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Simple expressions are obtained which permit systematic estimates of the rate coefficients
for direct radiative recombination (DRR) of fast electrons with atomic ions of various ionic
spcclcs. Thc analysis utilizes a set of cross sections obtained through numerical calculations
combined with the use of an interpolation scheme to smoothly connect reduced cross sec-
tions (apart from norrnalizations) of the brernsstrahlung tip region and the low-lying DRR
region. It is shown that these numerical cross sections can be reproduced by the predictions
of a modified semiclassical Kramers formula with an appropriate effective charge Zdr,
which is larger than the effective charge which reproduces the energy levels of the states
into which capture occurs. In accord with this modified Kramers formula, the numerically
obtained total cross sections are shown to scale with Z,ff/E foi each isoclcctronlc sequence,
and with a parameter (no),ff which characterizes each isoelectronic sequence. Using these
scaling properties, simple analytic expressions are obtained for recombination rate coeffi-
cients, for the rate of electron kinetic-energy loss, and for the rate of radiated power loss, as-
suming a classical Maxwell-Boltzmann thermal distribution of continuum electrons.

I. INTRODUCTION
Direct radiative recombination (DRR or radiative

capture) is one of the important mechanisms in-
Auencing the ionizat1on equ1llbria and the thermal
balance in gaseous nebulas or tokamak plasma situa-
tions. To obtain the recombination rate coefficient
at a given plasma temperature one performs an in-
tegration over a thermal distribution of plasma elec-
trons to determine the thermal average of the DRR
cross section weighted by the speeds of the initial
dectrons. Simple scaling properties of the cross sec-
tions as a function of continuum electron energy,
atomic number, and/or ionic species can be useful
for computation and characterization of such
thermal averages as one considers plasmas of vari-
ous temperatures, atomic constituents and ionic
charges. The demonstration of such scalings re-
quires a systematic and quantitative study of cross
sections over a wide range of parameters. In this pa-
per we undertake the task of finding scaling laws for
DRR cross sections, allowing us to compute and
characterize the relevant rate coefficients.

Lee and Pratt' have described a simple theoretical
method for quantitative calculation of
direct —radiative-recombination (DRR) cross sec-
tions which does noi require separate calculation of
capture into a large (in principle, infinite) number of

unfilled substates; they reported results for Mo ions.
The procedure involves interpolation of reduced
cross sections, as a function of substate energy, be-
tween the bremsstrahlung tip region limit and DRR
into low-lying states.

In this paper: (1) %e extend the study of DRR
cross sections to other elements (Fe and %). (2) %e
then use these data to examine scaling properties of
the total cross sections (considered as functions of
nuclear charge Z, ionic charge Z;, and incident elec-
tron kinetic energy K, as well as the electron config-
uration of the initial ion). (3) Using the scahng
properties of this formula, we obtain the radiative
recombination rate and the rate of loss of electron
kinetic energy due to the recombination process. (4)
%e describe a method to calculate the radiated
power rate with the same simple procedures we have
used to obtain other rate coefficients, and we discuss
the validity of our estimate of the power-loss rates
for tokamak plasmas. Natural units are used
throughout this paper unless explicitly specified oth-
erwise, 1.e., A =c=Pl~ = 1 and 8 =A = 1/137.037.

In Sec. II, we give a general overview of the prob-
lern. The DRR cross sections are discussed in Sec.
III along with their scaling properties. %e show
that the partial cross sections can be fitted to a
modified Kramers formula
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with an appropriately chosen effective charge Z,ff,
and that the total cross section may be written as a
function of two variables: Z,~f/E and a parameter
characterizing the isoelectronic sequence to which
the ion belongs. Here E is the incident electron ki-
netic energy, u the emitted photon energy, and n is
the principal quantum number. Using the relatively
simple expression and scaling features obtained in
Sec. III, the various rate coefficients are estimated in
Sec. IV. In the Appendix we give some details of
the connection between bremsstrahlung and DRR
which was utilized in obtaining the DRR cross sec-
tions on which this work has been based.

