r.ej e;b . (2.34)

Thc cycle tlIQc t~ 18 tlM shortest period fof which
T(rc }=T(0)=1. Since the generalized rotating
frame used here is defined by several (possible in-
coIQIQcnsufablc) frequencies, this condition 1Tlight

never be exactly met. However, fox' the applications
considered here the frequencies are well separated so
8 physically plausible RppfoxllTlatc cycle tlIQc ls thc
period of the lowest frequency. For the choice of T
determined by (2.21), (2.22), and (2.27) this is
t~ =(2%)/(J/2). Thus 8 conscrvatlvc criterion fof
the validity of (2.32) is that

5,g;'J ~gJ/4m' .

This means that both the frequency offset of ~] and
m2 from exact resonance Rnd the Rabi frequencies

Rssoclatcd with these flclds must bc kept much less
than the vibrational discrepancy between ground
and excited states if the dynamics is to remain re-
stricted to levels

I
a ), I

b ), and
I
c).

e. Four-level average Hamiltonian. The restric-
tion (2.35) on tlM opt1cal flclds ls Qot, 81%'Rys con-
vcnlcntly schlcvcd ln pfactlcc. T1M fcsonsQcc condl-
tlon 6=0 Inay bc vlolstcd duflng pfcpafatlon ln of-
der to make the probing process (Sec. IIIC} more
nearly resonant at a, =~&&. The restriction on the
Rabi frequencies is also inconvenient since shorter,
more intense pulses allow more rapid relaxation pro-
ccsscs to bc pfobcd. Fol thcsc fcasons R morc gcn-
clal 8vcfsgc HRIQlltonlRQ 18 needed.

This can be achieved if we are content to
tfansfofrn 8%'Ry only thc avclRgc clcctronlc cncfgy
and the average vibrational energy Rnd account for
the vibrational discrepancy explicitly in the
rotating-frame Hamlltonlan. In terms of the general
transformation of (2.11) and (2.12), this means that
y=O

Since (2.21) is still necessary to remove the time
dependence at e] and u~, the necessary transforma-
tion 18 spcciflcd by

(2.36b)

(2.36c)

The diagonal terms (2.26) become

, [4(I,"+I,"—)—+(&+II)(I~+I,)+&&,"].

(2.37)

The off-diagonal terms in H4 ' analogous to (2.30)
bccolTlc

P;& (r) =e'"[I„'cos(k(.r+(i)()+I»'sin(k(. r+(t(()]+@'b,'[I„cos(kq r+pI}+I» sin(kI r+pI)]

+e'b'd'[I„cos(k( r+p()+I» sin(k( r+(})()]. (2.38)

The spatial dependence is still removed by K(r) given by (2.31}. The result, which is the generalization of
(2.32), is

(
(1(Iac ~ac)+[ (((Ibd (I +I}Ibd] gy2(Iab+Icd)+ (2)Ibc

(2.39a)

(2.39b)

The diagonal terms of (2.39) afe those of (2.37), but
have teen rewritten for latex' use with the use of the
identities of (2.3). Thc gcncl'81 solUtion to cvolut1OQ
under (2.39) requires diagonalization of 8 4&4 ma-
tflX.

T1M form (2.39) also dcscfibcs tlM Hamiltonlsn
fof thc ploblng pfoccss (Scc. III C) lf 6'~ ls sct to
zero Rnd both K and the quantities e,j are primed to
lndlcatc pfobc pulse p818IQctels. K has thc same
form as (2.31) except that tlM preparation pulse
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wave vectol ki is rcplRccd by thc probe pulse wave
vector k 1 .

A. Outline of the calculations

IQ this section the genc1'Rl form 1s derived of the
dcpcn«lcncc of thc 81gnal on the Hamiltonians of
Sec. II. The fundamental quantity needed is the
cohcrcnt polanzation of thc system 88 8 funct1on of
the time variables of Fig. 2. This is

P(r, t„r', tz)=Tr[p(r, t&,r', t2)p],

whclc p 18 thc systcIQ dcnslty operator. In us1ng

(3.1) as the only source term, the contribution to the
signal of 811 incoherent spontaneous emission pro-
ccsscs 1s neglected. This is sRtlsfactory since detec-
tion %'111 bc over 8 s1Tiall solid angle 1Q thc d1I'ection

of coherent emission. As sketched in Fi. 2, it will

bc ncccssary to cvahlatc this both during the probe
pulse, where v' is the running variable and tp has not
yet entered, and after the probe pulse where an FID
Q1ay occur 1Q thc variable t2.

For concreteness, CARS detection will be as-
sumed. According to (2,8b) only I„'J operators occur
in p in thc laboratory frame. Furthermore, from the
energy-levd diagram of Fig. 1 only the term in J„ is
Rssoclatcd with osc111atlons near N3 =2' 1

—632 for
6P] Q QP2. As w111 become clear, thc 8ctual frequency
of the detected emission n1ay be somewhat different
fI'OQ1 GP3 %'hcn 1ntcnsc f1clds Rrc used. Thc polar1za-
tlon near 6P3 can bc wrlttcn w1th laboratory-'frame
opcI'Rtors Rs

P '(r, t„r', t, )=p,gTrfp), b(r, t),r', t2)I„' ],
where

plab(+~tl~+ ~t2)

G is the propagator for the whole pulse sequence.
All the dynamical calculations are performed in the
1ntcraction representations defined 1Q Scc. II. The
propagator in (3.3) will thus take the form

G(~, t, ~', t&)

=T~E'~D(t2) V(~')%VCR(ti ) U(w)ET . (3A)

Prom right to left, the factors on the right of (3.4)
serve to enter the rotating frame (T), enter the k~
translating frame (E), calculate preparation period
dynamics [U(r)], calculate free evolution during the
delay [F(t~)j, exit the kt translating frame (Kt),
cntcr thc k 1 translating fr8n1c (E ), calculate probe

pulse dynamics [V(r')], calculate free evolution
after the probe pulse [D (t2)], extt the k'~ translatmg
frame (K' ) and exit the rotating frame (T ). The
forms of 7; E, Rnd E' have already been given by
(2.11), (2.12), (2.36), and (2.31).

The other factors in (3.4) are the propagators

U(r) =exp( —i'd' 'r) (3.5)

with 4 ' given by (2.32) or (2.39);

T4F(t()=exp( iA—0 t()

T4
D(t2) =exp( —i A 0 t2) (3.'7)

Tg
with P 0 given by (2.37) or the diagonal terms of
(2.39); and

V(r') =exp( iA q
—'r') (3.8)

with W~
' given by (2.39) with «g'=0 and primed

pulse parameters.
To minimize calculation of 1rrclcvRnt tcfn1s Rnd

to simplify the change of reference frames, (3.2)
will be rewritten. Substituting I„=—,(

~
a ) (d

~

+
~
d ) (a

~
) and using the invariance of the trace to

cyclic permutation allows the following rearrange-
Inent:

P '(r, t),r', tg)

=(p~/2)Tr[[F(t&)p(r)F'(t~)]

X[ (a)(d
~

( —r', —t2)]J+c.c.

Thc quantity

p(r) = U(r)KTp(—0)TtK U (r)

becomes simply

p(r)=U(r)p(0)U (r)

if the initial condition is diagonal. This will be
called the prepared operator. The detected operator
18 dcfiincd as

ia)(d i( —r', —t2)

=[KK tVt(r')Dt(t2)K'T]a )

y (d[TtK tD (t2) V(r')K''K ] .

