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A finite-dimensional —matrix technique valid for computation of complex eigenvalues and

eigenfunctions useful for discussing time evolution in both dc and ac Stark fields is present-

ed. The complex eigenvalue parameters are those of appropriately analytically continued,

time-independent Stark Hamiltonians as obtained via the complex scale transformation
rare' . Such a transformation distorts the continuous spectrum away from the real axis,

exposing the Stark resonances, and also allowing use of finite variational expansions em-

ploying L basis functions chosen from a complete discrete basis. The structure of the dc
and ac Stark Hamiltonians is discussed and extensive convergence studies performed in both

the dc and ac cases to fully document the utility of the method. Sudden and adiabatic dc
Stark time evolution is used to illustrate the power of finite-dimensional —matrix methods in

describing complex, multiple-time-scale time evolution. The relationship between the ac
Stark Hamiltonian used (a time-independent truncated Floquet Hamiltonian) and

continued-fraction perturbation theory follows easily via use of matrix partitioning, and

provides a particularly straightforward derivation of these results. Finally, some illustrative

calculations of off-resonant generalized cross sections are given at low and high intensities,

indicating that the method works satisfactorily at intensities the order of internal atomic
field strengths. A more detailed discussion of time evolution in two-, three-, and four-

photon ionization processes appears in the following paper by Holt, Raymer, and

Reinhardt.

I. INTRODUCTION

Over the past several years the technique of
continued-fraction perturbation theory has been the
most used computational approach to the problem
of atomic multiphoton ionization. ' In this paper we

give a detailed presentation of an alternative finite-
dimensional —matrix computational technique which
has advantages in terms of simplicity of organiza-
tion of computations, in terms of its ability to self-
consistently treat intense field effects, (in that all
atomic levels are simultaneously shifted and
broadened by the external field), and in terms of the
straightforward inclusion of free-free transitions and
the effects of coupling between electronic continua.
As the two major conceptualizations —use of com-
plex coordinates, and L discretization —which al-
low development of the technique are nonstandard
in this area of application, a major purpose of this

paper is the systematic exposition of the complex-
valued —matrix technique.

We note that the use of a complete discrete L
basis obviates the necessity of explicit introduction
of exact atomic bound and continuum states, thus
reducing all computations to those involving finite-
dimensional matrices. Thus, in particular, use of
finite-dimensional matrices does not imply neglect
of continua. ' The use of complex coordinates ' not
only allows direct calculation of eigenvalue parame-
ters associated with complex dressed states, but
completely avoids numerical problems arising from
strong coupling between overlapping atomic con-
tinua.

Another major purpose of the present exposition
is to provide the details of the connection between
the complex-valued —matrix technique and
continued-fraction expansion of resolvent matrix
elements. Once these connections are established,
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applications are appropriate. These appear in paper
by Holt, Raymer, and Reinhardt (HRR), where the
time dependence of some two-, three-, and four-
photon ionization processes in atomic H are con-
sidered.

In order to separate considerations of the use of
complex coordinates and L discretization from the
multiphoton problem, we consider first the problem
of dc Stark ionization. Discussion of the block ma-
trix structure of the Stark Hamiltonian sets the stage
for discussion of the analogous block structure of
the corresponding ac Stark Hamiltonian (Floquet
Hamiltonian). Earlier computational treatments of
the dc problem using these techniques are then ex-
tended in two ways: An extended convergence study
is carried out, not only to demonstrate that results of
very high precision can be obtained, but to give re-
sults of high enough precision to verify recent re-
sults of summation of the Rayleigh-Schrodinger per-
turbation series by the Pade and Borel methods.
This is followed (Sec. II B) by a discussion of the de-
tailed time evolution of field ionization of the H
atom, placed suddenly or adiabatically in an intense
dc field. This latter example of the use of complex
coordinates and L discretization demonstrates that
it is possible, using finite-dimensional —matrix tech-
niques, to construct time-evolution operators which
yield converged results for quite complicated ir-
reversible time dependences. Application to time
dependences in multiphoton ionization appears in
HRR.

Section III introduces the time-independent Flo-
quet or Hamiltonian needed to extend the matrix
technique to the ac case. The discussion is brief but
explicit, as the form of the Hamiltonian introduced
here underlies the analysis of Secs. IV and V. In
Sec. IV the extension of the coordinate-space Flo-
quet Hamiltonian to use of complex coordinates is
made by analogy with the dc Stark case, and the op-
timal arrangement of the matrix block structure for
matrix computations is discussed. Convergence of
complex eigenvalues for representative ionization
processes is demonstrated as a function of basis size,
nonlinear parameters, and truncation of the Floquet
block structure. The Appendix contains a brief out-
line of the computational algorithm used to extract
individual complex eigenvalues from large complex
Floquet matrices with good numerical efficiency. In
particular, contact is made with the recent work of
Wyatt et al. ' The detailed relationship between the
complex poles of the resolvent of the Floquet Ham-
iltonian and continued-fraction perturbation theory
is given in Sec. V, where a direct derivation in terms
of block-matrix algebra (matrix partitioning) is
given. Connection is also made between various
truncations of the matrix Floquet Hamiltonian and

diagrammatic representations of the infinite-order
perturbation summations implicit in extraction of
eigenvalues of the Hamiltonian. In Sec. VI, to ex-
emplify application of the method, results of calcu-
lations of the intensity and wavelength dependence
for one- and two-photon-dominated processes are
given in the limit where nonadiabatic effects may be
reasonably neglected (i.e., not too close to reso-
nance), and thus generalized cross sections defined.
The more interesting case of resonant or near-

resonant processes is discussed in HRR. Finally, a
summary and discussion are given in Sec. VII.

II. THE dc PROBLEM: COMPLEX
EIGENVALUES AND FIELD IONIZATION

The dc Stark problem occupies a central role in
the study of perturbation theory in quantum
mechanics. Low-order results give accurate atomic
level shifts, yet the series diverges strongly in large
order, ' '" a result intimately connected with the
fact that the Stark Hamiltonian (shown here for the
H atom)

(2.1)

has no bound-state eigenvalues. As discussed first
by Titchmarsh, ' the poles of the unperturbed resol-
vent (z —H"' )

' where

H = ——V' ——atom ~ 2
2

(2.2)

have been shifted onto a higher Riemann sheet on
application of the "perturbation" —Fz. The diver-

gent Rayleigh-Schrodinger perturbation expansion is
thus interpreted as giving an asymptotic expansion
for the real part of the complex poles of the resol-
vent. More recently the divergent expansion has
been summed by the Borel and Pade techniques to
very high accuracy, giving both the real and imag-
inary parts of the pole positions. One purpose of
this section is to present converged variational re-
sults of sufficient precision to be able to confirm the
summed perturbative results. The other is to estab-
lish the complex-coordinate matrix formalism, be-
fore introducing it in the context of multiphoton
ionization. This latter is accomplished in Sec. IIA,
followed by a discussion of time dependence in sud-
den and adiabatic dc field ionization in Sec. II B.

A. Complex-coordinate matrix discretization
and the dc Stark problem

Variational calculation of the real and imaginary
parts of the poles of the analytically continued dc
Stark resolvent clearly cannot begin with the Hamil-



2948 A MAQUET, S.-I CHU, AND 1VILLIAM P. REINHARDT

—e' Fr cosa

(2.3)

tonian of Eq. (2.1): this Hamiltonian has no discrete
eigenvalues, and its continuous spectrum is the
whole real axis from —00 to + Oo.

' However, as
has been demonstrated numerically, and subse-

quently justified as a rigorous result of functional
analysis, ' the dilated Hamiltonian (z =r cosa)

e
—2i8 e

—i8
IIstaI'k( g )

e q2
2 r

functions is entirely equivalent to finding the ap-
propriate matrix eigenvalues and eigenvectors of the
representation of H "'"(0) in the basis.

Working in usual spherical polar coordinates
(r,a,y), a complete set of basis functions for expan-
sion of a nonspherically symmetric, but L, function
is the set

(r a q)=C (k)r'+'e "—"'L."+'() r)

obtained by the transformation to complex coordi-
nates, rare' (8 will be taken real) has complex
eigenvalues, with corresponding square-integrable
(L ) eigenfunctions, corresponding to the poles of
Hilbert-space matrix elements of the analytically
continued resolvent. As the eigenfunctions are L
we can expect an appropriate expansion in L basis
functions to approximate them. Linear variational
determination of approximate eigenvalues and eigen-

(g)r l +1 —{Ar/2)L 2l +2(g )

are the complete (but discrete) set of generalized
orthonormal Laguerre-type radial functions, and the
Fl (a,g) are the usual spherical harmonics. Ma-
tnx elements of the spherically symmetric atomic
Hamiltonian are of the form

00 2 —i8
(n, l, mI ~H"' (8) ~n', I', mI )= f dr f sinada f dgpF„~~, (r,a, q&) —e

&& 4'»', r, m&, ,("&a&t) (2.6a)

which factors as

(g) d r l+1e —Ar/2L 2l+2(gr )n, l n, l dr

—i8
rl+1e —A,r/2L 21+2(g

n r l, l' mi, mi.

giving a block-diagonal structure labeled by the angular momentum /, where we denote in the usual spectro-
scopic notation as s,p, d, . . . , for /=0, 1,2, ...,etc. Each / block will be taken to have dimension Nl, deter-
mined by the number of radial basis functions kept in the expansion. The perturbation, e' Fr cosa, acts as a
point dipole giving the usual 6/=+1 and Aml ——0 selection rules:

(n, l, m,
~

e'+r oosa
~

n', I', m, &

C (~)c 'l'(~) r2dr r'e ~" L '+ (gr)(Fr
0

2'
&(L„'+ (&(r) f sinada f dp I'~'~, (a,p) cosaI'I ~,,(a,y) 5I+, r5 (2.6c)

The interaction with the field thus gives a tridiago-
na1 block-matrix structure connecting consecutive
diagonal blocks, to form the overall block tridiago-
nal structure indicated in Fig. 1. Computation of
the variationally determined (complex for 8&0)
coefficients, an l, in the expansion of approximate

L eigenfunctions of H '""(8)of the form

max l

I =On =1

and corresponding (complex) approximate eigen-
values reduces to finding matrix eigenvalues and
eigenvectors of the matrix defined by Eqs. (2.6), and
shown schematically in Fig. 1. In Eq. (2.7), Xl indi-
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FIG. 1. Tridiagonal block-matrix structure of the dc
Stark Hamiltonian in the spherically symmetric basis of
Eq. (2.6). This structure is generalized (see Figs. 5 and 6)

to treat the ac Stark effect in linear polarization.

cates the number of radial functions for a given 1

value, and 1,„ indicates the maximum 1 value kept
in the summation. The azimuthal quantum number

mI is not summed over as both the atomic and per-
turbative Hamiltonians are diagonal in this quantum
number. Finding the eigenvectors and eigenvalues

of the matrix eigenvalue problem H '" (9)
+e' Fr corresponds to a linear variation of the coef-
ficients in Eq. (2.7), and is just the analytic con-
tinuation of the usual Rayleigh-Ritz linear varia-
tional theory. %e also note that as the actual
eigenfunction f(8) of the Stark Hatniltonian
Hs'""(0), is 1.2, that the expansion basis of Eq. (2.4)
should be, and is, perfectly adequate to the task.

