
PHYSICAL REVIE% A VOLUME 27, NUMBER 6

Time dependences of two-, three-, and four-photon ionization of atomic hydrogen
in the ground 1 S and metastable 2 S states

Craig R. Holt'
Department ofPhysics, Uniuersity of Colorado, Boulder, Colorado 80309

M. G. Raymer~ and William P, Reinhardt
Department of Chemistry, Uniuersi ty of Colorado, Boulder, Colorado 80309
and Joint Institute for Laboratory Astrophysics, Uniuersity of Colorado and

Nationa/ Bureau ofStandards, Boulder, Colorado 80309
(Received 19 November 1982)

The two-level model of multiphoton ionization is reviewed within the context of an exact
theoretical framework. Pararnetrization of the complex dressed states arising in a general-
ized Floquet analysis gives numerical values for the effective two-level parameters for two-,
three-, and four-photon ionization of ground-state atomic hydrogen with the (m~ ——0) inter-
mediate resonant states 2p, 2s, and 3p, respectively. Detailed time dependences of the ioni-

zation process are given for responses to a linearly polarized, monochromatic, single-mode
laser turned on suddenly with respect to near-resonant states, but adiabatically with respect
to all others. Appropriate expressions for time-independent ionization rates are obtained
during specific time intervals. The K index (K=BlnX/8lnI), of interest in recent experi-
ments, is understood within the framework of a simple model. Application to four-photon
ionization of the metastable Siq2 state of hydrogen illustrates the breakdown of the two-
level model, as the number of "near-resonant" levels is a function of the field strength.

I. INTRODUCTION

In certain circumstances two- (or more-) photon
ionization of a system with one intermediate
resonant state may be modeled as a two-level sys-
tem, via a time-independent 2&2 non-Hermitian
Hamiltonian. The imaginary parts of the diagonal
elements simulate loss of population from the bound
states into one or more continua. If the matrix ele-
ments of the 2&2 Hamiltonians are known as a
function of intensity and frequency, then ionization
rates and cross sections are obtained by solving the
time-dependent Schrodinger equation.

Alternatively, all the levels (bound and continu-
um) can be taken into account in a generalized Flo-
quet formulation of the multiphoton process. The
dilatation transformation rare' is applied to the
Floquet Hamiltonian in order to obtain complex
eigenvalues corresponding to complex dressed states.
These eigenvalues and their eigenvectors are used to
obtain ionization probabilities from which ioniza-
tion rates are extracted.

In this paper we make the connection between
these two approaches. Algebraic expressions are ob-
tained which identify eigenvalues and eigenvectors
of the generalized Floquet model with the parame-
ters appearing in a two-level model. Converged nu-

merical values for the eigenvalues and eigenvectors
of the Floquet Hamiltonian obtained for atomic sys-
tems can thus be used to generate the two-level
parameters. Neglect of all but the two dominant
Floquet eigenvalues (eigenstates) assumes that only
two bound levels are in resonance and is equivalent
to an adiabatic square-pulse turn-on of the laser, as
is discussed in Sec. VII.

%'e have carried out this program for atomic hy-
drogen in which two-, three-, and four-photon ioni-
zation of the 1 S, or "1s," state is considered in the
nonrelativistic limit. Having calculated the ap-
propriate parameters, we employ the two-level
model to obtain ionization probabilities as a func-
tion of time and, under special conditions, time-
independent ionization rates. In addition, we have
studied the K-index plots for the above systems,
where E =8 1nX/8 lnI, X being the number of ioni-
zation events per laser pulse of intensity I. K is of
interest as it shows considerable structure as a func-
tion of laser detuning from resonance and thus is an
experimentally accessible frequency-domain probe of
the detailed time dependence of the ionization event.
In all of the above cases, the two-level model is en-
tirely adequate to represent the results of the gen-
eralized Floquet theory.

A two-level model will certainly break down if
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more than one level is in resonance simultaneously.
However, the notation of which states are near
enough to resonance may depend on the laser inten-
sity. An interesting example occurs in the four-
photon ionization of the metastable 2 S, or "2s,"
state of atomic hydrogen where at low intensities a
two-level model is adequate to model the system,
while at higher intensity a formerly off-resonant lev-
el is power broadened into resonance necessitating
use of a more sophisticated model.

The plan of the paper is as follows: In Sec. II we
review the two-level model and derive its connection
(Sec. III) with the generalized Floquet theory, with
specific application to atomic hydrogen. Avoided
crossings of the two-level eigenvalues are discussed
in Sec. IV for the three cases 0 »y/2, 0=y/2, and
0 «y/2, 0 being an effective Rabi frequency and y
the upper-state ionization rate. It is seen that the
two-, three-, and four-photon ionization processes
considered give representative examples of these
three cases. The implications for the time depen-
dences of the ionization process and for the E-index
detuning plots of these three basic cases are dis-
cussed in Secs. V and VI. Section VII contains the
results of analysis of the four-photon ionization of
the hydrogenic 2s state and the breakdown of the
two-level model explored. Finally, Sec. VIII con-
tains a brief summary and discussion.

II. TWO-LEVEL MODEL

ai(t)
p(t)=

( ) (4)

TWO —PHOTON IONIZATION PARAMETERS

CONTINUUM
THRESHOLD

pected from the second-order theory of ac Stark
shifts; yi is proportional to E because it describes
a direct N-photon ionization of

~

1) via levels other
than ~2); y2 is proportional to E' because it de-
scribes a one-photon ionization of ~2). 0, the effec-
tive Rabi frequency, describes, in lowest order, a
process whereby the atom undergoes a transition
from ~1) to ~2) by absorption of N —1 photons;
thus 0 is proportional to E '. P describes a virtu-
al process whereby the atom undergoes a transition
from

~

1) to
~

2) via the continuum. N photons take
the atom to a continuum state, followed by emission
of a photon leaving the atom in

~
2); thus P is pro-

portional to E&+i (see Fig. 1 and Table I).
The time evolution of an initial state (assuming

dephasing mechanisms, such as collisions, spontane-
ous emission, etc., are negligible) follows from the
solution of the Schrodinger equation

Hg(t) =i tt(t), —a
(3)

at
where

where (in a.u. )

h]i =Ei +6]—i~p) ~ P1

2
' (2a)

The two-level model of N-photon ionization en-

tails use of a time-independent 2 X 2 Hamiltonian H,
whose matrix elements have a specific form and
physical interpretation. H is defined by

hii h)p
H
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2

(2b)
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The laser is assumed to be monochromatic and
linearly polarized with electric field amplitude
e=Ecos(ct)t). Ei (E2 ') is the unperturbed atomic
energy, 5i (52) is the ac Stark shift due to levels oth-
er than ~2) (I 1)), and y, (y2) is the ionization
width of ~1) (~2)). To lowest order in perturbation
theory the field dependences of these parameters are
as follows: 5i and 52 are proportional to E as ex-

FIG. 1. Virtual processes contributing to perturbative
calculations of the two- and N-photon ionization parame-
ters. Above contributions to y~ and 51 would be calculat-
ed perturbatively using all levels except

I
2). This is indi-

cated schematically by the absence of the solid line
representing

I
2). For P, the calculation of the N-photon

transition to the continuum states neglects
I
2), but the

one-photon transition from the continuum to
I
2) retains

state
I
2) in the calculation. Similarly, the calculation of

this contribution to yq and 52 would neglect level
I
1).