Both (3.10) and (3.11) are in the rotating frame and
1n thc k 1 translating frame.

The plcpaled opcratol (3.10) Olay bc expanded 1Q

thc eigenopcrator basis as

p(r)=gp;;(r))i)(j( .
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=$p;, (r)exp( i to;—;t i )

Xexp( t—i/T'j)
~

i ) (j ~

. (3.13)
l

A similar expansion after a period t& of free evolu-

tion gives

F(t~)p(~)E (ti)

The quantities m,j are the differences between the
eigenvalues of ~i ) and

~
j) for the rotating-frame

Hamiltonian 4 0 (2.37). An exponential decay time
Tf has been included for the coherence present dur-

ing the delay t&. Relaxation during pulses will be
neglected.

Substituting (3.13) into (3.9), the contribution
from a single pair of states to the polarization near

c03 1s

Ptj'(r ti, r', t2)=({u~/2}pj (r)exp( ito—jti)exp( ti/T—g)Tr[ ( j)(i ) [ (
a )(d

(
( —r', —t2)]I+c c. (3.14)

The contributions of the free evolution during period t2 and of the various changes of representation which ap-

pear as operators in (3.11) can now be made explicit. For the ground-state vibrational coherence, (3.14} be-

comes

P,b'(r, ti, r', t2}

=(p~/2)pb, (~)exp( —t] /T2 )

&(exp [i [(k i+ k i
—k2). r+ ((('i i+p', —$2) —(2toi ai2)t—] I exp( iso,gt2 }-

&&exp( t2/T2 —)Tr[
~

b)(a
~

Vt(r')
~

a)(d
~

V(v')]+c.c. (3.15)

The quantity exp ( i co,bt i ) ha—s been dropped, since
for the rotating frame used ~ b ——0. This expression
clearly displays the propagation direction
ki ——(k, +k ', —k2) of the desired wave and the
dependence of its phase on that of the pulses
through the quantity $2 ——(p, +(()', —$2). During t2

the remaining trace factor is constant with v' set
equal to the length of the probe pulse. Then (3.15) is
the source for a homogeneous FID at
{2~~—~2+co,d). In Sec. IV inhomogeneous damp-

ing will be included. During the probe pulse (3.15)
still applies if t2 is set to zero and z' is the running
variable. The signal is centered at (2m~ —m2), but is
amplitude modulated by the ~' dependence of the
trace. It remains then to calculate this trace and
also the coefficient p,b(r) of the prepared operator.
These calculations are the subject of Secs. III 8 and
III C.

In general, there could be other contributions I',J.
'

with the same propagation direction arising either
from other ground-state vibrations, if more states
were included, or from the excited-state vibration.
In such a case beats could occur in t~. For the con-
ditions under which p(~) will be calculated here and
also in the experiments of Sec. IV, this situation
does not occur and (3.15) is the entire system
polarization contributing in the direction k3. The
nonresonant contribution to the polarization is not
included in (3.15), since to the extent that it is free
of dispersion it vanishes for delays greater than a
few pulse lengths.

B. Preparation of ground-state
coherence: large vibrational

discrepancy

In this section the coefficient pb, (r) of the
ground-state vibrational coherence which appears in
(3.15) will be calculated for the arrangement of co&

and ~z shown on the left of Fig. 1(a) in the limit of
large vibrational discrepancy discussed in Sec. II E2.
The validity of the calculation is restricted by (2.35)
and furthermore we will set 5=0, which makes it
analytically simple for arbitrary ratio of the two
laser fields.

The Hamiltonian (2.32) then becomes

~DO) (1) at.' (2) bc~ 3 =&aelx +'Ebclx

=e(COSH I„"+SInOIx ),
(3.16a)

(3.16b)

a11d

[(e( i))2+(e(2))2]1/2

(3.17)

The evolution of a three-level system under (3.16)
(two simultaneous resonant fields) has been treated
previously in different contexts, but the partic-
ular result needed here does not appear to have been
explicitly given.

The initial condition at low temperature consists
of all population in the ground state. This is the
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density operator

p(0) =
~

a ) & a
~

= —,
'

(A, +X,+2A, X, ) + —,
'

)( . (3.19)

Since we want to use a different rotating frame (T3 )

for preparation than that (T4) used for the rest of
the pulse sequence, (3.10b) becomes

p(7) =T4T3U3(7)p(0) U3(7) T3 T4, (3.20)

P =exp(&20I„' ) (3.22)

and explicitly calculating in a tilted frame so that

U3(7)p(0) U3 (7)=P '
U3 (7)p (0)U3 (7)P (3.23)

with

The preparation dynamics is readily solved by in-
troducing a tilt operator

where here

U3(r) =exp[ —te(cos8I„"+sin8I„)r] . (3.21)
and

U3 (7)=—PU(7)P ' =exp( —i eI„"7) (3.24)

p (0)=pp(0)p= —
(

~

a ) &a
~

+.
~

b ) &b
~
+

~

c ) &c
~

)+ —,(cos8+ 1)I,"
+ —,[3cos(28) —1](I,' —I, ) —sin(28)I„'" .

Carrying out the operations indicated in (3.23) gives

U3(r)p(0) U3(r)

= —, ( I a &&a I+ I
b&&b I+ Ic &&c

I
)

+ [
—„[1—3 cos(28) ]+ —,[1+cos(28) ]cos(er) ] (I,"+I, )

+ [ —,[3cos(28)—1]cos(28)+.—,[1+cos(28)]cos(28)cos(er)+sin (28)cos(er/2)]I, '

+ {—,[3cos(28) —1]sin(28) + —,[1+cos(28) ]sin(28)cos(er) —sin(28)cos(28)cos(er/2) }I„'

+ [ —,[1+cos(28) ]cos8 sin(er ) +sin(28) sin8 sin(er/2) ]I'
+ [ —,[1+cos(28)]sin8 sin(er) —sin(28)cos8 sin(er/2) ]I&

(3.25)

(3.26)

Finally, the coefficient needed for (3.15) is, for this case,

ps, (r) =Tr[
~

a ) &b
~
p(r)]

= —, j —,[3cos(28) —1]sin(28) + —,[1+cos(28) ]sin(28)cos(er)

—sin(28)cos(28)cos(er/2) ] . (3.27)

ps, (r) = —(e r /16)sin(28)

which can be written as

p (r)= —(r /8)e, ',~e~ .

(3.28a)

(3.28b)

This shows the correspondence to the perturbative

There are several features of this function worth
noting that are not evident in perturbative treat-
ments. The time dependence of the ground-state vi-

brational coherence during the preparation pulse has
Fourier components at 0, e, and e/2. The relative
weight of these components depends on the ratio of
the two applied fields through the relation
(e~'/e,',")=tan8. This ratio is important for the ef-
ficiency of the preparation process. For short times
[(er) « 1], the coherence amplitude is given by

approaches where the prepared coherence depends
on the product of the amplitudes of the applied
fields at co] and co2.