II. FEATURES AND ASSUMPTIONS
OF THIS VfORK

The situation we will consider is a neutral plasma
of low number density (n &10' cm ) and high
temperature (1 & kT & 100 keV). In these cir-
cumstances plasma atoms are highly ionized and
plasma electrons are moving rapidly, with kinetic
energies K typically of order of kT (where k is the
Boltzmann constant) and characterized by a thermal
distribution. The density is low enough to regard
the ions and electrons as free most of the time and
to focus on the processes involving a single ion as
though the ion were an independent isolated target.
Once Kramers derived the semiclassical cross-
section formula for x-ray absorption in matter, the
main interest (until 1960) for the study of recom-
bination spectra and of ionization and recombina-
tion equilibrium was motivated by astrophysical
concerns. Subsequently, the attempts to develop
laboratory fusion plasmas have given a new interest
to the study of these processes.

In recent tokamak experiments, the least highly
ionized ions are the heavier impurity ions sputtered
from the limiter or the wall of the container into the
completely ionized hydrogen (fusion) plasma. One
observes the x-ray emission from such a plasma and
classifies the radiation as a continuum of brems-
strahlung and recombination radiation (dielectronic
and direct), and emission line spectra of bound-
bound transitions. These lines are of interest for
plasma diagnostics, while the rates for the processes
determine the ionic species found in the plasma and
the power loss from the plasma.

Low-density plasmas can be treated as optica11y
thin, i.e., transparent to their own radiation, and a
"coronal" equilibrium is reached when the electron
collisional ionization rate is balanced by the total
recombination rate. This implies an equilibrium in

ionic species —at a given T a few characteristic de-

grees of ionization are present for each element-
and it also implies that there is a power source of
heating since energy is being lost (radiated) from the
thin plasma. At low temperatures (kT & 1.5 keV for
Fe-seeded hydrogen plasma, for example) dielec-
tronic recombination dominates DRR, but as the
temperature increases the latter becomes relatively a
more important power-loss mechanism. (However,
with recent neutral-beam —injection techniques, in
some plasmas charge exchange modifies the recom-
bination rates so that dielectronic recombination
remains a more important power-loss mechanism to
much higher temperature, when eventually brems-
strahlung becomes the main power-loss mecha-
nism. 9)

Here we concentrate on DRR and calculate the
cross sections and the basic rate coefficients. For
our DRR cross-section calculations we take the nu-

cleus (point nuclear charge Z) of an ion (in its
ground state) of ionic charge Z; at rest. The in-

cident continuum electron moving in the screened
Coulomb field of the ion is captured into one of the
infinite number of unoccupied bound states, result-

ing in a final ion of charge Z; —1 accompanied by
emission of one photon:

(2)

(The captured electron may go through bound-
bound transitions until the ion reaches its ground
state, perhaps involving Auger as well as radiative
emissions, or it may again be ionized by an electron
or ion impact. %e will not be concerned with these
aftereffects here, since the most probable situation is
for electrons which radiate most of their energy in
the initial capture, unlike dielectronic recombina-
tion, but the need for corrections should be kept in
mind. )

Further studies of DRR cross sections and rate
coefficients following Seaton*s work' are given in
Refs. 10—13. %e will follow the procedure Lee and
Pratt' developed for the calculation of DRR cross
sections. They numerically obtained both DRR
cross sections into several low-lying unoccupied
states and bremsstrahlung cross sections near the tip
of the spectrum, within a single-electron model, but
including relativistic, multipole, retardation, and
screening effects. Considered as a function of final
electron energy, the reduced cross sections
do'„(ro)/dc@, i.e., the cross-section density per unit
energy for fixed x=( —1) +J+" '(j+ —, ), on the
negative (DRR) side of the zero final electron kinet-
ic energy may be smoothly continued to the
positive-energy cross section for the bremsstrahlung
spectrum do/d~: For the reduced cross section we
have



DIRECT RADIATIVE RECOMMNATION OP ELECTRONS %'ITH. . .

do„(nl }

d(nr/Z;a )

for the density of states

dn

d(~/Z, 2+2), ,
dPK

+K, fl + 22d(e/Z;o. )

o. iI-

b

(a) K= 1 keV

(74, 74)
(74, 20}

keV

3

b

74,74 }

e (26, 8, I)
( 26, 8, (0)

0 (26, 8, 50)
x (26,26, ()

(26, 26, (0)
( 26, 26, 50)

II (74, 20, ()
(74, 20, (0)

0 (74, 20, 50)
(74, 74, I )

( 74, 74, (0)
0 ( 74, 74, 50)

where 0'„„ ls the DRR cioss section fol' capture into
the (a.,n) subshell, e„„is the bound-state energy, (II„
is the quantum defect, and v„„=n—p„. The DRR
cross section for each n (for the given x) is obtained
from the curve at the energy-level value predicted by
a smooth connection between quantum defects and
low-energy continuum phase shifts. The nature of
these smooth connections is d1scussed in the Appen-
dix.