Calculation of 0 would neglect neither
I
l) nor I2).

This figure, along with Table I, allows the power depen-
dences of the two-level parameters to be determined (to
lowest order in perturbation theory).
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TABLE I. Lowest-order perturbative expressions for the two-level parameters describing a
two-photon ionization process, where only one continuum state a ) is assumed (Ref. 7). Field
dependences are extracted and, with the help of Fig. 1, generalized for the N-photon case.
Subscripts beneath the integral symbols indicate which states are neglected in the Stiltjes in-
tegral.

Two-photon ionization parameters
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P(t)=a, (t)
I
I,n &+az(t)

I
2, n N+ I &,— (5)

III. GENERALIZED FLOQUET THEORY
AND ITS CONNECTION

WITH THE STANDARD TWO-LEVEL MODEL

where n refers to the number of photons in the field.
The initial conditions a](0)=1 and a2(0)=0 gen-
erate the solutions

~A 22 —i AA t ~B ~ 22 —ikBt
a i(t) = e " — e, (6a)

A B A B

—iA, t —iA, t
a2(t)= (

A B
) (6b)

(7b)

The number of ions is proportional to the probabili-
ty C(t) of finding an electron in a continuum state;
C(t) is given in the two-level model by

A study of C(t) as a function of time and laser fre-
quency provides information on the ionization pro-
cess.

Before the model can be applied to real atomic
systems, numerical values of the two-level parame-
ters are needed. These are obtained by fitting to the
coupled dressed Floquet eigenvalues of Sec. III.

where the eigenvalues A,A and kB of H are given by

]]+622 ] 2 2 ]/2
2

+ —,[(hzz —h () ) +4h )z]

(7a)

h]]+h22 2 2 1/2——,[(hzz —h„) +4h, z]

Floquet theory is an alternative method for treat-
ing multiphoton processes. In principle, it allows
one to solve exactly for the time evolution of a
many-level quantum system under the influence of a
periodic external perturbation, without using pertur-
bation theory or the rotating-wave approximation.
In this section it will be shown that, under certain
conditions, the generalized many-level —plus —con-
tinuum Floquet theory of Maquet, Chu, and
Reinhardt' (MCR) reduces to a two-level descrip-
tion. The connection with the standard two-level
model is made and explicit relations between the
two-level parameters and Floquet eigenvalues are
given. Finally, we show how to generate the Floquet
eigenvalues numerically, in the special case of atom-
ic hydrogen.

A. Review of Floquet theory

A detailed exposition of Floquet theory for sys-
tems with discrete energy levels can be found in the
paper by Shirley. ' Extensions allowing inclusion of
continuous spectra have been made by Chu and
Reinhardt' and in MCR. ' We will review only those
parts of the theory necessary to analyze an N-photon
ionization process.

We first describe the form of the laser pulse as-
sumed in the ionization process. We take the pulse
to be essentially a square pulse, but with (brief) rise
and fall times which make it adiabatic with respect
to the nonresonant atomic states, while remaining
sudden with respect to the near-resonant state I2&.
This means that the rise and fall times must be long



2974 CRAIG R. HOLT, M. G. RAYMER, AND WILLIAM P. REINHARDT 27

compared to the inverse of the laser detuning with
all far-off-resonance states, but short compared to
the response times 6 ', 0 ', and yq

' of the near-
resonant states

~

2). For the near-resonant problem
under consideration, this type of pulse has temporal
properties similar to those of experimentally obtain-
able pulses.

Floquet theory, along with the above adiabatic
square-pulse assumption, provides an expression for
the ionization probability. Given that the atom is in
state

~

a ) at t=0, we denote the probability of find-

ing the atom in the state
~
P) by P ~(t). Then the

probability of finding the system in a continuum
state is given by'

C(t)=1 —QP~ p,

on, as [see Eqs. (2.13) and (6.4) of MCR]

P, p(t)= g [ (f3,m ~e
~

l, n) )',

P=1,2 . (11)

Here
~
P, m ) is a direct product state with P refer-

ring to the unperturbed atomic state and m referring
to the number of photons in the field; H is the
Floquet Hamiltonian, which we treat in the dipole
approximation. The sum over m indicates that we
are not interested in the final state of the photon
field. The states

~
P, m ) (the bare states) are to be

distinguished from the eigenstates
~

e') (the dressed
states) of the Floquet Hamiltonian, defined by

(12)

where the sum over P includes all bound states.
Far-off-resonant levels are not appreciably popu-
lated due to the adiabatic nature of the pulse; thus
the sum over P in Eq. (9) can be truncated to two

terms,

The ionization probability C(t) may now be writ-
ten as

C(t)=1 —g ~
(l,m ~e

" l, n) ~'

C(t) =1—Pi i
—Pi (10) —Q f

(2,m fe
J
i,n)

/
(13)

where
~
1) denotes the initial state

~

a), and
~

2)
denotes the intermediate state, as in Fig. 1.

The probabilities Pi i and Pi 2 can be evaluated
from the Floquet theory, assuming a sudden turn-

I

Given the eigenstates
~

I ) and eigenvalues et of H
a resolution of the identity may be inserted into Eq.
(13), yielding

C(t)=1—g f de~ (l, m
~

e)(e~ l,n)e '") —g f d )e(2, m
~
e)(e~ l, n)e (14)

where the integration f de run over the (continuous) spectrum of H

B. Reduction to two levels

In this section, additional assumptions are made and used to approximate Eq. (14). Only two direct product
states are expected to be populated:

~
I,n) and

~

2, n —N+1). Population in
~

2, n N+3), for exampl—e, re-

sults from an energy nonconserving process which we expect to be negligible. Accordingly, truncation of the
sum over m in Eq. (14) results in

C(t)=1—f de
) (l, n

~

e)(e( l, n)e '"
~

—f de
~
(2, n N+1

~
)(easel—,n)e' '~ (15)

Similarly, only two states, labeled
~

A ) and
~

B ), are expected to be significantly populated. We thus expect
Eq. (15) to be well approximated by

C(t)=1—((l,n ~A)(A
~

i,n)e "+(l,n ~B)(B
~

i,n)e

—
( (2,n —N+1(A)(A

(
l, n)e " +(2,n N+1[B)(B

)
l,n)e— (16)

As discussed in detail in MCR, derivation of Eq.
(16) requires a contour distortion of the integration
path in Eqs. (14) and (15), resulting in the fact that
A,q (A.s) and

~

A ) (
~

B ) ) are the complex eigenvalues
and eigenvectors of the analytically continued (non-
Hermitian) Floquet Hamiltonian H (0),

H„(8)
i
I) =XI iI), I =A, B . (17)

The states ~A ) and
~

B) are the (complex) dressed
states which provide correspondence with the two-
level Hamiltonian of Eqs. (3) and (4).

These truncations lead naturally to a two-level ap-
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proximation of the full atomic system. This approx-
imation is to be contrasted to the usual rotating-
wave approach in which the Hamiltonian is first ap-
proximated and C(t) is obtained by solving the re-
sulting Schrodinger equation. Our approach is to
start from the rigorous Floquet solutions and neglect
certain terms which are expected to be small on in-
tuitive grounds. The numerical calculations of Sec.
IV fully justify this procedure.