In Fig. 3 the coherence amplitude p~ given by
(3.27) is plotted for a fixed pulse length 7 of 6 psec
with three values of e"'. The ratio e~'/e,'," is var-
ied from 0.1 to 10 from left to right. The solid
curve is in the low-power limit where (3.28) applies.
The apparent curvature is due to the logarithmic
scaling along the horizontal axis. This curve is
magnified vertically by a factor of 10 relative to the
axis markings and the other curves. The dashed
curve is with a 100-fold increase in beam intensit~.
The dependence on e~' is nearly linear for e~' & e,', ',

but then saturates and declines. Another 25-fold in-
crease in power gives the dotted curve which shows
pronounced oscillations as e~' is varied.
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ba-—

—0.2-

-0.5
0.1

~ ~

0.4

~ ~

/

~ ~

~
+

0.7 1.0 2.0 48 7,0 10.0

Tr[
I
b) &a

I
1'«')

I
a) &d

I
1'(r')]

of Eq. (3.15).
As noted in Sec. IIIA the relevant Hamiltonian

P 4
' is isomorphic with (2.39b) except that EI„' is

zero. The remaining terms consist of three mutually
commuting operator sums, each of which is collect-
ed within a pair of parentheses in (2.39b).

Evolution under these terms can be expressed
analytically for any values of the parameters. To
this end it is useful to introduce two new tilt
transform ations:

RATIO OF RABI FREQUENCIES CI /K„

FIG. 3. Dependence of vibrational coherence ampli-
tude on the strength of the preparation pulses. This cal-
culation is done using (3.27) which applies to the case
where the preparation pulses are resonant (6=0) and the
Rabi frequencies e'" and e~' are much less than the vibra-
tional discrepancy between ground and excited states.
Pulse lengths are fixed at v=6 psec and three different
values of e" ' are chosen. For the lowest value

[(E~ /2nc) =0.1 cm '] the prepared coherence amplitude
is nearly linear as (e~'/2m. c) ranges up to 1 cm '. This is
indicated by the solid curve. Apparent curvature is due to
the logarithmic horizontal scale. This curve is scaled up
vertically by a factor of 10 relative to the axis markings
and the other two curves. Dashed curve is for
(e]),"/2mc)=1.0 cm '. Linearity in e~' holds approxi-
mately for e'b, 'ye~, after which the amphtudc saturates
and declines for larger e~'. Dotted curve is for
(e'"/2nc)=5. 0 cm '. Dependence on eb,

' is oscillatory,
but the maximum coherence amplitude is achieved.

M =exp(i2pI& )

with

2((4=tan '[(6+J)/Esd']

arid

(3.29a)

(3.29b)

N =exp(i2qI&')

with

2g=tan '(4A„') .

(3.30a)

(3.30b)

(J/2)X, +—mI„+nI„, {3.31b)

[(g+J)2+(E(1'))2]1/2 (3.32a)

The Hamiltonian in this doubly tilted frame is

8 I'A( MI(IJt 4
'I——II I(/I (

If an average over e~ is taken, then only the first
term of (3.27) survives. This average vibrational
coherence also changes sign as the ratio of the fields
is varied. Here this average is considered simply to
indicate the complexities of the dependence on pulse
parameters to be expected at high power. Experi-
mentally, averages over pulse angles can arise due to
inhomogeneity of the beam across the sample. This
type of averaging is considered in Sec. IV and Ap-
pendix A.

C. Probe pulse dynamics

Genera/ prescription

[g2+ ( E( I') )2]1/2 {3.32b)

The diagonal operators in the J/2 term have been
relabeled as Xz using the definitions in (2.3b). This
is a reminder that alternate forms are available
which simplify the calculation

The probe pulse dynamics of any operator I~~ can
now be obtained by a series of rotations defined by
single pseudospin operators as follows:

I~J( —r')

= V (&')Ipj V(~')

=NtM~V~ ~(r')(MNIp~N M ) V~ ~(~')MN

(3.33)

For the interaction of the system with the probe
pulse, the state

~

d ) is necessarily involved since, as
noted in Sec. IIIA, the CARS signal in the four-
level model is a measure of the coherence between
levels ~a) and

~
d) arising from coherence initially

prepared between
~
a) and

~
b). This is expressed

by the factor

with

=exp( —lot jr ~T )
~ ~DO}' p

= exp[i( J/2)Xzr']exp( imI„r')—
)&exp( —i@I„"g') . (3.34)
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2. Probing ueth ui ——up~

For the experiments of Sec. IV the probe pulse is
resonant with u&&. This corresponds to d = —J. In
this section the general prescription (3.33) mill be
used to find anth these parameters the factor

Tr[ [ b) (a [
V'(r')

[ a) (d
~

V(r')]

needed in (3.15).
From (3.29), (3.30), and (3.32) we see that this

case cor esponds to p=O, 2q=tan-'( —X/e.", '),
m=a~, and n=[J'+(e'„"}2]'". From (3.33) a
straighfonvard calculation gives

I„( r')—

= cos(Gt»rf/2'} j I» [cos(nr /2)cos(J7 /2) —s1n(2Y/)sin(n "T /2)slIl{J'7 /2)]

+I» [cos(n v'/2)sin( Jr'/2) —sin(2rl )sin(n r'/2) cos(Jr'/2) ]

+I„' cos(2rl )sin(n r'/2)sin( Jv'/2)

—I„' cos(2g )sin(n r'/2) cos(Jr'/2) ]

+sin(p~'r'/2) [ I' [cos(nr'/2)cos(Jr'/2) —sin(2q)sin(nr'/2)sin(Jr'/2)]

—I„cos(2rl )cos(nr'/2)sin( Jr'/2)

+I» [sin(nr'/2)cos(Jr'/2)+sin(2')cos(nr'/2)sin(Jr'/2)]

—I„cos(2q)sin(n r'/2)sin( Jr' /2) j .

Floln this expression it is easp to find

V'(r')
( a)(d (

V(r') =I„"( r'}+iI—~( r)—
(3.3S)

Ir ( r')= Vt(w'—)exp[ —i(n/2)X, ]I„exp[i(m/2)X, ]V(r')

=exp[ —i(n /2)X, ]I„(—r')exp[i(m/2)X, ] .

The desired trace is

Tr[
~
b)(a (

Vt(r')
~

a }(d [
V(r')]

=—sin(e~'r'/2) j [cos(nr'/2)cos(Jr'/2) —sin(2r})sin(nr'/2)sin(Jr'/2)]

+ i cos{ 2' }cos(nr'/2)sin( Jr'/2) ] .

(3.37a)

(3.37b)

(3.38)

If (3.38) is broken up into its Fourier components and substituted into (3.15) the result during the probe pulse

(r2 ——0) is

P,g'(w, t ),w')

= (p~/2)ps, (r)exp( —r~/T2 )exp[i(k3 r+$3)j

X —,(( cos2q —sin2r} —1)exp[ —i[co3—(n/2) —(J/2) —(e~'/2)]r']

—(cos2q —sin2rl —1)exp [ —i [co3—( n /2) —(J/2) +(e'~'/2) ]r' j

—(cos2g —sin2rl+ 1)exp[ —i[ra3 —(n/2)+(J/2) —(e~'/2)]r' j

+ (cos2rt —sin2g+ 1)exp [ i [co3 (n—/2) + (—J/2) +(e~'/2 }]r']

+(cos2g+sin2r} —1)exp[ —i[co3+(n/2) —(J/2) —(e~'/2)]v']

—(cos2g+sin2q —l)exp[ i [co3+(n/2) —(J/2)+(e~ —/)]2m']

—(cos2g+ sin2q+ 1 )exp [ —i [co3+(n /2) +(J/2) —(e~s'd'/2) ]r']

+(cos2q+sin2rl +I) exp[ i[co3+(n/2—)+(J/2)+(e~'/2) jr'})+c.c. (3.39)
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Fourier transformation with respect to the dura-

tion of the probe pulse shows that the CARS signal
is no longer at co3, but is emitted at eight frequencies
displaced about co3. The hypothetical spectral distri-
bution of the signal which would be obtained in the
limit of a long probe pulse is sketched in Fig. 4.
The most prominent feature is a shifting of the in-

tensity from co3 to -(~3+a'bd'/2). In the limit of
J&&ebd' this would be the only structure and the
probe dynamics would in effect be a two-level prob-
lem in which only

~
b) and

~

d) are perturbed. The
additional structure in Fig. 4 is due to the fact that
the transition at co„ is only off resonance by 4= —J
and so these states also can be perturbed. As dis-

cussed in Sec. IV and Appendix A, the short length
of the probe pulse and the inhomogeneity of the
Rabi frequencies across the beam profile prevent
resolution of the splittings in Fig. 4.