Determination of these matrix eigenvalues is a
standard problem in the numerical analysis of linear
systems. Equations (2.6) contain the nonlinear scale
parameters 8 and A, . Thus, if the expansion of Eq.
(2.7) is truncated, (i.e., if X~ and 1,„&00 ) the basis
is incomplete, but will usually give an excellent ap-
proximation provided that (i) the truncated XI and
1,„are large enough and (ii) the nonlinear parame-
ters A, and 8 are appropriately chosen. Both points
(i) and (ii) must be addressed by a combination of
trial and error and physical intuition. It is the pur-
pose of the remainder of this section to indicate how
this can be done in a reasonable and systematic
manner.

Focusing attention on the complex eigenvalue cor-
responding to the broadened and shifted 1s 1 5 state
of atomic hydrogen, whose radial wave function
(atomic units, A= m, =e = 1, assumed) has the
form e ', indicates that a plausible first estimate of
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FIG. 2. Quasivariational determination of an optimal value of 8 in the dc Stark case. Complex eigenvalue correspond-

ing to the shifted and broadened 1s state of atomic hydrogen is calculated in a finite I. ' basis as a function of the rotation

angle 8 in the transformation r are'e. For the case of ten basis functions (per atomic symmetry) a stationary point near

0=0.4 is found, indicating that this is a reasonable choice of (9 for convergence studies (see Tables I and II). Figure repro-

duced from Ref. 7.
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TABLE I. Convergence of —I /2 for the 1s state of hydrogen in a dc field of 0.1 a.u. (=5.6)& 10' V/cm). Number of
atomic symmetries is I,„+1,and N denotes the number of Laguerre-type functions per atomic symmetry. Numbers in

parentheses are exponents. Thus the results for I,„=10 and 1,„=11 suggest a converged value I /2=0. 007 269 057, with

uncertainty +1 in the last figure. 0=0.4 in all calculations (see text).

A, =1.5
I,„=8

A, =2.0
1,„=9
A, =2.0

I,„=10
A, =2.0

t,„=11
A, =2.0

14
15
16
17
18

19

—0.726 91698( —2)'
—0.726 916 10( —2)
—0.726 91641( —2)
—0.726 91652( —2)
—0.726 91639( —2)
—0.726 91643( —2)

—0.726 91648( —2)
—0.726 91649( —2)
—0.726 91640( —2)
—0.726 91647( —2)
—0.726 91645( —2)
—0.726 91645( —2)

—0.726 904 36( —2)
—0.726 904 06( —2)
—0.726 904 28( —2)

—0.726 904 92( —2)
—0.726 905 81( —2)
—0.726 905 62( —2)
—0 726 905 67( —2)
—0.726 905 64( —2)

—0.726 905 69( —2)
—0 726905 82( —2)

'( —2) denotes the exponents. Thus —0.726 91698( —2)—= —0.726 91698 )& 10

the 1=0 scale parameter is A,, =2.0 [see Eq. (2.5)].
Optimal representation of 1=1,2, . . .functions re-
quires values of A,I (1=1,2, ..., ) which will overlap
strongly with the 1s state, suggesting the choice

——2.0. Results of a trial calcula-
tion with I =0, 1, 2, and 3, and with 5 and 10 func-
tions per angular symmetry are shown in Fig. 2, as a
function of the complex rotation angle 0. The 0 tra-
jectory shown suggests that 0=0.4 rad is a near op-
timal value for high-precision work and this value is
used in the convergence studies shown in Tables I
and II. Table I shows convergence as a function ofI,„, and NI ——n, =n~=nd —— . , of the imaginary
part of the complex eigenvalue corresponding to the
broadened and shifted 1s state at a field of 0.1 a.u.
Examination of the table indicates that convergence
to six significant figures has been obtained for
Im[E&,(F=0.1)]. Results of similar convergence
studies for fields of 0.3, 0.06, and 0.08 a.u. are
shown in Table II where they are compared with the
Borel-series summation results of Ref. 9 and Pade
results of Ref. 8. It is clear that the present conver-
gence studies substantiate the Borel summation of
the strongly divergent Rayleigh-Schrodinger expan-
sion to the number of figures given. It is equally
clear that the Fade resummation, as carried out in
Ref. 8, has only converged to four or five significant
figures, rather than the six or seven of the present
and Sorel methods.

B. Time evolution in a dc field

In the Schrodinger representation, time evolution
of an (L ) state

~ P ) at t =0 is given by e ' '
~

t(t ).
The amplitude for transition to another L state

~

X) as a function of time is' '
(X~e-'"'~y)=, . f, e-' (X,(z H) 'y)—-

(2.8a)

where the new contour 4'' can be distorted as
shown in Fig. 3. Formally undoing the Laplace
transform, we have

(X~e ' '~t)) )=(X(8) ~e
' ' "~((t(8)) . (2.9)

Introduction of a matrix representation of H(8) [i.e.,
H(8)) in an L basis [tttj ], now gives

(y
~

e
—iHl

~ y ) (y(8)
~

e
—iH(g)t

~
y(8) )

=( X(8)
~

e
~

t)) (8)), (2.10)

where i)tt(8) and X(8) are the vectors of overlaps

(PJ ~

t))(8)) and (PJ ~

X(8)), respectively Assumin. g
that the complex symmetric eigenvalue problem

H(0)C;(0)=E; C;(0) (2.1 1)

is solved for the right eigenvectors C;(0) and (com-
plex) eigenvalues E;, we can rewrite (2.10) using the
bi-orthogonal spectral resolution

this latter being a Laplace-transform representation,
with the contour K enclosing the spectrum of the
Hamiltonian H. The reason for introduction of the
resolvent (z —H) ' in Eq. (2.9), is that the theory'
of complex scale transformations, rare', tells us
that

(X(8),[z -H(8)]-'y(8))
—:(X, Ug Ug(z H) 'U—

g 'Ugt)tt ),
U~ being the unitary operator which introduces the
scale transformation, and provides the analytic con-
tinuation of (X,(z —H) 'P ) into the lower half-
plane. Thus,

(y~
—iHt~y)

=, . f, . '(r(8-), [z —H, 8)]-'(()(8))

(2.8b)
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TABLE II. Comparison of complex eigenvalues for the hydrogenic 1s state in dc flields of
0 03, 0.06, 0.08, and 0.10 a.u. as determined by the present complex-coordinate calculations,
and by Pade (Ref. 8) and Borel (Ref. 9) summations of the strongly diveIgent Rayleigh
Schrodinger perturbation expansion. Borel method of Ref. 9 has clearly given converged
vridths to the number of figures given. Parentheses indicate exponents of 10, e.g.,
0.7( —2)=0.007. Pairs of numbers in square brackets, e.g., [12,12] indicates a diagonal Padh
approximant of order 12 in numerator and denominator. 8=0.4 in all calculations (see text).

Computational method

F=0.03
Complex coordinate (/, „=11)

n =15
n =16

Pade sum

[12,12]
[13,13]

BOI'el sum

—0.502074 272 6—0. 111881( —7)i
—0.502074272 6—0. 111883( —7)i

—0.502 074 272 6—0.11190( —7)i
—0.5020742726 —0.11194(—7)»
—0.502074 2726 —0. 11188(—7)»

Complex coordinate (/, „=10)
n =17
n =18

Pade suID

[12,12]
[13 13]

Borel sum

—0.509 703 45 —0.257 5389( —3)i
—0.50920345 —0.257 5389( —3)»

—0.509 203 60—0.257 545( —3)i
—0.509 203 60—0.257 545( —3)i
—0.50920345 —0.257 538( —3)i

CoInplex coordinate (/, „=10)
n =17
n =18

Pade sum

[12,12]
[13,13]

Borel sum

—0.517 560 62 —0.226 9827( —2)i
—0.517 560 62 —0.226 9827( —2)i

—0.517 559 5 —0.226 862( —2)i
—0.517 559 5 —0.226 865( —2)i
—0.517 560 62 —0.226 982( —2)i

Complex coordinate (/rrttt7( 1 1)

n =15
n =16

Pade sum

[12,12]
[13,13]

Borel sum

—0.527418173—0.7269057( —2)»
—0.527 418 173—0.726 9058( —2)i

—0.527 425 —0.727 062( —2)i
—0.527 425 —0.727 062( —2)i
—0.52741817—0.726905( —2)»

LI(e)= gc, (e)z, C,' (2.12)
l

where C;, the corresponding left eigenvector, is
simply the transpose ' (not the Hermitian conjugate)
of the vector C;:

(X
~

e-'H'~ y &
= +[X(e)]'C,(e)