C. Parameter identification

where use has been made of the fact that
(a,n ~A) =(A

~
a, n). This is a result of H (8)

being complex symmetric and thus having left and
right eigenvectors which are simply the transpose of
one another rather than the more usual Hermitian
conjugates (see the Appendix). Once the coefficients
(A l, n), (A ~2, n N—+1), (B

~
l, n),

(B 2, n N+—1), and the eigenvalues Aq and Xe
are known, they can be used in Eqs. (20a)—(20c) to
generate the parameters h;J appearing in the two-
level model.

The parameters appearing in the two-level model
can be identified with the Floquet theory by com-
paring the forms of C(t) in Eqs. (6) and (16). In the
preceding discussion P] 2(t) corresponds to

~
a2(tl

~

and P~ z iti corresponds to
~
a, it) ~; thus

we equate

a, l)t=( ,1n~A)(A
~

l, n)e

+(l,n ~B)(B
~
l, n)e

a 2 tl) = ( 2n N+ 1
~

A ) (A—
~

1,n )e

(18a)

+(2,n —N+1~B)(B
~

l, n)e 7

(18b)

where A,q has been identified with pz and A,~ with

pq. By identifying ai(t) and a2(t) appearing in
(18a) and (18b) with a|(t) and a2(t) appearing in (7a)
and (7b) we obtain the following relations:

2 pA —622

pa —pa

(A
~
2, n N+1) h12—
(A

~
l, n) pg —h22

' (19b)

(B
~

l, n) =—pa —"22

pw —pa
(19c)

(B
~
2, n N+1) "—i2

(19d)

Solving for the h,j's, using pz ——Aq and p~ ——A,z, we
see that

h, z ——1A.„—Ae)(A
~
l, n)(A

~

2, n N+I), —

(20a)

A.g +Ay 2 2 1/2

2
——,[lk.g —A,e) —4h|2]

(20b)

Ag +A+ 2 2 1/2
h22 ——

2
+ —, [1A,„—A e ) —4h, z]

(20c)

D. Computational procedure

The non-Hermitian operator H (8) is obtained
from H by the complex dilatation transformation
r ~re' . H (0) has isolated eigenvalues in the
lower half complex plane which correspond to the
decaying dressed states. This is discussed more fully
in MCR. H (0) is discretized using Laguerre func-
tions,

1+1 —A,r/2L2l+2{g ) 0 (21)

appropriate to atomic bare states of angular symme-
try I. Convergence of the matrix eigenvalues of
H (0) with respect to the number of basis functions
and number of Floquet blocks is as discussed in
MCR. For the results discussed below typical calcu-
lations involve 400&(400 complex symmetric ma-
trices. As only a few of the

~

I ) and A.t are needed,
inverse iteration is used to determine the complex A,l
nearest to estimated values, and full advantage is
taken of the block symmetry of H (8) as discussed
in the appendix of MCR.

Matrix Floquet calculations have been carried out
giving converged parameters for the two-, three-,
and four-photon ionizaton of ground-state hydrogen
with the 2p, 2s, and 3p (ml ——0), respectively, as the
near-resonant intermediate states. The complex Flo-
quet amplitudes and eigenvalues yield the general-
ized two-level parameters shown in Table II. The
power dependence of these parameters, as revealed

by the tables, is in good agreement with that predict-
ed by the perturbative canonical two-level models.
Note that for E (0.01 a.u. , 0))yq for two-photon,
0—y2 for three-photon, and 0 (~y2 for four-
photon ionization. In all three cases we have
A, y2»P, yl. These inequalities follow from the
power dependence of these parameters and are ex-
pected to hold for similar multiphoton processes.
Limitations of numerical dynamic range made it im-
possible (except far off resonance) to obtain reliable
values of y] (which is very small) in the three- and
four-photon cases. Even in the two-photon case, we
find the anomalous increase of y] near resonance to
be due to numerical inaccuracies. Similarly, the
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TABLE II. Two-level parameter in atomic units for (a) two-, (b) three-, and {c)four-photon ionization of ground-state
hydrogen for several detunings and field strengths. ai, laser frequency; 6, detuning; 0 Rabi frequency; P, imaginary Rabi
frequency; yi and yi ionizaton widths of

~
l) and ~2); 5i and 5i, ac Stark shifts of

~

l) and ~2); E, electric field ampli-
tude. To a good approximation note that yi, 5„5i~E;Q~E '; 13ccE +'; yi~E, where N is the number of photons
necessary for ionization. This is expected from lowest-order perturbation theory. Numerical accuracy prevented obtaining
values for P and y~ in some instances. Only two reliable values of y~ were obtained in the three-photon case:

y~ ——5.7&(10 (co=0.185 and E=0.01) and y~
——5.0&10 4u=0. 195 and E=0.01). Peak field strength of E=1.0 a.u.

corresponds to an rms intensity of 3.51X10' W/cm for linearly polarized light; a circular frequency of 1.0 a.u. corre-
sponds to 4.1341X 10' rad/sec.

(a)

E=0.001 a.u.

0.350
0.360
0.370
0.375
0.380
0.390
0.400

—2.500( —2)'
—1.500( —2)
—5.004( —3)
—3.982( —6)

4.996( —3)
1.500( —2)
2.500( —2)

7.450( —4)
7.449( —4)
7.449( —4)
7.449{—4)
7.449( —4}
7.449( —4)
7.449( —4)

3.1(—9)
2.7( —9)
2.5( —9)
2.9( —9)
3.2( —9}
2.8( —9)
2.4( —9)

7.4( —11)
7.6( —11)
1.3( —10)
6.0{—10)
1.0( —10)
4.S( —11)
3.3( —11)

3.S3( —7)
3.12( —7)
2.77( —7)
2.61(—7)
2.46( —7)
2.20( —7)
1.97( —7)

—9.33(—7)
—9.79( —7)
—1.04( —6)
—1.07( —6)
—1.11(—6)
—1.21( —6)
—1.25( —6)

3.36( —6)
3.18( —6)
3.01( —6)
2.92( —6)
2.84( —6)
2.70{—6)
2.57{—6)

E=0.005 a.u.

0.350
0.360
0.370
0.375
0.380
0.390
0.400

—2.511(—2)
—1.510(—2)
—5.099( —3)
—9.711(—5)

4.903( —3)
1.490( —2)
2.490( —2)

3.727( —3)
3.726( —3)
3.725( —3)
3.723( —3)
3.721( —3)
3.720( —3)
3.720( —3)

3.9( —7)
3.5( —7)
3.2( —7)
3.6( —7)
3.9( —7)
3.4( —7)
3.0( —7)

4.6( —8)
4.8( —8 }
6.8( —8)
9.1( —8)
5.7( —8)
2.9( —8)
2.2( —8)

8.80( —6)
7.77( —6)
6.87( —6)
6.4S( —6)
6.12( —6)
5.48( —6)
4.91(—6)

—2.91(—5)
—2.42( —5)
—2.51(—5)
—2.54( —5)
—2.70( —5)
—2.99( —5)
—3.34( —5)

8.38( —5)
7.91(—5)
7.43( —5)
7.17( —5)
7.03( —5)
6.72( —5)
6.40{—5)

E=0.01 a.u.