III. DRR CROSS SECTIONS
AND THEIR SCALING PROPERTIES

In this section: (I) we present the data and pre-
dict1ons we have obtained for Fe and % with our
numerical and interpolation methods, examining the
principal quantum number n and orbital angular
momentum I dependence as we vary Z, Z;, and the
incident kinetic energy E. (2) %e compare the total
DRR cross secttons obtalIled 111 this way (a) with the
values obtained from a modified Kramers formula
with an effective charge Zdr= —,(Z+Z;) and (b)

with Hahn and Rule's nonrelativistic point Coulomb
values with the same Z,II. (3) We discuss the scal-
ing properties of the total cross section with Z, Z;,
and E.

Figure 1 shows the I dependence'" of

&n, l =— an, K

K= —(I +1),l

for n =5, and (a) E =1 keV and (b) E =50 keV, for
some sample Z and Z;. Note that as Z and Z; de-
crease (or some effective charge decreases) for fixed
K, or as E increases for fixed charge, the peak con-
tributions in orbital angular momentum move to-
ward a lower I. The overall I dependence can be ap-
proximated as 8 Gaussian, as noted by Gau and
Hahn. ' The feature of s-wave dominance for high
continuum energies is well known in photoef'feet'
and bremsstrahlung, ' as well as the persistance of'

an important p-wave contribution 1n high-Z ele-
rnents. Classically, for the calculation of Kramers2

h(74, 56}

e (74, 20)
II I 1 I

} 2 3 4 0 } 2 3

2 (u/a

FIG. l. I dependence of o„I=+„ I,&+,~o„„for the
case n =5 for some representative (Z, Z;), from our nu-
merical data for o„„;(a) E = 1 keV and (b) E =50 keV.
We show a„lio„, where o„=g,rr„l. As Z and Z; de-

creases or as E increases, the peak contributions in orbital
angular momentum move toward a lower l. (c)
(o„I/o„)a /col for n =5 is shown as s function of
l cu/a, illustrating the extent to which this l dependence
is given by a universal curve, independent of (Z, Z;,E), as
in the work of Kramers.

(74, 20, 5)

(74, 74, (}
26, (6, ()

( 74,74, 5}
6, 26, 1)

4, 74, 58}

26, 26, 5}
26, 26,50)'

I I I I I (

4 6 8 IQ

FIG. 2. n dependence of o„=g„cr„„for completely
unfilled shells as (Z, Z;,K) are varied. %e show o„/o„„
where o„,:g„o„The—data sho. w that n I scaling is

valid for high n and (lower-Z, lower-Z;, higher-E) cases
reach this limit (corresponding to the straight lines de-
creasing by three decades for each decade of n) earlier.
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TABLE I. Total DRR cross sections (in 10 cm ) for various degrees of ionizations of Fe, Mo, and W for 1 &E & 100

keV, with (a) our numerical methods, (b) a modified framers formula with Z,ff —2
(Z+Z;) substituted for Z, and (c) pre-

dictions from Hahn and Rule's hydrogenic nonrelativistic dipole approximation method with the same effective charge.

Column headings (a)—(c) relate to the above-mentioned conditions.