Xe ' [ C;(&)]'P(&),

%'herc Q 6 1s the ical (1.c., Ilo complex conjugation)
scalar product. The discrete sum in Eq. (2.13) con-
tains co~plex eigenvalues which correspond to iden-
tifiable decaying Stark states and the other eigen-
valucs wh1ch glvc a gcIlc1 alizcd Gauss1an quadra-
ture" of the remnants of the continuous spectrum of
H "'"(8). To exemplify the utility of Eq. (2.9), and
its matrix spectral resolution, Eq. (2.13), we present
converged results for the time evolution of the 1s
state of atomic hydrogen in the presence of suddenly
and adiabatically applied dc Stark fields.
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FIG. 3. Contour distortion and evaluation of the La-

place transform of Eqs. (2.8a) and (2.81). (a) A usual

transform inversion contour (see, for example, Ref. 14) is

shown. Contour is directed from + w to —Qo (positively)

in the upper-half plane, and thus encloses the spectrum of
the dc Stark Hamiltonian, which is the whole real axis.
(h) Apphed to the use of (P(8), [z —H (8)] 'X(8) ), which

gives an identical time evolution; in the transform the

continuous spectrum of Hs' "(0) has moved into the

lower-half plane (see Cerjan et a/. , Ref. 2 and Herbst,

Ref. 13) exposing the Stark resonances. Contour of (a)

may then be distorted as shown, resulting in time evolu-

tion dominated by the resonance poles, but also including

the remaining continuum contributions. These latter are

effectively quadratured by the L' bas~s.
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FIG. 4. Time evolution of the hydrogenic 1s state in

suddenly and adiabatically applied dc Stalk fields. Sud"
den application (i.e., in times less than a few fsec) results

in rapid ionization of high-lying Stark states which are
populated in the sudden turn-on, resulting in a "plateau"
in P;,„(t) hiding the contribution from the more slowly

ionizing ls Stark state. In adiabatic turn-on of the field
the decay is pure exponential, as only one pole of Fig. 3(b)
contributes. At the lowest field (F=0.005 a.u. ) after ini-

tial transients the two n =2, mI ——0 Stark states resulting
from sudden turn-on may be seen to ionize at times
v.-10"and 2g 10' a.u.

Figurc 4 shows the probability of ionization of
ground-state atomic hydrogen for a field turned on
at time 0 and turned off at time t. Namely,

where
~ Po) is the exact ground state of (field-free)

hydrogen, and the sum over j includes all bound
states of (field-free) atomic hydrogen. The figure in-
dicates the existence of very strong transients for the
sudden turn on. Thcsc aI'c s1IIlply duc to populat1011
of many high-lying resonances of Hs"'"(8) at r =0
due to the sudden turn-on of the field. These high-
lylng Stafk fcsonanccs cofrcspond1ng to excited
states of hydrogen which ionize relatively quickly,
giving rise to a constant term in P;,„(t) which visu-

ally swamps out the ionization of the population in
the slowly ionizing Is state for a substantial period
of time. Thus the only physical significance of the
"plateau" regions in the sudden turn-on time evolu-
tion is that the plateau indicates the total probability
of early ionization due to the sudden turn-on. The
time scale of the transients in Fig. 4 indicates that
the dc field would have to be turned on in the order
of less than 0.1 fsec for this structure to be observed.
Conversely, adiabatic turn-on gives decay dominated
for all times of physical interest by a single exponen-
tial. For the case of sudden turn-on Geltman' has
numerically integrated a one-dimensional model

Stark problem obtaining time dependence quite
similar to those of Fig. 4.

%C thus see that the use of an I. expansion basis,
and the complex scaled H '""(t9), not only allows
computation of individual complex resonance eigen-
values (Sec. IIA), but also allows elucidation of
quite complicated multiple —time-scale time evolu-
tion. Having established the utility of this
complex-coordinate matrix technique, we proceed to
the case of the ac Stark effect.

ill. TIME-INDEPENDENT FLOQUET
HAMILTONIAN

The time-dependent Hamiltonian whose dynamics
wc w1sh to dlscUss 1s, fof atomic hydfogcIl,

Q2
H(t) = —— ———Fz cos(mt ) (3.1)

2

which describes the interaction of the atom with a
monochromatics hncafly Polarized, coherent flcld of
frequency ~ and peak field strength F. The time-
independent Hamiltonian, equivalent to that of Eq.
(3.1) in the scnsc that coffcct cgcle-aUeMged time
evolution is given by cxp( —i+~ t) h» been given by
Shirley'9 (with 5=m, =e = I)

H = — -- ——+ma~a ——(a„+a„), (3.2)
V I y Fz
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where a„(a„),are the creation (annihilation) opera-
tors for linearly polarized photons (i.e., Floquet-
Fourlcr comments) of flcqucncy M. As thc cycle
times ln thc frcqUcncy rcglons consldclcd in Inultl-
photon ionization are extremely short compared to
times of physical interest (e.g., Rabi frequencies
Rnd/or lonizatlon rates ) foI' Usual Rnd cvcQ high
flicld intensities, thc approxi1Tlation of wolklQg with
H„, rather than constructing the complete Floquet
time-evolution operator, as recently done by %'yatt
et Ql, , ls IDlnoI' coITlpared to thc assumption of
complete cohcrcncc and monochromaticity.

The Floquet Hamiltoman H of Eq. (3.2) and the
dc Stark Hamiltonian H "'"of Eq. (2.1) are remark-
ably similar, suggesting at once that H„might be
transformed H —+0„(8):

q2 ~
-i8

H (8)=—e2's --—

(3,3)

and that H„(8), hke H "'"(8),of Eq. (2.3) has com-
plex clgcnv81ucs with corresponding complex clgcn-
vcctors, whose imaginary parts might be Rssoclatcd
with lifetimes of Rpplopriatcly pl'cparcd states, that
is with multiphoton-induced time evolution, includ-

ing iomzation. More generally, construction of
8 " ls expected to allow discussion of time
evolution of arbitrarily prepared states, as in the dc
case discussed in Sec. II B. The first of these corjec-
tures was verified by Chu and Reinhardt and subse-
quently exploited by Chu. ' ' Exploitation of the
ability to treat time evolution is discussed in HRR,

For Rctu81 calcula'tlons of thc L clgcIlfUnctlons
of H„(8), which will correspond to fully dressed
states with coInplcx clgcnvalUcs, thc atomic states
are well represented by the

I P„t,) of Eq. (2A).
Thc prcscncc Gf thc Q~Q~ and (Q~+Q~) terms ln
H(6)) require extension of the atomic-state space to
include photon states, and thus used a direct-
product basis, denoted by

In, l, rn~,»&= IP„& )g IN),

where IN) is an X-photon state. In this direct-
product basis the Hamlltonlans H~ Rnd H~(g) Rrc
block tridiagonal in the photon number X, as
(Ez/2)(a +a~) only connects states differing by
+1 photons. Choosing thc origin of thc cncrgy scale
at Eo ——Xa (A'=1), the structure of the matrix rep-
resentation of H [or H (8)] is block tridiagonal
in photon number %+M:

I faj;» —2)
I faj;N 1)—

I fuj»
I fa j;%+1)
I fu j»+2&

I fa j;S—2)
[N —2]

[V i, 2]

I faI;N 1)—
[I'-z, -i]
[N 1]—
II'o, ij

o

0

[I'-i,o]

[N]

[Vi,o]

I fuj &+1&
0

0

[Vo, i]
[%+1]

[ I'2, i 1

I fa j;%+2).. .
0

0

0

[I'~,zj

[%+2]
where fa j represents a complete set of functions spanning the full manifold of atomic states. The diagonal
blocks [%+M], M=O, +1,+2, . . . , correspond to the unperturbed part of the Hamiltonian
Ho ——H„, +Hrdq. In the basis f a; j of uncoupled (atom) plus field states

I f a j;%+M ) the block [%+M] is
thc diagonal Blatrlx

I a),%+M)
I a2,%+M)'

.~+M) E,+Mao 0

I
a, X+M) o E., +M~

1 '~

4t 1

I
a;;%+M) 0 0

I a;;%+M)

where F. is the energy of th, e atomic state
I a;)

Rnd AP ls thc frcqucncy of thc lascI' field. IQ thc
complete discrete basts

I
i;X):—

I ;,nmi~, ', X) of

Eq. (3.4) [%+M] has the structure

(i;0 I [%+M] I
j;0' )

=[&& IH'"
I J &+(&+M)~]5o,~+MgM+~, o
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The off-diagonal blocks of Eq. (3.5) are of the
form

[y ] ( .@+M
~

Ptom —Photon
~

u .@+M+1}

and in the limit of large photon-occupation numbers
are proportional to &%+M =v'X+M+I=VX
which is the dimensionlcss classical amplitude of the
field, allowing Eq. (3.8a) to be rewritten

(3.8b)

In this limit the semiclassical Floquet theory and
quantized field Hamiltonians are identical. '

In what follows, converged eiyenvalues of the ma-
trix (3.5) corresponding to H (8) will be found.
However, before discussing calculations we note that
most atom plus field states are uncoupled in the di-

pole approximation which we henceforth assume. If
we assume an initial state, atomic field

~
no, lc,m), N} of definite angular momentum I&&,

and parity ( —1) whose time evolution is of in-

terest, the dipole selection rules appropriate to linear
polarization require that coupling can only occur be-
tween states which differ by +1 units of angular
momentum. Thus, for example, the atomic hy-
drogenic states ( ls;N ~, ( ls;X+ I ~, ( Is;X—1 ~,
( I&++3 i,( is+ —3 ~, . . . , are uncoupled. As-
suming Rn Initial hydrogcnlc state of s symmetry thc
block structure of Eq. (3.5) collapses to that sho~n

d 2cst

s-2~ Vsp

Vpd Vps p-~ Vp~

Vgp

&ps p+~ Vps ~pa

Vgp s+2w

Vyp

in Fig. 5 where only those atom plus field states of
symmetry appropriate to coupling to states of the
form

~
n, l =0,mt ——0;N) are shown. The block-

matrix structure of Eq. (3.9) is the direct generaliza-
tion of the structure of Eqs. {2.6) and Fig. 1 to the
ac Stark case. The off-diagonal blocks [Vi(+&] are
those of Eq. (2.6c) and the diagonal blocks are those
of Eq. (2.6a) augmented by Mm 5;J,M
=0,+1,+2, . . . . The block matrix of Fig. 5 is
enormously simpler in structure than that of Eq.
(3.5), even though no approximations have been
made. Thc collapse Indicated In Fig. 5 Is cquIvalcnt
to full utilization of symmetry relations in the more
usual statements of Floquet theory.