IV. RESULTS AND DISCUSSION

Z
LU
I—
z
Z
O
V)
Vl

X
UJ

LLo
O
O

—= 9cm 1

2fic

(I)
= 2cm- 1

2Tlc

4&3

EMiSSION F REQUENCY

FIG. 4. Fourier analysis of the probe pulse dynamics
for co&

——co~b. Spectrum of the emitted light consists of
eight lines instead of the single line found in the low-

power limit. Illustration is for a Rabi frequency of
(e~/2n. c)=(e"'/2m. c)=2 cm ' and a discrepancy be-
tween ground- and excited-state vibrations of
(J/2m. c)=—9 cm ', using (3.39). Dominant feature is a
displacement of the intensity from co3 to (N3RE'~'/2).
This two line approximation would describe the spectrum
in the limit that only the levels

~
b) and

~

d ) were per-
turbed during probing. Additional structure is due to the
involvement of levels

~

a ) and
~
c ). Experimental resolu-

tion of this structure would require a long, spatially
homogeneous probe pulse.

A. Experimental

Single crystals of benzoic acid doped with penta-

cene (10 ' M/M) were mounted in a variable-

temperature He cryostat (Oxford Instruments). The
light traveled nearly perpendicular to the ah

cleavage plane with polarization along the crystal a
axis.

The experimental arrangement is sketched in Fig.
5 and is similar to that already described for photon
echo studies. An acousto-optically mode-locked
Ar-ion laser (Spectra Physics, model 171) emits
—100-psec pulses at 514.5 nm with an 80-MHz re-

petition rate and average power of 760 mW. This
output is divided into two beams and used to syn-
chronously pump dye lasers operating at 5884.8 A
(Spectra Physics, model 375 with Rhodamine 6G
dye) and 6158.7 A (Coherent Radiation, model 590
with Rhodamine B dye). These are the frequencies

cubi and co2, respectively. Except where noted, the
tuning was achieved with a three plate Lyot filter.
The output of each dye laser then consists of -24
mW in the form of a train of approximately
transform limited (b,vbt=0. 5) 6-psec pulses at 80
MHz (-0.3 nJ/pulse).

Each pulse train passes through two amplifiers
consisting of focusing lenses, a dye cell amplifier
(Rhodamine 6G at co~ and Rhodamine B at co2) and
a prism and pinhole to discriminate the laser light
from dye fluorescence. The amplifiers are pumped
by the 532-nm second harmonic of a Nd: YAG laser
(Molectron MY 32), which consists of nanosecond
pulses at a 10-Hz repetition rate. Glass plates are
used to direct a few percent of the YAG output to-
ward each amplifier cell and this is further attenuat-
ed so that the final pumping power per pulse is -80
p J at the first and -250 pJ at the second amplifier
of each chain. Net amplification is by a factor of
-2&10 for the one pulse in 8X10 which coin-
cides in the amplifiers with the YAG pulse.

The co~ pulses are split into two beams, one of
which is sent through a homebuilt variable path
length to introduce a relative delay. The co2 pulses
are sent through an independent variable delay.
These three coplanar parallel beams are focused by a
single lens such that they converge in the sample
with angles of 1'—2' between the wave vectors k~,
k~, and k2. Spot size in the sample is &100 p, as
estimated by passing the beams through a pinhole of
this size in the same plane as the crystal.

The transmitted beams are again made parallel
beyond the sample and the signal beam at
k3 ——k&+k

&

—k2 is spatially filtered with a pinhole
and focused onto the entrance slit of a double mono-
chromator (Spex model 1402). The dispersed signal
is measured with a photomultiplier tube (RCA 7265)
and processed with a boxcar integrator (EG 4 G,
Model 162 with gated integrator Model 165) to give
effective averaging times of a few seconds.

The photodiode (PD) catches a weak reflection of
the 80-MHZ argon-ion-laser pulse train. This is di-
vided down to 10 Hz and used to trigger the YAG
laser and the boxcar gate.

Pulse lengths were measured using second-
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FIG. 5. Experimental arrangement for delayed four wave mixing with psec pulses. An actively mode-locked argon-ion

laser synchronously pumps two dye lasers to generate a train of picosecond pulses at co~ and at coq. A pulse at each fre-

quency is amplified in two stages by dye cells pumped by a YAG laser operating at 10 Hz. Pulse at co& is split into two and

one part is sent through a variable path length to introduce a delay. Pulse at co2 passes through an independent variable de-

lay. Three pulses enter the sample with wave vectors k&, k&, and k2 and the signal beam exits the sample at
k3 ——k&+k &

—k2. Both spatial filtering and a monochromator are used to eliminate stray laser light. Photomultiplier out-

put is accumulated with a boxcar integrator and plotted on an X-Y recorder as a function of delay time, laser frequency,
laser power, or monochromator frequency. YAG laser and boxcar are triggered by the output of the argon-ion laser after
division of the trigger signal to 10 Hz.

harmonic generation (SHG) in an ammonium dihy-

drogen phosphate (ADP) crystal. First, the cavity
length of the dye laser is optimized to obtain the
shortest pulses by maximizing the ratio of the SHG
to the fundamental and then the autocorrelation is
measured by varying the delay between pulses. '
The values reported are 2 ' of the full width at
half maximum (FWHM) of the autocorrelation and
correspond to the FWHM of the pulse intensity pro-
file, if the pulses are assumed to be Gaussian in
time. No difference is found between the autocorre-
lation functions of amplified and unamplified
pulses. In the same way, cross correlation measure-
ments were made between the co& and co2 pulses.
These indicate some timing jitter between the pulses
since they typically have a FWHM of 13 psec for
the unamplified pulses and 15 psec for the amplified
pulses. The correlation functions for all pulses used
fell to less than 1% on either side within 30 psec of
the maximum.