0.350
0.360
0.370
0.375
0.380
0.390
0.400

—2.542( —2)
—1.S40( —2)
—5.385( —3)
—3.767( —4)

4.624( —3)
1.462( —2)
2.462( —2)

7.459( —3)
7.457( —3)
7.448( —3)
7.436( —3)
7.423( —3)
7.415( —3)
7.412( —3)

3.1(—6)
2.8( —6)
2.7( —6)
2.8( —6}
2.9( —6)
2.7( —6)
2.4( —6)

7.2( —7)
7.2( —7)
8.4( —7)
8.8( —7)
7.3( —7)
4.7( —7)
3.5( —7)

3.49( —5)
3.07( —5)
2.71(—5)
2.5S( —5)
2.41( —5)
2.17(—5)
1.9S( —5)

—8.95( —5)
—9.25( —5)
—9.43( —5)
—9.59( —5)
—1.02( —4)
—1.16( —4)
—1.31(—4)

3.32( —4)
3.12( —4)
2.91(—4)
2.81(—4)
2.75( —4)
2.6S( —4)
2.53( —4)

(b)
E=0.001 a.u.

0.18500
0.18650
0.18700
0.18725
0.18745
0.18750
0.18775
0.18800

—5.009( —3)
—2.009( —3)
—1.009( —3)
—5.089( —4)
—1.089( —4)
—8.891(—6)

4.911(—4)
9.911(—4)

3.98( —6)
3.95( —6)
3.95( —6)
3.93(—6)
3.94( —6)
3.93(—6)
3.93( —6)
3.94( —6)

E=0.005 a.u.

6.70( —6)
6.52( —6)
6.47( —6}
6.44( —6)
6.42( —6)
6.41( —6)
6.38( —6}
6.36( —6)

—1.42( —6)
—1.43( —6)
—1.43( —6)
—1.43( —6)
—1.42( —6)
—1.43( —6)
—1.43( —6)
—1.43( —6)

7.65( —6)
7.54( —6}
7.50( —6)
7.48( —6)
7.46( —6}
7.47( —6)
7.45( —6)
7.42( —6)

0.1850
0.186S

—5.227( —3)
—2.224( —3)

9.94( —5)
9.84( —5)

2.3( —7)
2.2( —7)

1.67( —4)
1.63( —4)

—3.55( —5)
—3.56( —5)

1.91{—4)
1.89{—4)
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0.1870
0.1875
0.1880
0.1885
0.1900
0.1950

—1.223{—3)
—2.225( —4)

7.785{—4)
1.779( —3)
4.782( —3)
1.479( —2)

9.81( —5)
9.78( —5)
9.80( —5)
9.83{—5)
9.93(—5)
1.03( —4)

TABLE II. (Continued. )

E=0.005 a.u.

2.3( —7)
2.2( —7)
2.6( —7}
2.5{—7)
2.4( —7)
2.1( —7)

r2

1.60( —4)
1.59( —4)
1.58( —4)
1.54( —4)
1.41( —4)

—3.57( —5 }
—3.58( —5)
—3.58( —5)
—3.59( —5)
—3.60( —5)
—3.66( —5)

1.88( —4)
1.87{—4)
1.86( —4)
1.85( —4)
1.82( —4)
1.73( —4)

E=0.010 a.u.

0.1850
0.1865
0.1870
0.1875
0.1880
0.1885
0.1900
0.1950

—5.909( —3}
—2.898( —3)
—1.895( —3)
—8.925( —3)

1.129( —4)
1.117(—3)
4.126( —3)
1.416( —2)

3.93(—4)
3.89( —4)
3.88( —4}
3.S7( —4)
3.86( —4)
3.87( —4)
3.91{—4)
4.05( —4)

3.9( —6)
3.4( —6)
3.4( —6)
3.4( —6)
3.9( —6)
4.0( —6)
3.9( —6)
3.3( —6)

6.72( —4)
6.54( —4)
6.49( —4)
6.43( —4)
6.33( —4)
6.31(—4)
6.16( —4)
5.66( —4)

—1.42( —4)
—1.43( —4)
—1.43( —4}
—1.44( —4)
—1.43( —4)
—1.43( —4)
—1.44( —4)
—1.47( —4)

7.67( —4)
7.55( —4)
7.52( —4)
7.49( —4)
7.44( —4)
7.44( —4)
7.29( —4)
6.95( —4)

(c)
E=0.0010 a.u.

0.14810
0.14812
0.14184
0.14816
0.14817
0.14820

—1.582( —4)
—9.816(—5)
—3.816(—5)

2.184( —5)
5.184( —5)
1.418(—4}

2.71(—8)
2.67( —8)
2.69( —8)
2.68( —8)
2.69( —8)
2.69( —&)

3.31(—6)
3.31(—6)
3.31(—6)
3.30( —6)
3.30( —6)
3.30( —6)

—1.30( —6)
—1.30( —6)
—1.30( —6)
—1.30( —6)
—1.30( —6)
—1.30( —6)

1.24( —5)
1.24( —5)
1.24( —5)
1.24( —5)
1.24( —5)
1.24( —5)

E=0.0050 a.u.

0.14790
0.14822
0.14825
0.14S28
0.14830
0.14860

—1.083( —3)
—1.222( —4)
—3.208( —5)

5.804( —5)
1.181(—4)
1.019(—3)

3.27( —6)
3.24( —6)
3.24( —6)
3.23( —6)
3.23( —6)
3.20{—6)

1.6( —8)
1.7( —8)
1.7( —8)
1.6( —8)
1.6( —8)
1.7( —8)

8.27( —5)
8.20( —5)
8.19(—5)
8.19(—5)
8.19(—5)
8.12( —5)

—3.24( —5)
—3.24( —5)
—3.24{—5)
—3.24( —5)
—3.24( —5)
—3.25( —5)

3.07( —4)
3.05( —4)
3.05{—4)
3.05( —4)
3.05( —4)
3.04( —4)

E=0.010 a.u.

0.1482
0.1484
0.1485
0.1487
0.1488
0.1491

—1.092( —3)
—4.903( —4)
—1.893( —4)

4.134(—4)
7.144( —4)
1.618( —3)

2.32( —5)
2.31(—5)
2.30( —5}
2.29( —5)
2.28( —5)
2.26( —5)

4.9( —7)
4.9( —7)
4.9( —7)
4.8( —7)
4.8( —7)
4.7( —7)

3.20( —4)
3.19(—4)
3.18( —4)
3.16( —4)
3.16( —4)
3.13(—4)

—1.30( —4)
—1.30( —4)
—1.30( —4)
—1.30( —4)
—1.30( —4}
—1.30( —4)

1.12( —3)
1.12( —3)
1.11(—3)
1.11(—3)
1.11(—3)
1.11(—3)

'The number enclosed in parentheses indicates the exponent of the multiplicative factor of 10.

values for P we obtain in the three- and four-photon
cases when E=0.001 a.u. are unreliable. The fits of
the Floquet data by the two-level models establish
the vaidity of these models for the three physical sit-
uations at hand. At the same time the parameters of

Table II summarize a great deal of physics, as will
become clear in Sees. IV—VII.