A slightly rearranged version of the block-matrix
structure of Fig. 5 will be used in discussions of
computational applications, while the full block-
rnatrix structure of Eq. (3.5) will be used in making
formal contact with previously derived continued-
fraction representations of multiphoton transition
amplitudes.

IV. ac STARK PROBLEM; CALCULATION
OF COMPLEX DRESSED EIGENVALUES

In this section it is shown that complex eigen-
values corresponding to complex dressed states are
easily converged using modest expansions in I.
functions and in "M" which measures the excur-
sions in photon number from an initial photon state

Section IV A dcta11s numcllcal convergence, Rnd
IV 8 briefly discusses the blockwise inverse iteration
used to locate complex eigenvalues with a minimum
of storage and computational effort. As will become
clear in this latter discussion it is advantageous for
computations to rearrange the ordering of blocks in
the collapsed Floquet Hamiltonian as is indicated in
Fig. 6. The analogous block-matrix structure for
circular polarization has been given by Chu.
Again, no approximations are involved; the block-
matrix structure of Figs. 5 and 6 are related by sim-

ply reindexing. It is the block-matrix structure of
FIg. 6 which will bc used In all succccdlIlg discus-
sions of computational results. Each of the blocks
of type A reduces to the dc Stark case as m~o, and
we refer to each as R I"loquet block.

FIG. 5. ac Stark block-matrix structure arising directly
from the structure of H„[or H„(8)]of Eq. (3.3) or (3.5)
if the initial state to be propagated is of the type

~
n, l =O, nt~=O;)V). That is an atomic s state. As all X-

photon direct product states with /&0 have zero overlap
with

~
n, 1=0,m(=O, X) all of these states and all of

those connected to them by 1,2, . . ., M-photon processes

play no role in the time evolution, and thus may simply be
omitted, resulting in the collapsed form shown here.

A. Choices of parameters and demonstration
of convergence

As indicated in Sec. III we expect to find complex
eigenvalues of the matrix representation of H' (0).
The matrix representation is completely specified by
the choice of basis functions, the number of atomic
symmetries, and by the number of Floquet blocks to
be included. Appropriate choices of Rll of these will
be a function of field strength, and of the frequency
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%HERE

A+4aul 8 0 0 0

8 ~ A+2.rul 8 0 0

0 O S T A-@~i 8

0 0 0 8 A

S v, p O O 0

Vps P-cuI Ypg 0 Q

O v~~ F~I v»

0 0 0 V»g 6

chosen~ The dressed eigenvectors will be approxi-
mately a 1s hydrogenic function, suggesting a value
of X=A,,=A~ of 1or 2. Theoptimal valueof Omay
then be determined empirically. Figure 7 shows rel-
ative convergence of the imaginary part of the corn-
plcx dressed 1$ state of hydrogcQ for N =0.6 R.u.
and I=10 a.u. It is evident that a value of
8=0.45 rad is optimal in this case although if re-
sults are required only to three or four significant
fiigurcs Rny value of 8 bctwccn 0.3 and 0.6 is satis-
factory. The converged complex eigenvalue at
I' =10, u =0.6 is E),———0.499 998 940826
—0.6262659/10 i, which converges to the num-
bcI' of flguics given. Convclsion of thc 1IDaginary
part of this energy level into a cross section gives the
usual one-photon photoeffect cross section to the
number of figures quoted; see also the discussions of
Rcf. 5 for complex-coordinate calculations of onc-
photon ionization cross sections.

0 0 0 0 Q

Vpg Q Ypy Q Q

0 0 0 0 0

0 0 vgg 0 vg»

0 0 0 0 0

p

K

id

4

-5

R

CA

C9

Cl

FIG. 6. Rearranged block-matrix structure of the Flo-
quet matrix of Fig. 5, in a form most suitable for numeri-
cal applications. This follows from the fact that only the
matrices A and 8 need be stored, and that the tridiagonal
structure may be exploited (see the Appendix). This form
of the matrix is that used earlier by Chu and Reinhardt
(Ref. 2), generalization to circular polarization has been
given by Chu (Ref. 2),

cu. %C consider two quite simple examples —more
complicated examples are considered in HRR. 6

For atomic hydrogen at external fields of low in-

tensity and for frequencies m&0. 5 a.u. , only ordi-
nary single-photon ionization (1s~kp) can occur
with any real probability. If only one photon s~p
absorption is of importance only one Floquet block
ilccd be considered, and only s and p blocks included
in that single block. OQc cxpccts to find a complex
eigenvalue near ——, with a shift and width corm-

sponding to the real and imaginary parts of the
frequency-dependent polarizability a(m). However,
given that only two I symmetries need be included
how are the nonlinear scale parameters A, and 8

IO II )2 I3 l4 l5 16 l7 IS

NUMBER OF ATOMIC BASIS FUNCTIONS

FIG. 7. Convcl gcncc studies of thc shifted and
broadened hydrogenic ls state in an ac field of frequency
0.6 a.u. , and at an intensity low enough to ensure that
only the usual one-photon photoeffect is of importance.
Plotted is log~o(

~

1 /2 —I'/2'""'
~

) where I /2 is the width
resulting from the finite-dimensional —matrix calculation
described in the text. For these illustrative calculations
A, =1.2 and X =n, =n~ the number of basis functions of
each symmetry is varied for a range of values of 8. It is
evident that for 8 in the range from 0.3 to 0.6 rad that ra-
pid convergence is easily obtained. %'hile it is rarely of
importance to calculate a cross section to more than two
or three significant figures, the present results indicate
that systematically convergent results of very high accura-
cy can be obtained from such a finite 1.2 basis computa-
tion. In this particular case, the photoeffect cross section
can be analytically extracted from the same L basis
without use of complex coordinates as discussed in
Yamani and Reinhardt, Ref. 3. In the multiphoton case
use of complex coordinates enormously simplifies treat-
ment of overlapping strongly coupled continua.
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As a second example of convergence considerF,=F/v 2=0.025 a.u. , and r0=0.375 a.u. At
this frequency the uncoupled states 1s and 2p —m

(i.e., the states
~

1,0,0;1V) and ~2, 1,0;N —1) in the
exact atomic basis) are degenerate and we expect the
processes Is~(2p —ro)~(ks —2') and (kd —2') to
be important. Thus, strongly resonant two-photon
ionization will dominate at low fields, and addition-
al processes may well enter at higher fields. Thus at
least two and perhaps more Floquet blocks are need-

ed, and a minimum description involves use of
atomic orbitals of s„p,d symmetry. Figures 8 and 9
show relative convergence for the imaginary part of
the dressed 1s state under these conditions as a func-
tion of A, =A,, =A& ——k@, 8, and the number of atom-
ic basis functions (X=n, =n& ——nd) for a series of
calculations involving three Floquet blocks and the
s,p, d atomic symmetries. Specific values of the
widths appear in Table III. Table IV indicates that
at this relatively high field (F,=0.025 corre-
sponds to an rms intensity of -6g 10' %/cm ), in-
dusion of the Floquet blocks with A, 3+2m, and
3 —4~ was necessary to achieve convergence indi-
cating minor importance (3% to 4%) of four-photon
as well as two-photon processes at this intensity.
The relationship of these converged widths to actual
rates of multiphoton process is discussed in Sec. VI
of this paper, and in HRR.

B. Numerical determination of complex
eigenstates

The block-matrix structure indicated in Fig. 6
suggests that it should be possible to carry out calcu-

CONVERGENCE FOR sa = 0.3T5, X a 1.2

Vap Vsd

K
CI -2

-3

4

5

(3
CA

6 8 IO II 12 l3 l4 l5

NUMBER OF ATOMIC BASIS FUNCTIONS

FIG. 8. Convergence of the width of the hydrogenic 1s
state in a case where resonant two-photon ionization is
possible. States of three atomic symmetries, and three
Floquet blocks are included. For A, =1.2, convergence as
a function of n =n, =n~ =nq is shown for a range of
values of 8.

CC

IL

a
O

I-

4

lations with only the necessity of calculation of the
single Floquet block A, and the sparse coupling
block 8. This is, in fact, the case and implies that
the size of actual matrix computation depends only
on the number of atomic basis states needed to
describe the problem at hand. This latter is almost
always a much smaller number than the dimen-
sionality, of the block-matrix truncated Floquet
Hatniltonians. Thus, for the five-block s,p, d,f,g
calculation discussed in the caption to Table III the
maximum matrix to be stored was a 75 X 75
complex-value symmetric matrix which is itself
block tridiagonal, further reducing storage require-
ments.