Pulse power measurements were made with a py-
roelectric joulemeter (Molectron, model J3-05) in-

serted immediately before the cryostat.
The measurements reported here are CARS exper-

iments performed on the four-level system consist-
ing of the electronic ground state (

~

a ) ), the vibra-
tionally excited state at 756 cm '

(
~

b)), the zero
phonon excited state of S, (

~

c ) ), and the vibration-
ally excited state of SI at 747 cm '

(
I
d ) ). Details

on other vibrations and other hosts will be reported
elsewhere. ' These ground- and excited-state vibra-
tions are prominent features of the fluorescence and

absorption spectra, respectively. ' The inhomogene-
ous linewidths in our crystals are —1.7 cm

In order to establish that the signals observed
arise from the guest pentacene, low-resolution
frequency-dependent CARS experiments were per-
formed with long (85-psec) pulses obtained by insert-
ing etalons into the dye lasers. The expected reso-
nance was found at co~ ——bodb, if co~ and co2 were
varied together with fixed (co& —co2). No CARS sig-
nal was observed at co~ ——co„with resonant (co& —co2),
which we tentatively attribute to an optical density
effect. The absorption at co«was & 95%. The
time- and power-dependent experiments are thus
performed with coi ——bodb and (~~ —~2) =~b, . This
corresponds to the arrangement of Fig. l(a) with
4/2~c =9 cm

B. Transverse vibrational decay

Figure 6 is a typical experimental trace as a func-
tion of delay time t&. The x axis of the chart recor-
der is synchronized to the stepping motor on the coi

delay table. The entire scan takes about 20 minutes.
The signal beginning at 125 psec is an independent
trace made with the photomultiplier voltage in-
creased to give a tenfold larger signal.

The insert in Fig. 6 shows a logarithmic plot of
the decay. The irnrnediate neighborhood of zero de-

lay shows a peaking due both to the greater intensity
at co~ when preparation and probe beams overlap
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FIG. 6. Decay of the CARS signal with probe pulse delay for the 756-cm ' ground-state vibration of pentacene in ben-

zoic arid at 10.4 K. Horizontal axis is the delay ti of Fig. 2. Vertical axis is the boxcar integrator output as this delay is

continuously varied and is proportional to signal photon fluence and also to the intensity of the transient I (co3) as sketched

in Fig. 2. Initial spike contains contributions from background processes which contribute while preparation and probe

pulses overlap. Signal beyond 125 psec is shown amplified by a factor of 10 by increasing the photomultiplier voltage. At

probe pulse delay beyond about 20 psec the decay is exponential vnth a time constant of T2/2=35 psec, as derived from a

fit to the logarithmic plot of the data shown as filled circles in the inset at the upper right. Crosses in the inset are for the

analogous experiment on the 260-cm ' vibration. This decay was too short for accurate measurement. It serves here to
indicate an upper bound on the contribution due to pulse overlap.

and also to nonresonant, CARS processes. The rela-
tive size of this ti ——0 signal to the delayed signal
was larger at high pulse power, but this effect was
not studied in detail. The delayed signal was
measurable and exponential over nearly three orders
of magnitude. The slope of the fitted line gives
T2/2=35+1 psec. This value was constant from 2
to 20 K.

This decay time corresponds to a Lorentzian
FTHM of (m.cT2) '=0. 15 cm ' which is three
times narrower than that observed in frequency-
dependent CARS' and CSRS'3 experiments on the
same system. The delayed experiment is insensitive
to power broadening and laser linewidth effects,
which, in principle, can complicate frequency
domain measurements. However, these effects were
reported not to be resolution limiting in those stud-
ies. %e are unable to imagine any mechanism
whereby the observed decay could be prolonged rela-
tive to the actual decay of the material coherence
and thus believe that T2 ——70+2 psec is the low-
temperature transverse relaxation time for this

~

a ) (b )
coherence.

This transverse decay time may be written as the
sum of two terms:

1/T2 ——1/T2 + 1/2T i, (4.1}
where T& is the lifetime of the state

~

b ) and Tz is a
pure dephasing contribution. The present experi-
ment gives no indication of the relative contribution
of these terms. This could be determined by a Ti
measurement such as that made by a three-pulse
stimulated echo on the 747-cm excited-state vi-
bration of pentacene in naphthalene. There it was
found that in the low-temperature limit the vibronic
1/T2 was equal to 1/2T&. It seems likely that this
is also the case here.

Another approach to obtain a measure of the pure
dephasing is by observing the intensity of a reso-
nance in g'" which vanishes in its absence. "'"-"
This experiment has been performed on the 747-
cm ' excited-state CSRS resonance of pentacene in
benzoic acid and the pure dephasing due to the local
phonon was observed above -5 K.' The signal-
to-noise ratio (Fig. 3 of Ref. 12) is not adequate to
eliminate the possibility of a 1/T2 contribution to
the 1/T2 observed here. Even if 1/T2 dominated in
(4.1), the pure dephasing parameter' would be
I 2 & 0.076 cm . Higher-sensitivity measurements

should be possible to rule out such a contribution
unequivocally.
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IQ RgI'ccIBcnt with tlM frcqucncy domain glound-
statc CSRS measurements thc Obscrvcd T2 was

essentially independent of temperature up to -20
K, above which 8 tcIBpcrature-dependent broaden-

ing 1s cvidcnt. This ls ln contIast to tlM conclusions
of 8 resonance Raman study of thc saIBc vibration in
the system of pentacene in naphthalene, where the
temperature dependence of thc llncwidth wRs fit to
thc ArrlMnius cxponcnt181 form with an act1vation

energy of -17 cm ' and a low-temperature limit of
0.10 cIB . This corresponds to 8 low temperature

T2 of 106+25 pscc %'hich 1s reduced by 8 factor of
—58t12K.

%'e therefore performed the delayed CARS exper-
irnent on pentacene in naphthalene crystals and
found that %'h1lc thc low-tcmperatui c result of
T2 ——101+5 psec is in agreement with the result of
Rcf. 58, this value had not changed IBcasurRbly cvcn

up to 20 K. In addition, the experiment of Ref. 58
was rcpcatcd and confirmed.

This discrepancy leads us to conclude that the
temperature-dependent linewidth Ineasured in Ref.
58, in fact, measured Uibronie dephasing, which is
indeed dominated in this temperature range by local
phonon activation. ' Thc dclaycd CARS experi-
ment IBcasulcs thc actual ground-state vibI'Rtional

Tp and this has no measurable contribution from the
thermal activation of the local phonon in either host
crystal. This is undcrstandablc 1Q terms of thc dc
Bree-VA'crsma optical Redfield theory if the pho™
Qon cncrgy and scattering Rmphtudc Rrc nearly Iden-

tical in the ground Rnd vibrationally excited states.
Then, the fast exchange limit (Ref. 60 and references
therein) holds and the contribution to the linewidth

which Is thermally 8ct1vatcd Rt thc local phonon fre-

quency may be undetectably small.
One explanation for the observations of Ref. 58 is

that the signal attributed there to near-resonant Ra-
IBRQ scat tcriQg is actually resonant ftuorcsccnce
froIB a distribution of microsites in the wings of the
I.34-cIB -w1dc 1nhoIIlogcncous line. Th1s possib111-

ty could bc checked by 8 tiIBc-I'csolvcd IBcasurcIBcnt
of t1M right angle 1UIB1ncsccncc, s1ncc only fluorcs-
ccncc %'ould persist foi Qanoscconds after 8 pulse of
light near tlM N~~ Rbsorpt10Q maximum.

C. Intensity dcpcndcncc of thc

dispersed signal

VA'th the delay fixed on the exponential part of
the decay, the intensity of the three input beams was

varied. Over the available range of power (&2
pJ/pulse) the signal was linear in I(co2). A small

dcgrcc of saturation was observed as thc Intcns1ty of
the preparation beam at Ni was increased. Pro-
nounced saturation effects were observed for the ful-

ly resonant probing process and these were studied
1Q detail.