The neglect of various terms in the expression for
C(t) in Secs. IIIA and III8 is justified numerically
by calculating several representative terms and find-
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The complex Floquet eigenvalues dictate the time

of the frequency dependence of the eigenvalues is
needed before an analysis of the time evolution can
be made.

Figures 2(a) and 2(b) show the imaginary part of

=(N —1)co (E—
&

'+5z —EI ' —5&)], for the two
processes «yz, py z .

e real artsan avoi e cided crossing of the eigenvalues; t e rea parts
n notavoi eac o er

''d h other in the two- and three-photon no
shown) case; the imaginary parts avoid each ot er in
the four-photon case. The fact that for growing ra-
tios o yz an eaf d 0 the avoided crossing may shi t rom

corn lex
dressed eigenvalue is implicit in the discussion of
Ref. 6.

This behavior can be understood by considering
approximate expressions or in the limit that
E &0.001 a.u. so that P, y, «Q, yq can be neglected.
Define real parameters E„,EB, y„, yBand b

IO
. yB

AB —EB l ) (22b)

N

IO cogB ——Eg —EB . (22c)

—II
IO

10

-l 3
IO

]

- 20.0 —10.0 0 IO.O 20.0
DET UN I N G 2 ZL/y2

FIG. 2. Imaginary parts of the eigenva u pvalues lotted as a
runction o e u

'
r"

' f detuning for the (a) two- and (b) four-photon
ionization o s s a e

'f 1 t t in atomic hydrogen. Two- eve

e IIparameters use in e p od
'

th lots were obtained from Table
for E=0.001 a.u. Note that the imaginary parts cross in

(a) but avoid crossing in (b).

Then it can be shown that for Ag&y& (two-photon
case),

( g2+ g2 )
1/2

Xz ~ye

2( g2+ g2)1/2

rz ~yz

2( g2+ g2) 1/2

(23a)

(23b)

(23c)

From Eq. (23a) we see that on resonance 6=0) the
rea pa so zan1 rt f A, and A, differ by the Rabi frequency

/20, and the imaginary parts are equal, yz ——yB
——yz

[compare with Fig. 2(a)]. In the opposite limit,
0 &&yz (four-photon case), we have

WB—= —~ ~ (24a)

th to be small. Without reproducing the cal-ingt em o
culations, we simp1 e simply state that the truncated
are found to be less than or equal to E, which or

with the resu ts in ah lt
'

Table II allows one to conclude
that the two-level approximation for two-photon
ionization of the 1s state is very good even at high
fields (E—0.01 a.u. -7.0)& 10 W/cm ).

(24b)YA =y2
4[+g (p/4)]
0 yp

(24c)
4[~'+(y~/4) l

Here, on resonance, the real parts o and I, are
equal [Eq. (24a)], where the imaginary parts differ;
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more precisely we have yz »ys [compare with Fig.
2(b)]. In the intermediate situation (e.g., the three-
photon case) Q-y2, no such approximations are
possible for a)i detunings. Nevertheless, it can be
shown that on resonance A,q —A.s ——[II —{yq/4) ]'

For future reference, note that the following ap-
proximation are valid for large

I
6

I
(—b, »Q, y2)

regardless of the relative values of Q and y2..

Equations (2S) show that in the limit of large detun-

ings the dressed-state eigenvalues approach the un-

coupled values of the complex atomic energies, as
expected.

In Sec. V it will be shown how the behavior of the
eigenvalues as a function of detunings and Q, y2
determines the time evolution of the system.

V. TIME DEPENDENCE OF THE
IONIZATION RATE

In this section we determine the time scales, de-

tunings, and values of Q, y2 for which a time-
independent ionization rate 8 (as opposed to a long-
time ionization rate constant k) can be defined. Ion-
ization rates, rate constants, and time dependences,
within the two-level model, have been studied previ-

ously; nevertheless, we employ a new method to
obtain similar rate expressions and time dependence.

Consider first the time-dependent ionization rate
dC(t)/dt, to determine under what conditions it be-
comes approximately time independent: From Eq.
(8)

dC(t)
dt

= —Q )Q ] —Q )Q ] —Q2Q2 —QpQ2

Substitution of ai and a2 from Eq. (3) gives

dC(t) 2 2

dt
=yiIai(t}I +y2Ia2{t} I

For fields E & 0.001 a.u. we can neglect yi and P in
Eq. (27) provided that I2) is sufficiently populated;
thus

dC(t) 2

This expression has a simple interpretation:
dC(t)/dt is the product of the ionization rate out of
I2) and the population in I2). Substituting aq(t)

from Eq. (6b},we see that Eq. (28) becomes

dC(t)
IAq —As I'=y2

X[e +e
—[&~+&a]'/'—2e cos(cost)] .

The time behavior of dC(t)/dt on resonance [as
given by Eq. (29}] is qualitatively different for the
three processes under study. %hen Qggy2 (two-
photon case), dC(t)/dt is a rapidly oscillating func-
tion of time, enveloped by a slower exponential de-

cay [see Eqs. (23)]. When 0 »y2 (four-photon
ease), dC(t)/dt decays exponentially [see Eq. (24)].
When 0)y2/2 (three-photon ease), oscillation and
decay take place on similar time scales. The three
cases then correspond to the classical problem of an
underdamped, overdamped, and critically damped
oscillator.

Despite the oscillatory behavior of the ionization
rate in some cases, an approximate time-independent
ionization rate exists and hence a cross section can
be defined. Figures 3(a)—3(c) display the logarithm
of the ionization probability C(t) [from Eqs. (6a),
(6b), and (8)] versus log(t) for various laser detun-
ings. Far off resonance

I
5

I
» fl, y2, we see that

C(t) is approximately linear (indicated in a double-
logarithmic plot by slope 1) in time over a restricted
time interval. This interval is shortened as reso-
nance is approached and vanishes altogether in the
three-photon case. The time-independent ionization
rate R is given by the slope of C(t) in the linear re-

gion.
Simple expressions for this rate and time interval

can be obtained by suitably approximating the exact
rate [Eq. (27) or (29)] and then integrating it over
the appropriate time interval to obtain an average
rate.

Consider the case of Q ggy2 (four photon). %ith
yq »ys [Eqs. (24b) and (24c)], for all detunings, the
time interval can be restricted so that yet-y2t ~g1
and yet gg1. Hence dC(t)/dt, from Eq. (29), is ap-
proximately given by

dc{t) y2 I "iz I

14—~s I

'
Here the time-independent ionization rate R is given
simply by

y2QR=
4[~'+(y', /4)]

'

4[5'+ (yp/4) ]

y2 Q y2
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FIG. 3. Ionization probabilities as a function of time for various laser detunings 6, in the cases of two-, three-, and

four-photon ionization of hydrogen discussed in the text. For short times, C(t) is cubic in t (indicated by slope 3) in all

three cases. This region is followed by transients which soon become negligible. Linear region (slope 1) ensues in the two-

(a) and four-photon (c) cases for all 6, but only for large 6 in the three-photon case (b). Two linear regions are apparent in

the two-photon case, the second appearing when y2t »1. At large times population depletion occurs which accounts for
the exponential approach to one in all three cases. Values of P, 0, y2, and y~ were obtained from Table II for (a) co =0.375,
(b) ~=0.1875, and (c) re=0. 14814 with E=0.001 a.u. y~ was chosen to be zero for three- and four-photon cases and
scaled down as E' for the two-photon case from the E=0.01 a.u. value. Similarly, p was scaled down as E~+' for the
three- and four-photon case from its value at E=0.01 a.u.

where Eq. {24} has been used to approximate
Aq —ks, and P is neglected in

I h~q
~

. For restrict-
ed times C(t)—=Rt gives very good agreement with
the exact plots of C(t) displayed in Fig. 3(c).