(Z, Z;)

(26,8)
Ar-like

K (keV)

1

5

10
50

100

(a)

0.9X10'
4.90
1.36
5.66 X 10-'
1.30X 10

1.5 X10'
7.3
1.9
7.6X 10
1.9X10-'

(c)

1.3 X10'
5.3
1.32
4.4X10-'

—10

(26, 16)
¹like

1

5

10
50

100

3.33x 10'
2.35 x 10'
6.64

4.0X10'
2.1 x 10'
5.4
2.3x10-'
5.7x10-'

4.1X10
2.2x10'
6.2
2.2X 10
2.6X10 '

(26,22)
Be-like

(26,26)
Completely

Ionized

1

5

10
50

100

1

5

10
50

100

9.98X 10'
6.29X 10'
1.62x10'
5 30X10

2.98X10'
3 41x10
1.21 x 10
7.21
1.75

1.0X10'
7.0x 10'
1.9x 10'
9.5X 10
2.2X 10

3.3 X 10'
3.6x 10'
1.2X10'
7.4
2.0

1.1X10'
5.3x10'
1.7 x 10'
6.2X 10
0.9x 10-'

2.9 X10'
3.3 X10'
1-2 x 10
7.1

1.7

(42,24)
Ar-like

1

5
10
50

100

1.15x 10'
7.57x 10'
2.10x 10'
0.954
2.35 x 10-'

1.5 x10'
9.1x 10'
2.5 X 10'
1.1
2.7X 10

0.91x10'
5.6X10'
1.6x 10'
0.69
2.1x10-'

(42,32)
¹like

1

5

10

50
100

2.19x 10
1.78x10'
5.45 X 10'

2.74
6.82 x 10

2.5 x 10
1.7X 10
4.8x10'
2. 1

5.4x10-'

2.0X10'
1.5 X 10
4.5 X 10'

2. 1

6.3 x10-'

(see also Landau and Lifshitz' ) one can see that the
constant Kramers energy spectrum is proportional
to an integral over electron angular momentum l (in-
cident or final become the same classically), in
which l and E appear only in the combination
l co/a, where a—:Zd~e, and co is the radiated pho-
ton energy. The dominant l of the integrand thus
increases as energy decreases. Figure 1(c) shows that
(o„~/o„)(a /col ), where o= +la„, is indeed close
to a universal function in the variable l co/a, as
Kramers's work would predict; this illustrates the
utility of the Kramers formula with a Zd~ in
characterizing recombination rates.

Figure 2 shows the n dependence of cr„= g„o„„

for completely unfilled shells as Z, Z;, and K are
varied. We see that n scaling is valid for high n,
and (lower Z, lower Z;, higher E) cases reach this
limit earlier. The semiclassical Kramers formula
provides a qualitative explanation, since it predicts

8m a' Z4
&n=

3v 3 n3 E(K+E„) (4)

where E„=Z a /2n is the binding energy of the
level n in the point Coulomb case. If E&~E„,
o„ocn

—3

In Table I we present total cross sections
o t t g„o„calculated with our numerical methods

for various degrees of ionization of Fe, Mo, and W
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TABLE I. (Continued. )

(Z, Z;)

(42,42)
Completely

Ionized

K (keV)

1

5

10
50

100

0.999X 10¹
1.28X 10'
S.02X10'
4.18X 10'
1.20X10'

1.1X 104

1.4X10'
5.3X10'
4.2X10'
1.2X10'

(c)

0.9 X 104

1.1X10'
4.8X 10'
3.8 X10'
1.2X10'

(74,20)
Xe-like

1

5

10
50

100

1.69X10'
1.28 X 10
4.06X10'
2.45
7.45 X 10

2.8 X 10'
1.8 X 10'
4.8X10'
2.1

5 3X10

2.4X10'
1.3 X10'
3.3 X 10'
1.4
3.5 X10-'

(74,44)
Zn-like

(74,56)
Ar-like

(74.64)
¹like

(74,74)
Completely

Ionized

1

10
50

100

1

5

10
50

100

1

5

10
50

100

1

5

10
50

100

4.63 X 10'
4.80X 10'
1.57 X 10'
8.77
2.40

1.1X10¹

3.20X10'
1.54X10'
4.07

1.48 X10'
5.14X 10'
3.32X10'

4.0X10¹
5.63 X 10'
2.3S X10'
2.65 X 10'

6.8X10'
5.2 X 10'
1.5 X 10'
6.7
1.7

1.1X10¹
9.9X10'
3.0X10'
1.5 X 10'
3.9

1.5X 104

1.4X 10'
4.6X 10'
2.4X10'
6.3

4.1X10¹
6.0X10'
2.S X 10'
2.6X 10'
8.8 X 10'