Figure 7 shows the spectrum of the emitted light
IMar N3 =2N i —N2 (5634.2 A) for two diffcI'cIlt

probe pulse intensities. The laser frequencies are
fixed. Only thc IBonochromator 1s scanned. Trace 8
is taken with a probe pulse energy of 0.04 pJ. It has
8 F%HM of 1.2 cm ' and this value was constant
when the intensity %as lowered further. Trace 6 is
with a probe pulse energy of 0.4 pJ and is about four
tlQ1cs wider.

In the usual treatments of four wave mixing the
production of the light at N»s vie~ed as a sca~ter-

1ng process rcquinng thc siIBultancous prcscncc of 8
material coherence at (coi —co2) and an applied field

Rt Ni. In this pictUrc thc CARS signal must ter-
minate %'1MQ thc probe pulse docs. If this werc thc
case, then the short dura~ion of the probe pulse

%ould set 8 lower limit on the spectral width of the
emitted light. For example, a CARS signal %hich
Iosc Rnd fell %'1th 8 Gaussian probe pulse of duia-
tion 6 psec would have a FROMM frequency of 2.4

I IG. 7. Spectrally resolved CARS signal centered at
Vertical axis ls thc signal Auencc at a glvcn

monochromator ccntcr frcqucncy. Monochromator reso-

lution contributes negligibly to the line shapes. Curve a
shows the spectral distribution when the probe pulse is

weak (0.04 pJ). Spectral width is 1.2 crn '. This is less

than half of the transform limit for a scattering process
which follows ln time thc shape of thc probe pulse. This
width is explicable only if the signal extends in time

beyond the probe pulse ln R FID at as~ Rs predlctcd by

the theory. Curve b is taken at high power (0.4 pJ). Spec-
tral width is qualitatively accounted for by the distribu-

tion of Rabi frequencies across the beam profile. This
distribution cllminatcs the FID contnbutlon by lnholrlo-

geneous optical nutation as confirmed by the simulation

of the total fluence measurements in Fig. 8.
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cm ', more than twice that of trace a. Similar
widths are found for other envelope shapes confined
to the duration of the probe pulse. Thus in order to
attain the observed spectral width, the CARS emis-
sion must extend in a free induction decay beyond
the termination of the probe pulse as discussed in
connection with (3.15).

An a priori estimate for the low-power linewidth
can be made by roughly quantifying the form of the
time dependence of the signal at ~q as sketched in
Fig. 2. The signal must rise from zero to some max-
imum value during the probe pulse and then decay
in an inhomogeneous FID after the probe pulse. To
simplify, replace the actual probe pulse by a square
pulse whose electric field is a least-squares fit to a
Gaussian of the same pulse area. This square pulse
has a half-width of 5.6 psec and this will be taken as
an estimate of the time to half maximum of the sig-
nal intensity during the probe pulse. The time scale
of the FID after the sudden termination of such a
square probe pulse is calculable from the inhomo-
geneous width of 1.7 cm ' observed in fluorescence.
The intensity of thc corresponding Gaussian FID
would fall to half at tz ——6. 1 psec. Thus the com-
bined intensity profile is a roughly bell-shaped curve
with an intensity half-width in time of 11.7 psec, or
in frequency of —1.3 cm '. This agrees well with
the observed value of 1.2 cm ' from trace a of Fig.
7. Further evidence for this juxtaposition of scatter-
ing and FID will be found when the integrated sig-
nal intensity is considered in Sec. IV E.

As indicated by the broad spectrum of trace b, the
bulk of the signal intensity at high probe pulse
power must be occurring in a period of -3 psec in-
dicating that the FID contribution has been
suppressed and the emission is occurring during
only a fraction of the probe pulse.

D. Probe pulse field
inhomogeneity

This power-dependent curtailment of the signal
suggests that the coherence is not surviving long
enough during the probe pulse to experience the os-
cillations necessary to give the resolved structure of
the theoretical spectrum of Fig. 4. Such a loss of
structure is expected if the Rabi frequency is inho-
mogeneous across the beam profile. In a particular
wave front characterized by a constant value of
kI r, molecules experience an electric field which
depends on their distance R from beam center.
Since the preparation and probe beams are the same
width, the spatial inhomogeneity effects of all the
beams are convoluted together.

The model developed here is for the case that the
two preparation beam intensities are in the linear-

response regime, while the probe beam is treated to
all orders. The beams are taken as being coaxial,
which is a good approximation at optimum align-
ment, since they meet at angles of &4' and their re-

gion of overlap is several times greater than the
sample thickness. The distribution for the field in-

tensity of a TEMOO beam is taken to be a two-
dimensional Gaussian so that the Rabi frequency,
which is proportional, has the form

e,'.. '(E.)=e,' '(0)exp( —CR )=e,' u(R),

where e',J '(0) is the Rabi frequency at beam center
and C parameterizes thc beam width.

The details of this analysis are in Appendix A.
The electric field at the photomultiplier is taken to
bc proportional to the polarization (3.39) averaged
over the distribution (4.2). This spatially averaged
field has built into it the possibility of destructive
interference between molecules with the same value
of k& r. This interference occurs when the signal
polarization at the beam center change sign relative
to that in the surrounding annulus. It amounts to a
damping of the coherent scattering, during the probe
pulse, which becomes increasingly rapid at higher
power.

E. Total signal fluence
measurements

The value of the signal intensity at the time when
the probe pulse ends becomes the initial value for
the subsequent FID. The total signal fluence mea-
sured by the slowly responding photomultiplier with
the monochromator set to low resolution is the in-
tegral over time for these two processes:

@&o& ~ pulse+@ FID (4.3a)
I

= I I,b'(t')dt'

+I,b'(r') j exp[ —2a (t' —r') ]dt' . (4 &b)

The decay parameter of the Gaussian FID is
known from the Gaussian inhomogeneous line shape
measured by fluorescence. In terms of the FWHM
Ace (rad/sec},

a =6~(ln2) ' /4 .

For the observed value of Ace/2m@=1. 7 cm ', the
integral in the second term of (4.3b) is 6.5 psec.
Thus, as sketched in Fig. 2, the contributions during
and after the probe pulse may be comparable.

Figure 8 sho~s the calculated values of these con-
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FIG. 8. Simulation of the dependence of the CARS
signal on the probe pulse Rabi frequency in the two-level

limit. Curve of short dashes is the contribution from the
FID after the probe pulse. Its relative size is known from
the measured inhomogeneous broadening. Curve of long
dashes is the contribution from scattering during the
pulse. Calculation uses a square pulse of v'=11.2 psec,
which is a least-squares fit to the electric field profile of a
Gaussian pulse with an intensity FWHM of 6 psec. Solid
curve is the sum of the two dashed curves and corre-
sponds to the total undispersed signal fluence. Axis
markings correspond to E~ at the center of a Gaussian
beam, but the scale is quadratic so as to be proportional to
pulse energy. Additional details of the calculation are in

Appendix A.

occurs in the initial part of the pulse.
The solid curve is the sum of the dashed curves

and represents the observable 4„,. Note that the
upturn at large Rabi frequencies comes from 4»D.

Figure 9 summarizes the corresponding calcula-
tion (Appendix A) for the assumption e,", '=ebd'.
The nonresonant process, which brings levels ~a)
and

~

c) into play, only becomes significant at the
higher Rabi frequencies. The curves of short and
long dashes in Fig. 9(a) are 4»D and 4p„~„, respec-
tively. The main difference from Fig. 8 is that now
the upturn in 4»D is moved to ~bd'(0)/2m. c=7
cm ', which is off the scale of the figure.