~en A~~yq (two photon) the rate expression
and the time interval are different from Eq. (31).
The same time interval cannot be used because yz
and y& become comparable close to resonance. In-
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stead, we demand that y2t g(1; then Eq. (29) be-

dC(r) 2)'21)» I'
[1—cos(coqsr)] .

dr /Aq —As /'

The oscillatory term will contribute negligibly to
C(t) after times sufficiently long, cozst»1. The
time-independent ionization rate E. is thus given by

~'y2 1R=
2(g2+Q2) ' (g2+Q2)1/2

(33)

where Eqs. (23) have been used to approximate
A,„—A,s, and P is neglected in

~
h, z ~

. Figure 3(a)
indicates the oscillations in C(t) become negligible
upon entering the above time interval. In addition,
note that in the far-off-resonance curve, a later time
interval exists during which a different ionization
rate is needed. At large detunings Eqs. (23b) and
(23c) show tha't 7'2 7'g ))ys (6 & 0); this allows the
restriction of the time interval as in the four-photon
case: yet =y2t &y1 and yet =(02y2/4h )t gal.
The ionization rate E., for large detunings, is thus
given by

—ggt ((4(6+0 ) y2 Qy2

This rate is half that in Eq. (33) because for times
larger than 1/y2 one of the dressed states has be-
come depleted, thus cutting the number of ioniza-
tion channels in half. Furthermore, had we assumed
an adiabatic turn-on with respect to

~
2), only one

linear region would occur, and the rate would be
given by Eq. (34).

C(t)—=Rt, with R given by Eqs. (33) and (34),
gives a good approximation to the C(t) appearing in
Fig. 3(a). Nevertheless, more accurate rates are ob-
tained by including the contributions of P and y~ in

Eq. (27) and then preceding as before. %'e simply
present the results,

(35)

and for
~

6
~

)&Q,

) ~Q' 4pa 4~'riR= 1 — +4(a'+0') ~yp y,n'

C(t) =Rt, with R now given by Eqs. (35) and (36),
gives a very good approximation to the C(t) appear-
ing in Fig. 3(a). It is clear, from Eqs. (35) and (36}„
that there is an asymmetry in the line shapes caused
by the parameter P. This asymmetry in the profile
appears ln three- and four-photon cases, but only at
very large detunings. In this case the rate in Eq.
(31) is supplemented to give (0 gg y2)

R= 1—) 2Q' 4p~ 4) i~'

~y2 y n'

For the remaining case 0 & y2/2, no time-
independent ionization rate exists for all detunings.
Only in the far-off-resonance case

~

b,
~

&&Q,y2,
where yq ~g y~ (5 & 0), can one demand that
y2t=ygtgyl and yet=(45 /0 y2)t ~~1. The re-
sulting rate is identical to Eq. (37) and gives very
good agreement when compared with the
5=10[Q'+(yq/4)]'~' plot in Fig. 3(b).

The time behavior of C(t) outside the above time
intervals, as displayed in Figs. 3, can be understood
with the help of Eqs. (6b), (28), and (29). For early

(r «I/~AB ll Y2» I
u2(r)

I

—=
I
~i2 I

t [Eq.
(6b)], and the approximate rate dC(t)/dt is given by
Eq. (28),

dC(t)
dt 4

thus C(r)=Q y2r /12. This expression is accurate
in the time regimes of Fig. 3 where the slope is 3.
For much later times, t &&1/y2, 45 /Q y2, exponen-
tial depletion of the bound-state populations has oc-
curred. This regime is marked, in Fig. 3, by the
asymptotic approach of C(t) to 1. The long-time
ionization rate constant k governing this depletion
region is given approximately by y =min[y„, ys j.
y is not in general equal to any of the above calcu-
lated R 's. Only in the four-photon case is y =R
[Eqs. (31) and (37)]. In the two-photon case we find
that on resonance y —=R [Eq. (35)], far off reso-
nance y -=R [Eq. (36)], but neither R is valid in the
intermediate case. On the other hand, the on-
resonant oscillations in C(t} for the three-photon

case make the approximation C(t) =1—e only
fair (see Fig. 4). Furthermore, y =R [Eq. (37)]
only far off resonance.

There are three qualitatively different time re-
gimes exhibited in Figs. 3. At early times C(t) is
cubic in t, follwed by linear regime (except in the
three-photon case), and finally the depletion region

where C(t) —= 1 —e . Only in the linear regime is
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FIG. 4. Time dependence of bound-state populations

P, for three-photon ionization of the 1s state at large
times (yet g&1) for 5=0.0. Points lie on the curve given

~, =
I
n, I

'+
I
n2 I

' as defined in Eq. (6);

8» ——y202/2(h +0 ) and 82 ———R&, y is as defined in

the text. Nonexponential behavior of P, at 5=0 occurs
because the oscillations are comparable to the exponential
depletion. These calculations utilize the parameters from
Table II(b) for E=0.001 and m=0. 187S.

a cross section defined. In Figs. 5 and 6 we compare
our cross sections with those of other authors.

Generalized cross sections for the two-photon ion-
ization of atomic hydrogen appear in Fig. 5. As-
suming that 1/Qggt ggl/y2, we use the rate 8
from Eq. (35) and the frequency-dependent parame-
ters from Table II in the calculation. These cross
sections are in good agreement with those obtained

by Chu and Reinhardt' except in the frequency
domain where interference from the 3p level be-
comes important. In this latter domain, the two-
level model is inadequate.

A special case occurs whenever 0-y2 and 6=0.
The end of the cubic region marks the beginning of
the depletion region; hence no linear region exists,
and therefore no time-independent rate (i.e., cross
section) exists. Nevertheless, a cross section can be
defined which is valid off resonance and plausible
(by the arguments above) on resonance. Using y as
the ionization rate, cross sections for this process are
plotted in Fig. 6. Contrary to perturbation theory,
the generalized cross sections are intensity depen-
dent, but are seen to agree with Maquct's" results at
low fields. Our results differ from Maquet's in the

—Frms = 5 x IQ O. u.