6.5 X10'
5.5 X 10'
1.6X10'
6.2
1.3

1.1X 104

8.9x 10'
2.7X10'
1.2X 10'
2.6

1.3 X10¹
1.5 X 10'
4.8X10'
2.6X10'
6.2

3.6X10¹
4.9X10'
2.2 X 10'
2.2X 10
7.9X10'

for 1&X&100 keV. For comparison we also give
the predictions of Kramers's semiclassical formula
with Z,f~ ———,(Z+Z;) substituting for Z, and pre-

dictions from Hahn and Rule's hydrogenic nonrela-
tivistic dipole approximation calculation with the
same effective charge. ' We note that our proposed
simple formula based on Kramers's semiclassical
prediction for DRR in a point Z,f~ Coulomb poten-
tial

5
8m a Zdf

3~3 n E(E+Z,ffa /2n )

approximates our numerical results fairly well in the

range of energy and ionization under consideration.
In fact, this simple approximation is almost as good
as the more elaborate approach of Hahn and Rule
with the same effective charge. For our Zd~ Kra-
mers formula cross sections we have simply used the
statistical weight 8'„, the ratio between the number

0

of unoccupied states and the total number of states
in the valence shell no, so that

&tot = ~noo'no + g O'
n

n) n0+1

This simplification is one of the reasons that Hahn
and Rule's nonrelativistic hydrogenic dipole approx-
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imation gives a somewhat better prediction, since
their calculation distinguishes the l dependence of
filled and unfilled states in the valence shell. Our

I

present choice of effective charge Z,ff —2 (Z+Z;)
yields remarkable improvement over the earlier ap-
proach of Lee and Pratt, which had replaced Z with

Z; and n with the effective quantum number
V=n —p, where p is the effective quantum defect
averaged over ~ for the given n. Inclusion of the
quantum defect is a minor improvement in compar-
ison with the error resulting from the choice of Z,ff.
This result was found to underestimate by a factor
of 2—3 in the cases of partially ionized Mo ions—it
should evidently be most nearly correct as one ap-
proaches complete ionization Z =Z;. Other at-
tempts ' ' to use Kramers's formula, choosing
an effective charge which produces reasonable ener-

gy levels (e.g., the choice Z,rr=Z —g o„,where
O.„are Mayer's screening constant, giving
Z,ff =Z; (Z ) (Ref. 20), will also underestimate
cross sections except for very highly ionized cases,
because the wave function for a bound state is gen-
erally characterized by a larger distance than the
recombination matrix element, at these high incident
electron energies. (The effective charge for energy
levels is even less than that for wave functions, '

though for these unfilled outer levels of the ion the
difference becomes less important. ) The error in us-

ing Z; as Z,ff is of the order [2Z;/(Z +Z; i] .
We can understand two major sources for the er-

rors of the simple formula Eq. (5), as compared with
our accurate numerical data in Table I. (1) Z,ff
should be a function of the incident kinetic energy,
and increase as the energy increases, since the im-
portant region for matrix elements is smaller at
higher energies, and so in the transition the electron
"sees" more of the nuclear charge. The constant
Z,ff= 2 (Z+Z ) is a compromise which leads to a
tendency of overestimation at low energies and un-

derestimation at high energies. (2) The weighting
factors for the different angular momentum states
are also dependent on incident electron kinetic ener-

gy as we see in Fig. 1. Since capture into s states
dominates at very high energies, a simple statistical
weight 8'„ for the partially filled valence shell leads

to an overestimation at high energies. We observe
this effect most prominently for the Be-like Fe ion,
which has two 2s orbitals occupied and six 2p orbi-
tals empty. It seems likely that with a better effec-
tive charge and with appropriate weighting factors
for the different angular momentum states Eq. (5)
can be used to predict DRR cross sections for a
large range of energy, elements, and degrees of ioni-
zation. However, in this work we will not attempt
to search for better but probably more complicated

10—

3
10

2
10

Completely
Ionized

W

,""/

/Mo /

Fe / x

e —like

A r —like

10
Mo

/
Fe

M o /
/ W

/

r
/

gMo +

10

-- ~ -- Be-like Fe
—-&- — Zn- like W

——x —— Xe- like W

10 10
a'/ K (aeV ')