Actual complex eigenvalues were determined by a
blockwise inverse iteration procedure taking full ad-
vantage of the block-matrix structure in both
storage and the computational algorithm. The gen-
eral strategy of the algorithm used is outlined in the
Appendix. The fact that storage and computational
requirements scale as the cube of the numbers of
atomic states, and linearly in the number of Floquet
blocks, rather than the cube of the dimensionality of
the truncated Floquet matrix indicates that the
method has the same basic computational advan-
tages as the numerical Floquet method recently in-
troduced by %yatt et a/. ' The Inain difference be-

-S— 8
6 8 IG I I I P l3 l4 l5

NUMBER OF ATOMIC BASIC FUNCTIONS

FIG. 9. Convergence of Im(EI, ) for the case discussed
in Fig. 8. In this case 8 is held fixed at 0.45 rad, and con-

vergence investigated for several values of A, . Inspection
of this figure and Fig. 8 leads to the conclusion that k in

the range 1.2 —2.0, and 8 in the range 0.30—0.60 is ade-

quate for most purposes. This clearly indicates that the
choice of these parameters is not particularly critical as

long as =10 basis functions per atomic symmetry are
used. Successful performance of calculations with signifi-

cantly smaller numbers of atomic functions is possible but
requires careful simultaneous nonlinear optimization of 8
and A, or, equivalently, inclusion of complex values of 8
[see, for example, E. Brandas and P. Froelich, Phys. Rev.
A 16, 2207 (1977)].



STARK IONIZATION IN dc AND ac FIELDS: AN I.'. . .

TABLE III. Convergence of the imaginary part I /2 of the broadened and shifted "1s"
state of H in the presence of a linearly polarized laser field with co=0.375 implying an exact
zeroth-order resonance ls, 2p —e, and thus a width dominated by two-photon ionization.
Convergence is shown for representative values of the nonlinear parameters 6 and A, , as a
function of N, the number of atomic functions of each symmetry. For these calculations
N~ ——3 and F,=0.025 a.u. , a strong external field. Examination of these results and those
of Figs. 8 and 9 indicates both that results of 1% precision are quite easily obtained for a wide
range of parameters and basis sizes, and that results of very high precision can be obtained if
needed. Effect of inclusion of additional Floquet blocks, needed at this high field, is docu-
mented in Table IV.

6
8

10
11
12
13
14
15

8=0.30, A. =1.2

0.141 790 85( —3)
0.13491825( —3)
0.13464203( —3)
0.13461651( —3)
0.13461651( —3)
0.134648 70( —3)
0.134 638 09( —3)
0.134638 60( —3)

Nonlinear parameters
0=0.54, A, =1.2

0.12016069(—3)
0.135 693 92( —3)
0.134 595 88( —3)
0.134641 47( —3)
0.134638 69( —3)
0.13463938( —3)
0.13463950( —3)
0.13463945(—3)

8=0.45, A. = 1.5

0.135 15746( —3)
0, 133590 70( —3)
0.134 627 88( —3)
0.134 635 71( —3)
0.134 639 52( —3)
0.134 639 38( —3)
0.134 639 48( —3 )

0.134 639 48( —3)

'n is the number of atomic basis functions of each symmetry. In the present calculation
n, =n~ =nd ——N, and the dimension of a single Floquet block of type "A" is thus (3N)(3Ã).
As the blocks A, A —2', and A +2' are included, the total matrix has dimension (9N &9N)
which ranges from 54X54 to 135X135 for these convergence studies. However, see the Ap-
pendix for a discussion of the effective size of the computations.

tween the approaches is that %yatt and co-workers
construct the full Floquet propagator, awhile we con-
struct the cycle-averaged propagator. %'e also note
use of a subset of a complete discrete basis, rather
than actual atomic eigenstates, can be related to the

Dalgarno-Lewis method, and that the block-matrix
manipulations discussed in the Appendix can be
directly related (the difference being presence or ab-
sence of complex coordinates in addition to use of
finite-dimensional —matrix techniques involving ex-

TABLE IV. Overall view of convergence of E~, for the resonant frequency m=0. 375 a.u.
and F(rms) =0.025 a.u. sho~ing the convergence (to five figures in iI /2) as a function of rota-
tion angle 8, basis scale parameter k, number of Floquet blocks N, number of atomic basis
functions, and number of atomic angular symmetries. %here the scale parameter is indicated
as 1.2(1.5), the indicated change in exponent does not affect the figures shown. For the
15s, 15@,15d, 15f, 15g ealeulation with five Floquet blocks, the eigenvalue was obtained from a
complex symmetric matrix of dimension 375 &(375. In contrast, as documented in Figs. 8 and
9 results good to 3% in iI /2 can be obtained from an N =3 calculation of dimension as small
as 54)&54 using optimized values of 0 and A, . Thus large-scale calculations are usually only
needed to check convergence, or to obtain high-precision results.

Basis

15s 15p 151

15s 15@ 15d 15f

10s 10@ 10d 10f 10g
13s 13p 13d 13f13g
15s 15@1Sd 15f 15g

1.2
1.5
1.2(1.5)
1.2(1.5)
1.2( 1 ~ 5)
1.2(1.5)
1.2(1.S)
1.2(1.5)

g
(rad)

0.45
0.5236
0.45
0.5236
0.45
0.45
0.45
O.S236

—0,511946
—0.511946
—0.511 923
—0.511923
—0.511923
—0.511923
—0.511 923
—0.511 923

Eis

—1.3464)& 10 i
—1.3464 y, 10 i
—1.3827 g 10 i
—1.3827 g 10 i
—1.3824 g 10 i
—1.3827 g 10 i
—1.3827 g 10 i
—1.3827 g 10 i
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pansion in an L set) to the recent discussions of
Gontier, Rahman, and Trahin who have explicitly
introduced the Dalgarno-Lewis technique, and
successive solutions of linear equations to construct
sums over intermediate states in continued-fraction
perturbation theory. %e may also note that the
method of Ref. 23, if implemented in a finite basis
without coordinate rotation, closely related to that
of Karplus and Kolker derived in the context of
calculation of the frequency-dependent polarizabili-
ty.

V. RELATIONSHIP TO CONTINUED-
FRACTION PERTURBATION THEORY

The strong connections existing between the resol-
vent operator methods, continued-fraction perturba-
tion theory and the matrix Floquet Hamiltonian ap-
proach may be conveniently displayed by making
explicit the analytical structure of the elements of
the inverse matrix (zl —H' ) '. A convenient tech-

nique, which takes full advantage of the block-
matrix structure of H is a standard matrix partition-
ing technique, corresponding to the introduc-
tion of the concept of an effective Hamiltonian.

In a first step, we examine an elastic transition,
i.e., one of the form (a;X

I
G(E)

I
a;X), where the

atomic state a might be either an actual atomic
eigenstate of an L basis function of the type of Eq.
(2.4), and G(E}——(El —H~) '. The amplitude it-
self is of interest for describing forward-scattering
processes and may be used in light-shift calcula-
tions. Poles of the analytically continued amplitude
correspond to the complex eigenvalue of H (8), al-
lowing analysis of time evolution.

A. Elastic transition amplitude

To calculate an amplitude of the form
(a;N

I
(El H) '—

I
a;X), which is related by La-

place transform to (a;N
I
e "

I a;»), and thus
to time evolution of an initial state, it is convenient
to partition the Hamiltonian matrix (EI —H), as
follows:

(El —H) ] ] (EI—H) i 0

(El —H) = (EI—H)o ( [Ã] (EI —H)o ]

(El —H)] ]

where H= H„or H —(8). Here [S] is the block of (EI.—H) defined by taking all states of N photons. More
precisely, in the simple case of a H atom initially in an S state (or in any state with even-parity angular
momentum) the block matrix [N] is projected onto the space spanned by the states

I ls, d, . . . I;N ). The diago-
nal block (EI—H) ) ) is the following infinite partitioned matrix:

I lp»f I»+» I ls d ]»+» I
lp'f I»+»

I lpf I»+I) [@+I] [Vi,2] 0 ~ I ~

(EI—H), , = I l,d, . . . I;»+2) [N 2] ]%+3 2, 1 2$ 3Ilpf" I +
[V, ] [%+3]

where the structure of matrix blocks [N +M] and [ V~ M+ ~t] is that of Eqs. (3.6)—(3.8).
The nondiagonal infinite matrix blocks denoted (El —H)o i and (El —H ) i 0 assume, respectively, the corre-

sponding forms

(El —H)o ~
——

I ls, d, . . . (;X) (

I lp, f, . . . J;%+ I) I Is, d, . . . ];%+2)
I lp f, . . . I;%+3)

[Vo, i] 0 o )
(5.3a)

I Ipf ] &+»
(EI—H), ,= I ls, d, . . . , I;++2)

I lpf, "I &+»

I ls, d, . . . I;x)
[Vi,ol

0

0
(5.3b)
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The structure of the other matrix blocks can be obtained from the preceding ones by simple symmetry con-
siderations.

The amplitude of interest here, corresponding to an elastic transition, is of the general form
(a;N

~

(El —H) ' ~a;N), where in our case, the atomic state involved is [a) =
~
[s,d, . . .]). As a conse-

quence the full structure of the inverse matrix (EI—H) is not needed: only its projection onto the space
spanned by the set of vectors

~
[s,d, . . . ];N ) is required. This determination may be conveniently achieved by

using standard block-matrix manipulations.
For instance, we solve first the following system:

(EI—H)X= Y,
which, after partitioning according to Eq. (5.1), may be written as

(EI —H ) i ]X ] + (E3.—H ) i pXp ——Y

(El.—H)o, —iX—i+[N]Xo+(E3.—H)o, iXi = Yp

(EI—H)( pXp+(El —H)] )X]——Y] .