Comparison with the experiment is made in Fig.
9(b). The solid curve is 4„, found by adding the
curves of Fig. 9(a) while the dashed curve is the
same quantity from Fig. 8. The open circles are the
experimental values for 4„,at the probe pulses ener-

5.0

40-

C

C3 3.0—
0

z 20-

tributions to the signal fluence as a function of
probe pulse intensity for the limit e,,"=0 or, less
stringently, (E,', ') /

~

J
~

&&E~ The h. orizontal axis
markings correspond to ebd'(0) /2n. c, the
Rabi frequency at beam center, but are plotted qua-
dratically so as to be proportional to pulse intensity.
The curve of short dashes is 4»D. This is propor-
tional to the square of the coherence remaining at
the end of the probe pulse. If the beam profile were
homo eneous, this curve would be simply
sin (E~'r'/2) with fixed r'. The minimum of the
plotted curve corresponds to (ebd'~'/2) =4.4 rather
than m. and the second maximum is reduced relative
to the first. These deviations are due to the spatial
inhomogeneity of the probe pulse.

The curve of long dashes in Fig. 8 is 4p
Without beam inhomogeneity included, this would
be proportional to

f sin (E's'd't/2)dt

which rises monotonically to ~'/2 at e~'/2m. c=1.5
cm ' and then oscillates about this value tending to-
ward it asymptotically. The beam inhomogeneity
washes out the oscillations and causes a net decline
as the peak intensity in successive Rabi cycles is di-
minished. Thus with an intense inhomogeneous
probe pulse, nearly all of the coherent scattering
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FIG. 9. Dependence of the CARS signal on probe
pulse intensity. Calculated curves in (a) are analogous to
similar ones of Fig. 8. Difference is that the off-resonant
process at co„ is included with the assumption of equal
transition moments p„=phd. (b) the solid line is the sum

of the dashed lines in (a) while the dashed line is a repro-
duction of the solid line of Fig. 8. These two calculations
of the total undispersed signal are compared to the mea-

sured values given by the open circles as a function of
probe pulse energy.
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gies indicated on the lower horizontal scale.
These were obtained by attenuating the prepara-

tion pulses to a fixed value in the linear regime, set-
ting ti on the exponential part of the decay, and
varying the probe pulse intensity. A correction was
made for the bandpass of the double monochroma-
tor, which even at its lowest-resolution slit setting
attenuated preferentially in the wings. Thus, the re-
ponse of the monochromator was measured and
multiplied by the observed line shapes (e.g., Fig. 7}
to determine the fractional loss at each intensity.

The data was scaled vertically to match the simu-
lations at the high Rabi frequencies and scaled hor-
izontally to match at the initial maximum. The fit
is only tIualitative, but establishes that optical nuta-

tion of e~'8 ) 3m is attained and shows how the ini-

tial and secondary maxima in 4tpt can arise.
The significant overestimate of the initial max-

imum is presumably due in large part to the neglect
of the inhomogeneous line width in the probe pulse
dynamics. For molecules in the spectral wings, this
leads to less efficient involvement, in fact, than in
the calculation, where all molecules are assumed to
be resonant with the probe pulse. This neglect is of
less importance at the higher intensities, where the
Rabi frequencies considerably exceed the inhomo-
geneous resonance offsets. An additional source for
discrepancy between the calculated and observed flu-
ences is that square probe pulses were assumed.
These had the same pulse area and were least-
squares fits in amplitude to the presumably Gauss-
ian pulses responsible for the measured second-
harmonic-generation (SHG} autocorrelations.

An interesting feature of the simulation is that the
slight rise in signal fluence at the highest probe in-
tensities seems only to be accounted for by a secon-
dary maximum in BIFID. Experimentally, this rise is
bardy within the possible error and it would be
desirable to pursue the curve to higher probe pulse
energy. Another possibility for establishing the con-
tribution of 4F&D unambiguously would be to move

i slightly away from ~d~ so that 4I,„~se and 4F&D
would be at different frequencies ~3 and md„respec-
tively.

V. CONCLUSION

A. Other applications for the
nonperturbative approach

The approach taken here to delayed CARS of
ground-state vibrations is easily modified to deal
with related experiments involving two pulsed
beams and several molecular levels. In this section
several such situations are briefly discussed.

The most closely related experiment is delayed

CSRS of the excited state as depicted in Fig. l(b}.
The resonance corresponding to the coherence be-
tween

~

c ) and
~

d ) is known to be absent in the X'3'

formalism unless there is pure dephasing in the sys-
tem. ' ' ~ This prevents the measurement of the
transverse relaxation of this coherence by steady-
state CSRS at the lowest temperatures, though the
experimental situation can be misleading, ' since
there are allowed one-photon X' ' resonances. The
steady-state CSRS experiment has been demonstrat-
ed on excited-state vibrations of pentacene in ben-
zoic acid with the line amplitude thermally in-
duced. ' The delayed analog of this experiment does
not require pure dephasing and thus is applicable at
lower temperature. Appendix 8 contains a brief cal-
culation demonstrating that, in the transient
resonant regime, vibrational coherence is as easily
prepared in the excited state as in the ground state.
The nonperturbative approach to CSRS will be dis-
cussed more fully elsewhere.

A somewhat different effective four-level system
arises in the case of a dimer of two inequivalent
guest molecules. Here four electronic states are
formed from the monomer So and Si states by the
intermolecular interaction. In a recent study of such
a pentacene dimer in p-terphenyl, ' the relative ener-
gies of these four states were located using low-
temperature CSRS resonances. Here a time-domain
experiment should prove valuable for measuring the
transverse relaxation between the two singly excited
dimer states, since within the 7' ' formalism this
quantity ~ould again only be observable once pure
dephasing set in. The probe pulse calculation
presented in Sec. III can be readily extended to prob-
ing the double quantum coherence in dimers as well.

Particularly when electronic states are involved,
the possibility arises that an inhomogeneity over the
sample of the frequency of the prepared coherence
could cause additional dephasing which would ob-
scure the underlying T2. Such inhomogeneous de-

cay can be eliminated by interchanging the popula-
tions of the states involved with an additional pair
of simultaneous pulses at cubi and co2 at t& /2 (Raman
echo). The formalism here allows the calcula-
tion of the efficiency of this process for different
pulse parameters. For example, for either of the fre-
quency arrangements on the left sides of Fig. 1(a) or
1{b), the echo efficiency in terms of intensity cannot
exceed 2S% with 6=0. This result represents the
limit where three levels participate and is already
known from previous calculations, which differ
from the case of the Raman echo only in the means
assumed of detecting the echoed coherence. This
situation differs from the 100% echo efficiency (m

pulse) possible for the usual two-level echo and the
pseudo-two-level model of the Raman echo36
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applicable at large h.
The application of two simultaneous intense fields

near electronic transitions may also be useful for
studies of vibronic coherence. Though the focus in
Sec. III 8 was on the vibrational coherence prepared,
the last term of {3.26) describes coherence between
the previously unoccupied states

~

b ) and
~

c ). It is
prepared by the same pulses. If a m pulse at m2
were to follow after a delay ti/2, then an echo
would be formed at co,b at time t], which could be
detected, for example, by picosecond gating in po-
tassium dihydrogen phosphate (KDP) with another
mi pulse. Such an experiment would complement
photon echo studies on vibronic transitions involv-
ing the ground state

~
a), ' which are accessible

with single-frequency preparation pulses.

are drawn to previous results from perturbation
theory.