I

IO

FIG. 3. Scaling of the total cross sections with a'/K,
where a =aZ, ff ——(a/2)(Z +Z; ) and K is electron kinetic
energy in keV. Cross sections for a given isoelectronic se-
quence fall on one curve. A series of similar curves
characterizes the various isoelectronic sequences.

choices of Zdf and 8'„,.
Now that we have a simple analytic formula

which estimates cross sections o.„reasonably well,
we can study and predict the scaling properties of
0 t t Note that O.„scales as

1 x
n 1+x /2n

with

Zeff+ a
2 2 2

x=
E E

so we may expect that the total cross sections scale
with x; the only other parameter to be specified is no
(and 8'„), or some effective (for example, nonin-

0

teger) no specifying initial ion configuration. Figure
3 indeed shows this scaling behavior of the numeri-
cally calculated total cross sections. Considered as a
function a /K, all the cross sections for different Z,
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Z;, and K lie on a single curve as long as they have
the same initial number of electrons (same effective
np). A different isoelectronic sequence is character-
ized by another but similar curve. We can predict
the qualitative behavior of these curves, by replacing
the summation of Eq. (6) with an integral

0 tot +n[~0] ff

]50—

]00—

xln 1+8+a x
3v3 2(np), ff

(7)
50—

8ma a a
o„,-=—ln 1+s-

3v3 K
(8)

We would anticipate that this result could be made
more precise with an improved choice of Z,ff. With
our present choice of Zdf, the (n p),ff are found to be
0.67, 2.8, and 3.3 for completely ionized (s =1.1),
¹like (s =0.065), and Ar-like (s=0.045) ionic
species, respectively. (We note that n p is 1, 3, and 3,
respectively, in these cases. ) This is in reasonable
agreement with the argument (2s) ' =(np ),ff
=0p +( 1 —W„)—0.3, as the characterization of

0

(np), ff for a given isoelectronic sequence. Equation
(8), which expresses o„, in terms of s—:[2(no),rr]
for each isoelectronic sequence, is very useful in cal-
culating various rate coefficients, as we show in Sec.
IV.

We may understand the relation between np and
(np), ~f as follows. Within our approximation we are

which correctly predicts that the slope on a log-log
scale approaches 1.0 as x~00 (K~O) and ap-
proaches 2.0 as x ~0 (K~ 00 ). Here

(np), ff-np —0.3, if np is the limit on the sum and

(np)off on the corresponding integral. If we have
better prescriptions for a suitable effective charge
Z ff and for a suitable effective (n p ),~f, which better
predict cross sections for a wide range of Z, Z;, and

K, then the curves in Fig. 3 will be better defined
and smoother, and predictions for total cross sec-
tions can be made very easily by interpolation for
any choice of Z, Z;, and K.

In Fig. 4 we plot y =exp[3v 3o„,/(8nax)], as
suggested by Eq. (7), as a function of x =(a /K),
with a =aZdf ——(a/2)(Z+Z;), for Ar-like, ¹like,
and completely ionized ions, using our numerical
data for ot t Reasonably well-defined straight lines

may be identified of the form y =1+sx, where a
different slope s characterizes each isoelectronic se-

quence. According to Eq. (7) we would identify s
with [2(no),rr] ', where we recall that the lower
limit on a sum has been replaced by the lower limit
on an integral. We have therefore achieved the
parametrization of the total cross section as

0
I

50

0 I

I

]00
0 / K {]kiev )

I a i, s I I I

50 z 100a'/K(l eV I)
I

]50

FIG. 4. Plot of y =exp[3V 3a„,/(8max ) ], as suggested

by Eq. (7), as a function of x =a 2/K with

a =aZ~ ——(a/2)(Z+Z;) and K in keV, for Ar-like, ¹

like, and completely ionized ions, using our numerical
data for 0„,. We find reasonably we11-defined straight
lines y =1+sx, where a different slope s, identified with

[2(no)~t] ' according to Eqs. (7) and (8), characterizes
each isoelectronic sequence.