As we only need to know the structure of the block

([s,d, . . . j;N
i
(El —H) '

i
[s d, . . . ];N) =[(El—H) ']op

(5.4)

(5.5a)

(5.5b)

(5.5c)

projected onto the space spanned by vectors
~
[s,d, . . . ];N ) in the inverse matrix (E3.—H), one may solve

the system, Eq. (5.5), with respect to Xp. The diagonal block-matrices are nonsingular, and one has successive-
ly

X i
——[(El H) i i] '[—Y i

—(El. —H) i pXp]

Xi —[(El—H ) i i] '[ Yi —(El.—H) i pXp]

and, replacing in Eq. (5.5b);

[[N]—(El —H)p i[(E3.—H) i i] '(E3.—H) i p
—(El —H)pi[(El —H)i i] '(El —H)i o]Xii

(5.6)

(5.7)

= —(El —H)p i[(El.—H) i i] 'Y i+ Yp —(El —H)p i[(El.—H)i i] 'Yi . (5.8)

The needed block element [(El—H) ]p p is merely the coefficient of Yp in the preceding expression for Xp,
namely,

([s d, . . . I;N
~

(El —H) '
~
[s d, . . . j;N) =[(E3.—H) ']po

=[ [N] —(El —H)o, —i[(El —H)-i, -i] (El.—H) —i,o

—(El —H)p i[(E3.—H)i i] '(E3.—H)i p] (5.9)

The essential result obtained by this simple partitioning analysis is that the diagonal block-matrix
[(El.—H) ']p p of the inverse matrix (El —H) ' is expressed in terms of inverses of the (nonsingular) ma-
trices denoted (El —H) i i and (El.—H)i i [Eq. (5.2)]. This result may be easily related to those of Ref. l.
For instance, the block matrix [(El.—H) ']p p corresponds to the Green's-function operator denoted Giv in
Yeh and Stehle's 1977 paper' the inverse matrices [(E3.—H) i i] ' and [(E3.—H)i i]

' are Yeh and
Stehle's Projected oPerators denoted, resPectively, Giv, and Giv+, , the matrices (E3.—H)p i and [El.—H]i o
correspond to the operators Pz VPz+] and Pz+] VPz.

It is an easy matter to check, by simply using block-matrix multiplication rules, that the product
(El —H)p i[(El—H)i i] '(El —H)i p is as expected a block matrix defined only on the subspace spanned
by vectors belonging to the subset

~
[s,d, . . . ];N ). Moreover it can be verified that one does not need to know

the whole structure of the inverse matrix [(El—H), i], only its leading block projected into the space
spanned by the vectors

~ [p,f, . . . ];N 1+).

The required leading block matrix of [(El—H)i i]
' may be obtained by further use of the partitioning

techniques. Thus,

[N + 1] (El —H ) i 2
1, 1

(EI—H)p] (EI—H)$2
(5.10)
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~
[s,d, . . .j;@+2)

(EI—H)p p
——

) [p,f, . . . j;%+3)
i [s,d, . . . j;X+4)

i [s,d, . . . j;%+2)
[%+2]
[ I'3,2 J

0

j [p f, . . . j;%+3)
[I'2,3]

[X+3]
[ I'~, 3 ]

[I'3,4]

[%+4]

(El —H)i 2 ——i [p,f, . . . j;X+ I) (

(5.12)

with a similar rectangular block matrix representing (El H)p i.—
Denoting the leading block matrix of [(EI—H)i i] ' projected onto the subspace

~ [p,f, . . . j;%+1)by

[l(EI—»i, i] 'ji, i=&[lpf . .j'&+Ill(EI —»i, i] 'I [pf . j &+I&

[[«1—»i, il ') i, i=[[&+I]—(El —H)i, z[«l —H)z, 2] '«I —H)2, ij (5.14)

Again as we need only the projection of [(El—H)q2] onto the space spanned by the vectors
~
[s,d, j P'+2), , we may ~o~tinue to iterate the procedure to recover the continued-fraction structure

of the expansion of the block matrix [[(El—H')i i] 'jt i in the expression [(El—H) ']00 in Eq. (5.9}. We
have, finally,

((uf !'»+t I(«—»i, i) 'I b»f ");&+t)

[~+~ j-~EX-H)„ 1

[%+2]—{El—H)p 3 (El —H)3 2[%+3]—.
(El —H)P 1

The same analysis may be performed also for the
symmetrical block matrix (El —H) 1 1, which
completes the calculation and permits one to recover
the main results of Ref. 1.

It should be pointed out that the possibility of ob-
taining such a compact I'csult is a direct conse-
quence of the symmetry properties of the Harnil-
toman matrix [Eq. (3.5)]. Of course, these sym-
Inetries are already contained in the model (single
mode laser, dipole approximation, etc.) chosen for
describing the physical system under consideration,
but the Inatrix method used here permits us to fully
exploit these model characteristics.

The cxprcssion Eq. (5.15) gcncralizcs thc notion of
the J fraction3 to the case ~here the clem, ents are
(nonconlIQutative) matnces. T?118 follows from thc
fact that the partitioned matrix (El —H)i i [Eq.
(5.2)] exhibits the structure of a J matrix whose ele-
ments would be matrices themselves. Now it is
known, from the theory of the ordinary J matrix
with scalar elements, that the leading element

[

(J ')~
~ of its reciprocal may be expanded as a con-

tinued J fraction

Cji Q/2 0

J= cx2) Q22 &23

0 a32 a23

&23&32

It follows that Eq. (5.15) may be obtained directly
from this analysis without resorting to a new parti-
tioning of (El —0)1 1 as performed in Eq. (5.10). It
is sufficient to extend the relations Eq. (5.16) to the
case where elements a,j are matrices, provided care
is taken to properly define right- or left-handed
operations. Similar procedures have previously been
used in some extensions of the Padh-approximant
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theory. More detailed accounts and specialized
appl1cRtlons of IIlatrlx continued fractions Rnd Padc
approximants may be found in these references.

S. Inelastic transition amplitude

Nondiagonal blocks of the inverse matrix
(El —H) ' may be obtained from a slight extension
of 'thc matrix partltlonlng technique dcscrlbcd
above. It should be noticed first that amplitudes
relevant for one-photon transitions can be derived
directly from thc rcsUlts of Scc. IV A. F01 instance,
thc blocks

(fsd, . . . I;Ni(El —H) 'i fp f, . . . ];N —1)

=[(El—H) ]o,

(fs,d, . . . ];N i
(El —H) '

i Ip f, . . . j;%+1)

=[(El H) ]o (

arc, rcspcctlvcly, thc cocfflclcnts of 7 1 and F+] 1Q

the expression Eq. (5.8) for Xo. One has

[(El—H ) 1]o ) = —[(E1—H ) ]o o(E l —H )o )

& f f(EL—H)i, il

(5.17a)

[(El—H) ']o t
———[(El—H) ']oo(El —H)p

x ff(El —H) i, il ']

(5.17b)

An important characteristic of these expressions
is that nondiagonal block matrices of the inverse
Inatrlx Rrc g1vcn 1Q terms of thc diagonal ones.
Thus the calculation is reduced to that of
the already-defined diagonal elements, Eqs. (5.9)
and (5.15). Again the connection with Yeh and
Stehle's 1977 results' is achieved by making the
above-mentioned substttutlons [(El —H ) 1 ]o o

=Gw» (El H)o, +&=—P+1Px+i' [(El—H)Mm]
=6~+sr, etc., which permit us to recover their Eq.
(3.29).

Generalization to the case of higher-order transi-
tions may be made in a similar way by suitably in-
creasing the number of block matrices included in
the partitioning of (EI—H). For instance, the ex-
pression of a general M-photon transition amplitude
(a;X i(El —H) 'ib;%+M)=[(El —H) ']o~
reads

f(El—H) 'I ~o= l(El —H) 'loof Vo i][(El—H)i, &l 'f l'i, 2]f(El —H)2, 2] '[V&,31
' '

f l'w —zM —i]

&&f(E1—H)M-i, m —~1 'f Vw-t, sr]l(El —H)M~]

where [(El—H) ']o o is given in Eq. (5.9). As be-
fore the nondiagona1 block matrices [Vz J+&], when

entering in a matrix product, play the role of projcc-
tors onto given subspaces. It follows that, as shown
in Sec. VA we need only determine the leading
block element of the inverse [(El—H )JJ ] '. These
elements exh1bit the continued-fraction structure
given in the expression Eq. (5.15). Equation (5.18)
correspond to the amplitude entering Eq. (3.37) of
Gonticr, Rahman, and Trahin's paper' and to Eq.
(3.28) of Yeh and Stehle's 1977 paper. '

C. Perturbation theory and
eigenvalues of the block truncated

Floquet Hamiltonian

Elthcf by power scrics cxpand1ng thc denominator
of Eqs. (5.9) using Eq. (5.15) or by direct partition-
ing of the Floquet matrix, Eq. (3.5) itself, it is
straightforward to write perturbation expansions of
thc Br1110U1Q-VAgncr type for thc dressed Or Floquct
energies, thus making expli. cit the relationship of

I

truncations of the Floquct Hamiltonian and either
usual or continued-fraction perturbative techniques.
As usual, it is convenient to introduce diagrammatic
representations for the resulting expansions, as
within the framework of the diagrams the origin of
the large numbers of higher-order terms in the ex-
pansion becomes clear. Figure 10 indicates the
structural framework of allowed diagrams through
c1ghth ordcl 1Q pcrtUrbatlon theory Us1ng R notation
similar to that of Yeh and Stehle, ' indicating both
the number of interactions (or "order" in the expan-
sion, denoted by k) and the extent of the walks in
photon number away from the reference photon
number X. Rules for construction of individual dia-
grams and their evaluation arc straightforward. (1)
An individual diagram (for the linear polarization
case at hand) is constructed by beginning at the node
0 Rnd moving, following thc arrows, succcss1vcly to
nodes 1,2, . . . , k. For a contribution to the kth-
order correction to the dressed state e„I+X~ the
path must end at the kth step with a node at photon
number X. The topologically distinct paths corre-
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PHOTON EXCURSION
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X
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I

4J
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«3
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+I -I +I
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--0
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( I)

@+I N N "I
PHOTON NUMBER

(ii)

3a
LLj--20

EXCURSION ( b) EXCURSION
+ I 0 -I -2 + I 0 -I -2

FIG. 10. Skeleton form 1Ildlcat1Ilg thc posslblc types of
diagrams contributing to a dressed-state energy. Order

with respect to the interaction is plotted up the vertical

axis. For each change in order the photon number must

change by +1. Assuming E to be the reference photon

number all diagrams of order k are obtained by consider-

ing all distinct paths connecting the node at photon num-

ber X, order 0, to photon number X, order k, following

the arrows in the indicated directions. See Fig. 11 for ex-

amples. It may be shown that the total number of paths

for such a k =2J order diagram is (J ). As will be seen,

truncation of the Floquet expansion, at a finite number of
Floquet blocks, corresponds to truncation to a maximum

excursion J in photon number, but is infinite order in the

interaction. Rules for construction and evaluation of the

diagrams are given in the text.