Frms = Q. Q I

Frms = 0.025 0, U. ~

-52
IQ

0.25
I I I

0.30 0.35 0.40 0.4 5 0.50
LASER FREQUENCY ao (O. U. )

FIG. 5. Cross sections for two-photon ionization of the
1s state in hydrogen at three intensities. Points are the
cross sections calculated using the rate expression Eq. (35)
and the frequency-dependent parameters from Table II.
Curves are the generalized Floquet results of Chu and
Reinhardt (Ref. 1). They have utilized the ionization rate
dC/dt, where C(t) is obtained from Eq. (9) (sum over P
includes only the ls, Zp, and 3p states). Rapidly oscillat-
ing terms have been neglected for reasons discussed in the
text. %e see that the two-level model is valid except in a
frequency domain (~&0.390 a.u. ) where interference ef-
fects from the 3p level become important.

frequency domain where interference effects from
the 3s level become important: Here the two-level
approximation is expected to be invalid.

Alternate methods of comparing theory and ex-
periment have evolved in the form of the "K index. "
In Sec. VI, the K index is discussed in the context of
the two-level model with application to atomic hy-
drogen.

VI. I( INDEX

Experimental results, and recently theoretical
studies, of multiphoton ionization have been
presented in the form of E-index plots, in which

is plotted as a function of A. N; is the number of
ions per laser pulse, and I is the laser intensity. N;,



TIME DEPENDENCES OF TYCHO-, THREE-, AND FOUR-PHOTON. . .

IQ
2500

I

24(5g —5i )—y2/2 —(N —1)0
~'+ (y2/4) +&

(40)

IQ E =O.OOI a.g.

«45
IO

6

-46C

IO
III

-48
O. I6

—PE RT UR BAT I V E
GENERALIZED FLOQUET

l I

O. I 8 0.20 0,22
LASER FREQUENCY w(a. u. )

and therefore K, will depend not only on the detun-
ing but also on the pulse duration t and the relative
values of the atomic parameters.

Figure 7 shows E-index plots, at fixed values of t,
for the three different ionization processes under
study. Thc plots wci c made assuming that
X;=N;(0)C(t), where X;(0) is the number of atoms
at t=0 and C(t) is as defined earlier. Figures 7(a)
and 7(c) also show curves labeled "rate curve. "
They are obtained assuming C(t) =Et, where R is
pfopoftional to dC(t)/dt in Eq. (30). Thc propof-
tionality constant is either 1 or 2 depending on the
process. A simple analytic expression' is thus ob-
tRincd fof thc fate curve E[r~te),

FIG. 6. Cross sections for three-photon ionization of'

the 1s state at three laser intensities. y is used as the
ionization rate and calculated within the two-level model
using parameters from Table II(b). For p and yI we chose
their far-off-resonant (co=0.1850 a.u. ) values at E=0.01
a.u. and scaled by the appropriate power of E. These
values were chosen because P and y, only become impor-
tant far off resonance. At low fields, E&0.001 a.u.
-3.5&10' %'/cm (rms), and large detunings (m g 1850
a.u. ) our results agree with the perturbative results of Ma-
quet (Ref. 11). Disagreement occurs as interference ef-
fects of the 3s level become important (~&0.1950 a.u.).
At high fields, E &0.05 a.u. -8.8X10' %'/cm (rms),
the power dependence of the cross sections is evident and
disagrees with perturbation theory.

where P and y& have been negelcted and
=-6 +Q~+y2/4, valid for both Q&&y2

and Qggy2. Note that E[„„]is the sum of a
Lorentzian and a dispersionlike curve and that for
large detuning (

~

b,
~

&&Q,y2) Ei„„i becomes the
number of photons N needed to ionize the atom.

E[„„]is to be compared with the exact plots of E
displayed in Fig. 7. In the four-photon case
(A&&p2), K[„„]is seen to exactly agree with E for
times t in the linear region [see Eq. (31}];at short
times E flattens out to a constant value of 4; at long
times E distorts from E[„„]but still maintains its
dispersionlike quality.

The negative values of E indicate that for a fixed
laser frequency u the number of ions actually de-
creases as the laser intensity increases. This surpris-
ing feature can occur when the ac Stark shift is
comparable to the linewidth. If the line center is
shifted away from the fixed frequency, then the
number of ions may decrease with intensity; on the
other hand, a shift towards the fixed frequency re-
sults in an increase in the number of ions with inten-
sity. These considerations account for the negative
and large positive values of E on either side of reso-
11ance.

In the two-photon case (0gyy2) new features ap-
pear [Fig. 7(a)]. The dispersionhke quality is not
present because the relatively large half-width

(0~~5&,52) makes such effects negligible. The ra-
pid osclllat1ons ln 'the exact K-mdex plot [Flg. 7(a}]
are understood with the help of Eqs. (23a) and (32).
Assuming that, in the linear region, C(t) is approxi-
mately given by the integral over time of Eq. (32), E
becomes, after suitable approximations,

1 0 cos[(h +0 )'i r]K=E(„„)——
5+02 2

Equation (41) shows that K oscillates in the frequen-

cy domain about E[„„]with a period that decreases
with time. Those oscillations of E are measurable
only if the oscillations of C(t) in Fig. 3(a) are
measurable, otherwise K =K[„„].

Both dispersion and oscillatory features are
present in the K-index plots for the intermediate
three-photon case (Q & yz/2} [Fig. 7(b)], but only for
times t -1/Q, 1/y2. Dispersion dominates at slight-
ly longer times and E=3 at slightly shorter times.

Both the time behavior and the E-index profile
are determined principally by the relative values of
0 and y2. %'hen E is dispersionlike
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FIG. 7. K as a function of laser detuning for (a) two-, (b) three-, and (c) four-photon ionization, where
E =8 InC(t)/I) lnI [C(t) is the ionization probability] for several values of t (laser pulse length). Rate curves are obtained
assuming C(t) =Rt, where R is the approximate ionization rate obtained in the text. For large 6, K approaches the num-

ber of photons necessary for ionization. Oscillations in (a) are attributable to the relatively large value of Q. These oscilla-
tions are squeezed together as t increases. K is a dispersionlike curve in (c), a consequence of a relatively large ac Stark
shift. Combination of (a) and (c) appears in (b) due to Q-y2-5z, 51. Appearance of the oscillation depends on the pulse
length t.

(0 ((y2-5i, 52), dC(t)/dt is governed by exponen-
tial decay, and when E oscillates (5i,52-y2&&Q),
dC (t)/dt oscillates.

VII. MULTILEVEL RESONANCE EFFECTS

The two-level model is inappropriate whenever
the population in off-resonant levels becomes com-

parable to that in I2) or
I
1). The criterion is made

specific by considering an approximate expression
for the off-resonant population. With laser turn-on
time z, the maximum population in an off-resonant
level

I P) is given approximately by [Q~p/(b tgr)]
in the adiabatic turn-on' and by (Q~p/hip) in the
sudden turn-on [see Eq. (6b)], where Q, tt is the effec-
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FIG. 8. (a) Real and (b) imaginary parts of the eigen-

values for the resonant four-photon ionization of the 2s
state described in the text at E=0.001 a.u. All real parts
avoid each other while the imaginary parts cross; the
crossing of the imaginary parts results in an enhancement
of the ionization rate. These graphs indicate a breakdown
of the two-level model for E & 0.001 a.u.

tive Rabi frequency connecting
~
1) and ~P) and

hip the laser detuning from ~P). The maximum
population in

~
1) and

~
2), in the two- and three-

photon case near resonance, is on the order of unity
[see Eq. (6)]; hence the two-level model is suitable
provided

~ Qiti/ziti ~
&&1, which is satisifed when

~
P) is far off resonance, independent of laser turn-

orl time.
In the four- or more-photon case, the laser tum-

on time becomes critical because the maximum pop-
ulation in

~
2) is approximately Qt/y -E '

(N) 4) which is small for E «1.0 a.u. The two-
level model is suitable only if rppy2Qitt/gttQ. As
an example, take Q,I3-E and 5, -10» Hz. Then
the above criterion becomes ~~~E &10 '~ sec,
which for %=4 is easily satisfied by real lasers. '

%C have considered a four-photon process in
which other off-resonance levels are close enough so

The
as not to be neglected, regardless of turn-on t-on iInc.

e 2s state is ionized by four photons from a
linearly polarized, monochromatic laser. The 3s, 3d
and 5p, 5f (mt=0) levels act as the intermediate
resonant states.