For each shell the three basic DRR plasma rate
coefficients mentioned in Sec. I are given as weight-
ed Maxwellian averages over the cross sections o„:
(a) the recombination rate

a„=(uo„)=A p'a„e x'krdK, —
p

(b) the rate of electron kinetic energy loss

P„—= (uKrr„) =A f p Ko„e x~ dK, (10)

taking equal contributions for capture into each
state of a shell. With a partially filled shell the re-
sult will be between n p and np+1, and we take it as
np+(1 —W„,). Second, we have replaced a summa-

tion, characterized by g n for large n or by other

powers at intermediate n, by an integration as in Eq.
(7). The summations may be characterized in terms
of the Rieman zeta function g(3) or at other integer
values. Comparing the lower limits in such summa-
tions with the lower limits in corresponding in-

tegrals that yield the same results, there is a shift of
the order of —0.3. Using this simple choice for
(np), ff together with Eq. (8) for 0, we have a simple
expression for the capture cross section of any ion
for an electron of energy K. This will lead us to cor-
responding simple expressions for the recombination
rates of any ion in a plasma of temperature T.

IV. RATE COEFFICIENTS
FOR RECOMBINATION,

FOR LOSS OF ELECTRON KINETIC
ENERGY, AND FOR RADIATED POWER LOSS
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and (c) the rate of radiated power loss

y„=(vto„cr„)=A f p tv„o„e dK, (11)
y=+A f 2K(K +'E„)

8nQ Z,ff

2 2

3v3n K K+
Q Zeff

2n

where A =(2 /4r)'~ (mkT) 3~ and ro„=K+E„,p is
the incident electron momentum and v its velocity
and the brackets denote the Maxwellian average.
We shall assume that the temperature is not too
high, so that the number of extremely relativistic
electrons is very small, and consequently in calculat-
ing these averages we approximate the relativistic
mass m by the rest mass and p =2K+K =-2E.
The error involved will be O(kT), which is 2% for
kT=10 keV.

For the total ion DRR rate coefficients
a —= g„a„=( v o„,) and P—:g„P„=( vKo „,), we

use Eq. (8) to specify the total cross section o„,as a

function of K and the parameter s =[2(no),tt]
characterizing the initial ion configuration with

(no), tt as determined in Sec. III. From Eqs. (8) and

(9),

2 2
Q=A' 2I(,—ln 1+ e k dI(,

K K

=2a A'kT e+ " E1 +C+ln
kT kT

(12)

kT, 4
~ 1

, =-2A'a4kT
0]eff n

=2A'a skT, (14)

Q=2.6X10 ' (Q1+Q2),

where

(15)

where s = [2(no),tt]
' was determined previous-

ly from the total cross sections with
Z,ff —2(Z+Z;). At worst this approach gives the
radiated power-loss coefficient neglecting a further
factor of [(K+a /2n )/(K+E„)] for each n, while
in fact it could be argued that Z,ff should only be
used in the numerator of the Kramers formula, and
that the denominator is precisely E+E„, in which
case Eq. (17) involves no further approximation.
However, our data indicates that Z,ff should be used
throughout the Kramers formula.

Table II gives Q for Ar-like, ¹like, and com-
pletely ionized Fe, Mo, and W at kT =1, 3, 10, and
30 keV. For comparison we give Q calculated by
Barfield' for Mo + and also results obtained from
the hydrogenic formula

where

A
' = (24r/3) '~z(8a /3 )(kT)

C=0.577 2157

is Euler's constant, and

E~(Z)= f (e '/t)dt

is the first exponential integral. Similarly,

P=2a A' Kln 1+ e x~krdK
E

Q2=

- 1/2 IIH p zt' —1

kT n03 kT

Iz, /kT z.I
Xe ' E1

4
' 3/2

2Z, tt IH

kTn =nO+1

ZeffIH ZeffIH
2 2

Xexp E1
(n+v) kT n kT

(16)

=kT Q —2a A'se+" E
kT

(13)

These expressions for a and P have required no ap-
proximations beyond those in our parametrization
of +tot

Since in the power loss y each cr„ is weighted by
co„we cannot write the total ion rate y in terms of
the total cross section cr„„but rather should insert
Eq. (5) in Eq. (11) with our same Z,ff which pro-
duces reasonable cross sections, obtaining

1/2

2 IH
eff kT

Z,ffI2

kT
(17)

as used by many other authors, ' ' with Q in
cm sec ', IH ——13.6 eV, the ionization potential of
hydrogen, and Iz. 1 the ionization potential of the
ion after recombination as tabulated in Ref. 22. The
functions p„+~ have been tabulated by Spitzer. 23