EXCURSION
+I 0 -I -2

lit
2 Q

CL

N+ I N N- I N-2
PHOTON NUMBER

0

+I
I

(c)
E XCURS ION

0 -I 2

--0
M+I N N-I N-2 M+I N N-I N-2

PHOTON NUMBER PHOTON NUMBER

spond in a one-to-one way to individual contribu-
tions to the perturbation expansion, all diagrams are
weighted cqua11y, and all IIlust bc included. Fol ex-
ample, the specific paths in second and fourth order
are displayed in Figs. 11(a) and 11(b) as are a few of
the sixth-order paths in Fig. 11(c). (2) Diagrams are
evaluated in terms of the unperturbed propagators,
and dipoled interaction term. The first and last
nodes give the diagonal matrix element of the unper-
turbed states ~hose dressed energy is desired. Each
directed arrow corresponds to a transition from M
to M+1 photons and contributes a factor V~~+l.
Each internal node (i.e., those with an arrow enter-

ing and leaving) contributes an unperturbed propa-
gator [E+NciP H(M)] ' wl—th M corresponding
to thc photon nuIDbcI' of thc glvcn node.

Taking thc (1$ +XQP) state of atoIHlc hydrogen as
an cxaIYlple, wc have

I+I N N- I N-2
PHOTON NUMBER

i 0

FIG. 11. (a) Paths giving rise to second-order contribu-

tions to the dressed energy. (i) corresponds to a virtual

absorption, and (ii) to a virtual emission of a photon. Re-
sulting second-order co11cctlons to (EI~+NN) arc shown

in Eq. (5.1b). (b) Three paths giving rise to fourth-order
contributions to the dressed energy. Three other paths,
which are reflections of these through the vertical 0 ex-

cursion axis also contribute. (c) Two of the possible

(3)=20 paths contributing to sixth-order contributions to
the dressed-state energy. Diagram of path 2 is evaluated
in the text.

F.=el, +N~+ 1s V— 1
V 1sE —H(%+1) in second order [corresponding to Fig. 11(a)].

A single sixth-order example should suffice to
complete thc discussion. Thc diagram ln Flg. 11(c),
ls cvaluatcd as path 2,
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1$VpVpVpVpVpV1$1 1 1 1 1

E [H—o(N —1)] E —[Ho(N —2)] E —[H (N —1)] E —[H (N —2)] F. [H—(N —1)]

(5.21)

E X CUR SION
+I 0 -I

EXCURSION
+2 + I 0 -I —2

--5

.- 4

-. 3 ~
O

--2 K

--
I

-. 0
N+I N N —

I

PHOTON NUMBER

--5

--0
N+2 N+ I N N —

I N —2
PHOTON NUMBER

FIG. 12. Skeleton diagrams corresponding to various
block truncations of the Floquet matrix. Truncation in

the number of Floquet blocks to those containing N, and
N+1 photons (i.e., to three blocks) gives rise to the
skeleton of Fig. 4(a), which shows that a truncation in the

photon excursion, but not perturbation order is implied.
Figure 4(b) shows the skeleton for contribution to the
dressed energies obtained by truncation of the Floquet
Hamiltonian to five blocks, and to excursions of 0, +1,+2
photons about the reference number.

We note that if intermediate states with N photons
occur, the 1$ state will be omitted in the spectral
resolutions.

Within the framework of this simple diagrammat-
ic notation, we can now make explicit the relation-
ship between perturbation theory for an individual
eigenvalue and truncation of the Floquet Hamiltoni-
an, which will be necessary in any numerical ap-
proximation scheme. Figure 12 shows the skeleton
diagrams contributing to the dressed-state energies
corresponding to various truncations of the Floquet
Hamiltonian. It is seen that each level of truncation
corresponds to infinite-order perturbation theory,
measured in terms of the number of interactions
with the field, and that convergence in terms of in-
clusion of a sufficient number of Floquet block ma-
trices is convergence with respect to the maximum
(and/or minimum) excursion in photon number.

For completeness we briefly indicate the structure
of the Rayleigh-Schrodinger expansion for the
dressed-state energies. The symbolic diagrammatic
expansion of Figs. 11 and 12 is simple because it is a
Brillouin-Wigner expansion. That is, the sought
after dressed-state energy appears on both sides of
the expansion: It appears alone on the left-hand side
of the expansion as the desired result, and on the
right-hand side in all of the denominators. A

I

Goldstone-type diagrammatic expansion represent-
ing the Rayleigh-Schrodinger perturbation expan-
sion of the dressed-state energy follows from succes-
sive formal iteration of the Brillouin-Wigner expan-
sion, to successively remove the unknown energy
to higher and higher order, followed by successive
reexpansion, until all of the denominators are of the

form [e~, +Neo (H~ +—Mco)] '. This iterative pro-
cess, which has been exhaustively discussed in the
many-body context by Brandow, Brueckner, and
others, gives rise to a much more complex perturba-
tion expansion, explaining the difficulties which
arise when the reverse process is attempted, and
making the advantages of the partitioning technique
especially clear. The imaginary part of the
Rayleigh-Schrodinger-type perturbation expansion
for E&, will yield, order by order, the usual (for ex-
ample, see Refs. 15 and 36) perturbation contribu-
tions to one-, and two-, and three-photon ionization,
etc. , provided that the correct limit as e&, ap-
proaches the real axis is taken. This is easily veri-
fied by direct introduction of the diagonal
atomic spectral representations of [e~, +Neo

(Ht +M)—]

VI. CALCULATION OF ADIABATIC
MULTIPHOTON IONIZATION RATES

As demonstrated in Sec. IV, the truncated time-
independent Floquet Hamiltonian H (0) has com-
plex eigenvalues and eigenvectors which are easily
obtained computationally and which we expect to be
related to time dependences of rnultiphoton ioniza-
tion processes. A general discussion of this relation-
ship appears in the following paper HRR. What is
discussed here is the possibility of relating individu-
al complex eigenvalues of H (0) to ionization rates.
This will be the case only when the eigenvalue of in-
terest is isolated, namely, when it is possible to
prepare adiabatically the dressed state under con-
sideration. This simple fact follows immediately
from the discussion of time evolution in Sec. VIA.
Section VIB contains illustrations of the utility of
the method in intense-field, one- and two-photon
ionization of hydrogen, using complex eigenvalues
calculated by the methods of Sec. IV.

A. Time dependence and dilatation
transformation

In the Floquet representation, the time depen-
dence of an initial direct-product state
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l
a& =

l
a(0) & is given by

(6.1)

and the bound-bound transition probability given as

~.-)t«)= l&&le (6.2)

where Eq. (6.2) assumes an average over the initial

phase of the monochromatic laser of frequency co.
—iH~t .

For computational purposes, we write e in

terms of the integral representation

&i
l

=( li &) rather than &i
l

=(
l i &) =[( li &) ]*.

Here T is the transpose, and the asterisk is the
complex-conjugation operation; thus the dagger is
the usual Hermitian conjugate. We consider two ex-

amples.

B. Adiabatic one-photon-dominated ionization

In the frequency region co&0.5 a.u. the direct
one-photon ionization channel is open for ground-
state atomic H:

co+H(1s)~H++ e (6.7)

(6.3)

where 4 is any contour enclosing the spectrum of
H in a positive sense, as shown in Fig. 7. As in

Sec. II B, the dilatation transformation H
~H (0) provides the new integral representation

1
—izt

= P(9) . I d~ a(&), (6.4)
2mi + z —H (0)

where, as the spectrum of H' (0) differs consider-
ably from that of H, the contour may be deformed
advantageously just as shown in Fig. 3 in the dc
case. If an adiabatically prepared dressed state

l
a(0) &, which is an eigenfunction of H (8) is pro-

pagated via Eq. (6.4) only a single term survives the
contour integration, and the time evolution is pure
exponential.

In actual calculations, as discussed in Sec. IV,
H (0) is projected onto a discretized atomic spec-
trum, and takes on the block-matrix structure shown
in Fig. 6. This implies the matrix spectral resolu-
tion

=X li&
z —H' (0); z —E;

(6.5)

and

H (())li&=E li&

&i lH „(0)=&ilE;'
(6.6a)

(6.6b)

l

i & and &i
l

form a bi-orthogonal set

(6.6c)

Owing to the symmetry of H (0), we have

where the li & and &i
l

being right and left eigen-
vectors of the complex symmetric matrix H~(0),
i.e.,

In this case the complex eigenvalue E&,(co) is isolat-
ed, and represents the complex dressed energy of the
state obtained adiabatically from the field-free 1s
hydrogenic state. Assuming an atom prepared in
this adiabatic state [only one term contributes to the
expansion of Eq. (6.5)], we can ask for the field and
frequency dependence of the ionization rate in terms
of an intensity-dependent cross section (i.e., the rate
divided by I) intensity normalized to the expected
one-photon-dominated processes. The cross section,
obtained directly from Im[Ei, (co)]/I is shown in
Table I. At low fields (F(0.01 a.u. ) the eigenstate

l

ls & is essentially the (analytically continued) ls
state, and, as expected, gives an intensity-

independent photoabsorption cross section identical
to the usual photoeffect cross section calculated us-

ing the exact hydrogenic 1s ground and p-wave con-
tinuum states, with the assumption of the dipole ap-
proxirnation. At higher fields we might expect that
the cross section will increase as direct many-photon
ionization processes add to the ionization flux.
It is evident, from the cross sections of Table U that
for frequencies near threshold there is a fairly sub-
stantial high field enhancement of the usual one-
photon cross section. This enhancement dies off
very quickly at higher frequencies. This is presum-
ably due to the fact that two-photon processes are in
one-photon resonance with the usual p-wave contin-
uurn, which has a substantial oscillator strength near
threshold, but which decays quite rapidly as a func-
tion of frequency. Table VI gives a feeling for the
complexity of the situation as the external rms field
becomes an appreciable fraction of the internal
atomic field strength, 20%%uo in this case. The decom-
position over unperturbed direct product states
shows that, although the adiabatically prepared state
is dominantly 1s, other states (dominated by

l
2p;N —1&) are beginning to play a substantial

role. This implies a difference in time evolution of
the bare 1s state with respect to sudden or adiabatic
field turn-on of the external field. Adiabatic turn-
on would result in the ionization generalized cross
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TABLE V. Intensity-dependent one-photon dominated ionization cross section o~(ao) at
rms field I', for atomic hydrogen in the state adiabatically prepared from 1s ground state.
Generalized cross section oi is defined proprotlonal to I ~, /I where I &, is the width of the

complex dressed 1s state, and I=I' „the rms field intensity. For I', (10 2 a.u. , g
&

is field

independent to high accuracy and equal to the usual photoeffect cross section. As the rrns

field strength is increased the cross section is seen to be enhanced, presumably by direct two-,

three-, . . . photon ionization processes (Refs. 38 and 39). In the high-field cases details of
state preparation will be important, and these adiabatic cross sections are difficult to observe.