Since the eigenvalucs determine the time evolution

-52

0.0545 0.0350 0.0355
LASER FREQUENCY ts)&o. u. )

FIG. 9. ~. Cross sections for the four-photon ionzation of
the 2s state with the 3s, 31,5p, sf states in near resonance.
onization rate y is extracted from Fig. 8(b) b h

y =—2min[ —Im()i, ;)], where l; is the ith eigenvalue in
Fig. 8(b). This cross section is compared with the pertur-
bative results of Gontier and Trahin (Ref. 16).

of the process, a study of their behavior as a func-
tion of laser frequency is necessary. At low fields
E &0.0001 a.u. we find the eigenvalues are qualita-
tively similar to the two-level approximation of a
four-photon process in that the real parts cross and
the imaginary parts avoid. At higher fields
E=0.001 a.u. the graphs are quite different (see Fig.
8); the real parts avoid and the imaginary parts
cross. This result is qualitatively similar to the
three-photon case.

This qualitative change in the time behavior as
unction of laser intensity can be viewed as a power
rosdening of the n=3 levels into resonance with

the 2s and n=5 levels. Clearly, the standard two-
level model is inadequate to describe this process,
and s multilevel generalization of the two-level pic-
ture is needed.

Approximate ionization rates can be obtained
without analyzing the detailed snd complicated time
dependence. %C saw earlier that the rate constant,
given by y —=manly„, yes, is a reasonable approxi-
mation to thc time-independent rate R: Thus ioni-
zation rates can be extracted from Fig. 8 by defining

y =2min[ —Im(A, ;)] (where A.; is the ith eigen-
value). The minimization acts only on the A,; associ-
ated with an avoided crossing in Fig. 8. CI'oss sec-
tions are calculated using this rate and displayed in
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Fig. 9 (for E=0.001 a.u. ) along with the perturba-
tive results of Gontier and Trahin. '

VIII. CONCLUSION

%e have shown that knowledge of the complex
eigenvalue of the generalized Floquet Hamiltonian
for X-photon resonant ionization of atomic hydro-
gen (%=2,3,4) provides numerical values for the
parameters appearing in the two-level model. The
numerical values in Table II indicate that the field
dependences of these parameters are as predicted by
the standard two-level models for E (0.01 a.u.
-7.0y 10' W/cm . We also find numerically that
(assuming adiabatic square pulse) populations in the
other (far-off-resonant) levels are negligible. These
results validate the use of the two-level model in
these specific cases.

Nevertheless, caution must be exercised: Owing
to the small coupling (effective Rabi frequency),
other off-resonant levels may significantly influence
the dynamics. This has been demonstrated to occur
as a function of laser intensity in a particular four-
photon ionization process, where the off-resonant
levels power broaden so as to overlap the resonant
region.

When the two-level approximation is valid, a
time-independent ionization rate can be obtained
under certain conditions„ the laser must be turned on
long enough to adequately populate i2& but not
long enough to severely deplete the number of
atoms. We have shown that, in this interval, the
number of ions grows linearly in time for two- and
four-photon ionization (and for three-photon ioniz-
tion far off resonance) of atomic hydrogen. The
slope of the ionization probability curve is defined to
be the rate, and was seen to be adequately given by
Eqs. (31) and (35)—(37). No linear region exists
(hence no time-independent rate) in the three-photon
case on resonance.

The time-independent ionization rate 8 is relevant
in the linear regime; here the ionization probability
C(t)=Rt. In the depletion regime, on the other
hand, C (t) = 1 —e '. We have shown that in gen-
eral k&8. We find in the two- and three-photon
case k —=R on and far off resonance but not for in-
termediate detunings. Nevertheless, k =-8 for all de-

tunings in the four-photon case. This surprising
feature is attributable to the complicated short-time
behavior of the ionization probability.

The E-index plots have become useful in present-
ing experimental results. We have shown how the
theoretical curves can be understood in terms of rel-
ative values of the two-level parameters. The Rabi
frequency dominates in the two-photon case, result-
ing in rapid oscillations of E as a function of the de-

tuning b, . (This assumes that oscillations in the
number of ions can be detected as a function of
time. If not, E will simply be an inverted Lorentzi-
an with width Q.) When the ac Stark shift is com-
parable to the ionization rate and 0 is negligible, as
in the four-photon case, E becomes a dispersionlike
curve (E can even be negative). The three-photon
ionization is the intermediate case and thus its E-
index plot shows both features —oscillations and
dispersion. These features appear whenever the
two-level approximation is valid.

The main drawback of the present work is the as-
sumption of the rounded square pulse discussed in
Ref. 2. Assumption of this particular turning on
and off of the assumed monochromatic laser has al-
lowed the analytical work of Secs. III—VI, giving a
solid physical and mathematical underpinning to the
computed time dependences and E-index dispersion
plots. However, provided that one is willing to work
numerically, the same analysis can be carried out us-

ing the intensity and detuning dependence of param-
eters of Table II for arbitrary laser pulse and mode
structure characteristics. ' ' Only then can de-
tailed comparison with experiment be made.
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APPENDIX: COMPLEX SYMMETRIC
HAMILTONIAN

Let
i
A & be a complex-valued column vector and

the transposed version of
i
A & be denoted by (A i,

{A1)

Note the distinction between these and Dirac brack-
ets: (A

i
is nor the adjoint of (A

i
in our notation.

Equation (Al) implies that (A
i

B &
= (8

i
A &.

Consider the following eigenvalue problem:
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where H is a symmetric (not necessarily Hermitian)
matrix

as not to confuse it with Dirac brackets. For exam-

ple, let

H =H. (A4)

The requirement that H be only symmetric allows
for complex eigenvalues. To derive the orthogonali-
ty relation for symmetry Hamiltonians, we multipy
Eq (A2) by (8 ~, Eq. (A3) by (A ~, and subtract, to
obtain

and

A)
/A)=

A

B)
~8)= 82

(A6)

(A7)

(A5) where A~, A2 and B&,B2 are complex numbers.
Then

The identity (8
~

H [A) =(A
~

H ~B), from Eq.
(A4), is used. This equation guarantees that the
eigenvectors of a symmetric Hamiltonian are
orthogonal.

Care inust be taken when calculating (A
~

8) so

and

(A l»=A]+A2,

(8 ~A ) =(A
~
8) =A]8]+A28$ .

(As)

(A9)
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