The theoretical expectations for the spectral dis-
tribution and the total intensity of the signal as a
function of probe pulse energy are compared with
experiment, thereby demonstrating the existence of
an FID component and effects of large-angle optical
nutation. The analysis shows that spatial beam in-
homogeneity as well as the length and energy of the
probe pulse can limit the sensitivity of the method.

Low-temperature time-domain vibrational T2
measurements on the -7S6-cm ' vibration in a
benzoic acid host are found to be inconsistent with
previous steady-state measurements. The same
time-domain experiment in a naphthalene host
necessitates a reinterpretation of previous right angle
luminescence experiments.

In this work a nonperturbative approach to de-
layed four wave mixing is developed and applied to
the ground-state vibrational CARS spectroscopy of
dilute pentacene in molecular crystal hosts. Expres-
sions for the dependence of the signal on the pulse
parameters to all orders in the field are derived for
short pulses within a four-level model. Connections
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APPENDIX A: AVERAGING OVER
INHOMOGENEOUS BEAM PROFILES

In the limit that the field at the detector follows in proportion to the sample polarization (3.39) it may be
written as

E b (t )=3 si (Ent~'/2) [(cos2rt+ I —sin2't))sin[(t03+n /2+ J/2)t']

+ ( cos2g+—1 —sin2q)sin[(co3+ n /2 —J/2)t']

+(cos2rt+ 1 —sin2g)sin[(co3 —n /2+ J/2)t']

+ ( —cos2rt+ 1+sin2g )sin[(F03 —n /2 —J/2)t'] } .

The factor A represents all the proportionality con-
stants due to preparation, evolution, propagation
geometry, and the transition dipole p~. The time
variable t' indudes the propagation delay and has its
origin at the moment the first signal reaches the
detector. The trigonometric function is just a rear-
rangement of the real part of the term in bold
parentheses in (3.39). Implicit in writing (A1) are
the conditions that the time scale for changes in the
polarization envelope (-10 ' sec) is much longer
than an optical period {-10 ' sec) and that the en-

velope of the signal pulse is not reshaped during
propagation. The latter condition is consistent with
the neglect throughout of any reaction of the system
to its own polarization.

At any time t' this quantity must be averaged
over the points in the sample at the same k3 r, but
at different distances R from the beam center. This
is the integral

(E,b'(t')) = f E,g'(t', R)R dR f dp . (A2)

The dependence on R, which is not explicit in (A1),
is given by the distribution {4.2) and enters through

all of the e,'J '.
Since the preparation process was chosen to be

linear in each of the two beams, the constant A is
proportional to the square of the distribution:

A {R}=A(0)exp(—2CR )=A(0}u (E.) . (A3)
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The distribution enters linearly in each of the
Rabi frequencies appearing in the probe process.
These are proportional to one another,

(A4)

but the constant E is unknown. For purposes of cal-
culation K=1 will be assumed, since both transi-
tions are ones in which to the lowest approximation
the vibrational state does not change. Thus the
Franck-Condon factors are expected to be similar.
In any case, the calculation will turn out to be quite
insensitive to e,", ' and thus to K, because it enters
the probing only through a nonresonant process.
The dependence on e,", ' is through the quantities g
and n and is given by (3.30b) and (3.32b), respective-
ly.

The contributions from the second and third
terms of (Al) may be dropped in evaluating the sig-
nal energy. These correspond for J&0 to the outer-
most four lines in Fig. 4. These contributions are
small and of opposite phase so they are easily
washed out by a distribution in ebd. Thus it is not
surprising that they were not observed in the experi-
ment of Fig. 7. More importantly, for simulation of
the total intensity measurements of Fig. 8 they are
rigorously absent, because they fall outside of the
bandpass of the double monochromator when it is
centered at co3 and thus make no contribution to the
observations.

The next step is to rearrange the contributing
terms of (A1) in order to factor out the high-
frequency time dependence at co3 from the slower
modulation of the amplitude envelope. This gives

E,b'(R, t')~ (R)sin[ebd (R)t'/2]

)((2 sin(a)3t')cos[[n (R)+J]t'/2] +cos(a)3t') [cos[2g(R)]+sin[2rt(R)]]

X sin[ [n (R)+J]t'/2] ) . (A5)

(A6b)

+ —, (u (r)sin[a~'(R)t'/2] [cos[2g(R)]+sin[2rt(R)]] sin[ [n (R)+J]t'/2] ) }dt' .

Substituting (A5) into (A2) and using (A3), the desired fluence integral representing the signal contribution
from scattering during the probe pulse may be written as

T fg)

4p ] I b'(t')dt' (A6a)

= J (E.b'(t )) dt

=A 2(0) J (2(u 2(R}sin[e~'(R)t'/2]cos[(n (R)+J)t'/2] )

(A6c)

In writing the integrand in (A6c), an averaging over
an optical period has already been carried out using
the fact that co3 is much faster than any of the other
frequencies. Thus this integrand is the envelope of
the intensity. The spatial integrals, which are indi-

cated by the brackets, are of the form of (A2).

APPENDIX B: EXCITED-STATE CSRS

The excited-state CSRS resonance in 7' ' at
(~2 —co])=cod, is known to vanish in the absence of
any pure dephasing among the levels in-
volved. ' ' ' This interesting phenomenon is
peculiar to the steady-state response at low field in-
tensity. The delayed CSRS experiment near elec-
tronic resonance is capable of measuring the trans-
verse vibrational decay in the absence of pure de-

phasing and thus to arbitrarily low temperature.

4 3 )=e(cosHI„"+sineI„' ),
where now

0=tan '(Ead /&ac )

and

e = [(E(1))2+(E(2))2]1/2

(81)

(82)

(83)

The analog of (3.26) [also with p(0)= ~a }(a ~] is
then found to be

I

Furthermore, this transient response appears to
third order in the fields and so does not have a qual-
itatively different requirement on pulse power near
resonance than does ground-state delayed CARS.

To see this we calculate the preparation dynamics
for the fully resonant case corresponding to 5=0 on
the left-hand side of Fig. 2(b). In analogy to (3.16)
the Hamiltonian is
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U3 (w)p(0) U3 (1 )

= —,(
~

a)(a
~
+

~

c)(c
~
+

~

d )(d
~
)+ —,[1+3cos(er)](I, +I,")——,[1 c—os(er)]cos(28)I,

+ —,[1—cos(er)]sin(28)I„' —sin(er)cos8I» —sin(E r)sin8 I»" . (B4)

The coefficient desired is

pd, (r) = —,[1—cos(er)sin(28)] . (B5)

pd, (~)=(~~)'sin(28)/4

=(v /2)e, d'e„',

(B6a)

(B6b)

Comparing this to (3.27), it is clear that the prepara-
tion of coherence between two originally unoccupied
states

~

c) and ~d) has somewhat simpler dynam-
ics. There is no Fourier component at e/2. Howev-

er, expanding (B5) to order (e~) gives

so just as in (3.28), the vibrational coherence appears
to second order in the applied fields. The probe
pulse calculation is isomorphic to that for ground-
state CARS and shows a signal at co2-m, b to first
order in the probe pulse. Thus the overall process is
third order. There is no contradiction with the con-
clusion that this process is forbidden in g' ', since
the calculation here only shows that a transient, not
a steady-state response is possible to third order.
This is entirely adequate for the delayed experiment.
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