F, (a.u. )

0.0o25"' 0.05 0.20'

0.50
0.55
0.60
0.80
1.00

0.225
0.174
0.138
0.062
0.033

0.225
0.174
0.138
0.062
0.033

0.226
0.175
0.138
0.062
0.033

0.228
0.176
0.138
0.062
0.033

0.237
0, 179
0.140
0.062
0.033

0.242
0.183
0.142
0.062
0,033

0.253
0.186
0.142
0.062
0.033

'For these field strengths three Floquet blocks (A and A+2m) were used with the A's defined

by use of 15s, 15@,15d atomic functions with A, =1.2, and 9=0.45 rad.
'For these field strengths the atomic basis was extended to include 15f functions and the

(A —4') Floquet block added to the three Floquet blocks of a. Again A, =1.2 and 0—0.45
rad.
'Atomic basis of b was augmented with 15 "g" functions and the Floquet block (A +4o) ad-

ded to the four Floquet blocks of b, above. Again A, = 1.2 and 0=0.45 rad.

section of Table V. Sudden turn-on would give rise
to substantial transients due to non-negligible projec-
tions onto many dressed states, as implied by the
projections of Table II. Again, such more complex
time dependences are the subject of HRR. However,
even without this latter analysis it is evident that the

Unperturbed
dressed

state
~
nl;M &

i
ls;0)

i
2s;0)

i
3s;0)

i 2p; —1&

)
4p; —1)

)
2s; —2&

)
3s; —2)

[3d; —2&

Vector projections
(real scalar product)

(Ei,(F=0.2, co=0.6)
i
nl;N —M)

0.7069+ i 0.2729
—0.055+ ~ 0.012
—0.023+ i 0.020

0.2232 —i 0.054
0.046—i0.050
0.013—i 0.007
0.0042 —i 0.0044

—0.0059+ i 0.011
—0.0052+ i 0.002

TABLE VI. Projection of the dressed 1s state of atom-

ic hydrogen with F.&,
———0.423 305—i 0.051 543 at

F,=0.2 (a.u. ) and a=0.6 (a.u. ) onto the unperturbed

dressed states
~

nl;%+M ). Matrix Floquet calculation

for these intensity and field parameters is that discussed

in Table V. Projections shown are the complex numbers

(E~,
~
nl;S —M ) for M =0, 1,2. Notation angular brack-

ets denote a real scalar product as discussed in Sec. VI. It
is evident that at this high field substantial mixing of
atomic states has taken place.

inclusion of resonant free-free multiphoton transi-
tions is of no great difficulty in the present matrix
Floquet method. This is because the complex rota-
tion of coordinates has moved all of the continua
away from the real axis avoiding any need for care-
ful evaluation of the principal-value integrals which
would arise in the usual formulation of continued-
fraction perturbation theory.

C. Adiabatic two-photon-dominated ionization

In the frequency regime near ~=0.375 a.u. the
is~(2p-ro& transition is in near-resonance and the
ionization process is dominated by two-photon ioni-
zation. The fact that the unperturbed

~
is;X), and

~
2p;X —1) states become degenerate imphes that

the corresponding complex Floquet eigenvalues will

be nearly degenerate, and an avoided crossing will

occur as m is swept through resonance. This is illus-

trated in Fig. 10, where the real parts of the complex
dressed energies are indeed seen to undergo such an
avoided crossing. (More detailed discussion of such
complex avoided crossings appears in HRR. ) The
nearest approach of the eigenvalues is a strong func-
tion of field strength and is a measure of the 1s~2p
Rabi frequency. Discussion of the time dependence
of the resonant and near-resonant ionization process
appears in HRR. In the remainder of this section
we discuss the information directly implied in the

imaginary parts of the individual dressed states.
Thus, we assume that we can experimentally prepare
a pure dressed state at t =0, and also observe its
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subsequent decay. This implies that information
will not be obtained for near-resonant processes, as
adiabatic field turn-on (at constant ~) is then not
possible. Nearness to resonance is defined in terms
of the Rabi splittings of Fig. 13, and thus for low
fields adiabatic turn-on is a reasonable assumption
except almost exactly on resonance. This is illus-
trated by the results of Table VII, where the general-
ized cross section 0.2(Floquet)—:I &, /I calculated
from the eigenenergy (e i, —i I i, /2) of the dressed
state, which is dominantly

~

1s;0) rather than

~
2p; —1), is compared with the second-order per-

turbation calculations of Chan and Tang. The
agreement is seen to be excellent, neither method be-
ing valid on resonance. The intensity dependence of
02 (Floquet) is shown in Fig. 14, where the
mismatches in the estimated cross sections at the
1s~2p and 1s~3p resonances give a measure of
the failure of the adiabatic approach on resonance.
It is interesting to note that at the highest field
strength (F,=0. 1 a.u. ) the adiabatic generalized
cross section shows no resonant structure whatever,
and that due to the enormous Rabi broadening
(bound-bound power broadening) the off-resonant
generalized cross section is beginning to decrease,

- 0.485

0.490

&- -0.495

LJJ

IJJ - 0.500
CI
UJ
M

~ -0 505
Ct

LJJ - 0.510

0.515

-0.5/0
0.360 0.365 0 370 0.37 5 0.380 0 385 0.390

~ (o.u. )

FIG. 13. Real parts of the dressed energies correspond-

ing to the bare
~
1s;0) and

~
2p; —1) states near the

~

1s;0),
~
2p; —1) degeneracy at co=0 375 a.u. Avoide. d

crossings of the real parts of the complex Floquet eigen-
values are shown for three field strengths. Strong field
dependence of this avoided crossing corresponds to the
fact that it is Rabi, rather than ionization, broadening
which causes quenching of the resonant enhancement of
the ionization cross section near the

~
2p; —1 ) and

~ 3p; —1) resonances. See HRR (Ref. 6).
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c;(A c;=a;c; ), and as long as o. is closer to a; than
to any other eigenvalue

1

(a; —o)"

ai ——A],
I i

——(ai) 'BT. . . ,

r, =(a, )-'BT, (A6c)

to within normalization, allowing calculation of
both a; and c;, given an initial guess. This has
proved to be a highly advantageous method of find-

ing complex eigenvalues and vectors. Choice of o.

and xo has never been difficult and the choice
xo ——(1,1,1,1, . . . ) followed by normahzation has
proved adequate in all cases investigated.

2. Solution of block tridiagonal equations

Implementation of inverse iteration requires solu-

tion of the linear system

[H„(8) rrl]x =—f, (A3)

where H„(0) is the matrix Floquet Hamiltonian; 3.

is the identity and f is a known vector. The matrix

[H„(8)—o I] has block tridiagonal structure

BT 0 0

BA, BT 0

0 B~, B'
0 0 B

which can be factored into upper ( U) and lower (I. )

block matrices of the forITl

a 0 01

B a2

a3

0

a;=3;—8I i, i =2 3, . . . .

The dccompostion allows solution of the linear sys-
tem (A3) in a sequence of elementary steps each of
which scales as n being the dimension of the Flo-
quet block A. The solution Ax=f where A =LU
proceeds as L~=f and Ux=g. The first of these
equations is solved sequentially with no need for
storage of the a s; the I s needed for solution of
Ux =g are stored (out of core if need be) sequential-
ly as computed. Matrix inversions are unnecessary
as the (a;) '8T are calculated by solution of linear
equations. Thus, a Floquet Hamiltonian with X~
Floquet block-matrix solution of the eigensystem
proceeds in -E~n steps, n being the dimension of
a single block. The fact that all of the B's are identi-
cal, and that a „a„W,, . . . only differ by addition
of constant diagonal terms in addition to being
block tridiagonal themselves results in minimal
storage requirements. Taking full advantage of the
block-matrix structure of the 3's themselves reduces
the number of operations needed for solution of the
linear system to -%~@am where X~ is the num-
ber of Floquet blocks, Xz the number of atomic
symmetries in each Floquet block, and m is the
number of I basis functions needed to describe the
bound and continuous spectra of a given atomic
symmetry. This latter is typically 10 to 15 (see Figs.
7—9). Thus, for calculations with V=3, Xz ——3,
and m =10 (see Fig. 8) the order of (3) (10)3=10
operations (per iteration) are required. If advantage
were not taken of the block-matrix structure the
computation would require (3X3X10) -10 opera-
tions, a considerable difference. Note that it is only
the ratio of these numbers which is of significance
as all housekeeping constants have been omitted. In
the algorithms used here, full advantage of the com-
plex symmetry has been taken, and a stabilized I. U
decomposition code written by Dr. Linda Kaufman
utilized.
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