Here Q1 represents the recombination into the
valence shell (of principal quantum number no),
where p is the number of vacant places in the
valence shell and Q2 is the contribution from the ex-
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cited levels, considered to be hydrogenic. We give
the results of this hydrogenic formula both with

Z,ff —Z; and Z,ff= 2(Z+Z;) in Table II. The to-
tal recombination coefficient a for Mo + obtained
here agrees with Barfield's detailed calculation'
within 20%. The hydrogenic formula with Z,ff —Z;
clearly giv's a rate coefficient too low by a factor
approaching [(Z—Z; ) /2Z) 4 as energy becomes
high, as expected, and the improvement with
Zdr=(Z+Z;)/2 is evident. The expressions ob-
tained here, as in Eq. (12), are appreciably simpler.

In Table III we show P and y obtained from Eqs.
(13) and (14)~ From these data we obtain total
power-loss rate coefficients for Fe ions at kT =1, 3,
and 10 keV as 6.2y10, 9.4X10, 1.5X10
W crn, while the results of Mertz et al. are
6.5)&10 8.3X10, and 1.5y10 Wcrn .
(We have interpolated y for the other Z; of Fe, and
have used the ion population distribution given in
Table III of Ref. 5.)

From Tables II and III we see that, considering a
fixed ionization state, the capture rates drop with in-
creasing temperature, reflecting the fact that the
basic cross section drops with increasing incident
electron kinetic energy. However, the capture rates
are larger for more highly ionized atoms. At these
energies the increase with temperature in the nurn-

ber of more highly ionized atoms more than com-
pensates for the decrease in a given rate with tem-
perature, resulting in a total power-loss rate which
increases with temperature, so that DRR is becom-
ing increasingly important. '
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APPENDIX

Apart from norrnalizations, low-energy wave-
function shapes for a given angular momentum
make a smooth transition from negative to positive
energies. For any given r this smooth transition
occurs (i.e., there is little change in shape going
across threshold) throughout the energy interval
bounded by eV(r)—thus with a Coulomb tail (so
that there exist bound states of arbitrarily small
energy) —it is guaranteed that for any finite radius r
there is an interval of energies in which the change
of wave-function shape goes through such a smooth
transition. The corresponding reduced matrix ele-
rnents (i.e., apart from normalization) of the brems-
strahlung tip region and of the DRR region, both
with the same initial continuum state, can therefore
also be smoothly connected for the range of energies
over which wave-function shapes are changing little
at the distances important for determining the ma-

TABLE III. Rate coefficients P for electron kinetic-energy loss, and the radiated power-
loss rate coefficient y for Ar-like, ¹like,and completely ionized Fe, Mo, and W at electron
temperature kT = 1, 3, 10, and 30 keV, both in 10 W crn .

Z kT (keV)

Ar-like ions ¹like ions Completely ionized
ions

26 1

3

10
30

0.035
0.015
0.015
0.0075

0.050
0.029
0.016
0.0092

0.097
0.070
0.048
0.030

0.17
0.097
0.053
0.031

0.88
0.93
0.88
0.74

6.7
4.3
2.4
1 ' 3

42 1

3
10
30

0.69
0.30
0.22
0.11

0.71
0.41
0.23
0.13

0.69
0.59
0.44
0.25

1.6
0.94
0.51
0.30

3.0
3.9
4.3
3.9

46
26
14
8.3

74 1

3

10
30

3.1

3.1

2.4
1.6

11
6.5
3.5
2.0

4.3
4.6
3.8
2.4

19
11
6.0
3.5

12
17
21
22

430
250
140
79
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trix element. This kind of connection, for example,
leads to the relation between the tip region of high-
energy bremsstrahlung (-Z3) and high-energy E-
shell atomic photoeffect (-Z'), as first noted by
Fano. ' [Since at high energies the matrix elements
are determined at electron Compton wavelength dis-
tances, even E-shell binding energy is smaller than
eV(r) for such r.] This same connection leads to the
relation between the semiclassical Kramers cross
sections (-Z ) for low incident energy DRR into a
high Rydberg state and the low-energy Coulomb
bremsstrahlung spectrum tip (-Z ), as we will now
qualitatively illustrate.

The electron bremsstrahlung spectrum for radia-
tion emitted in scattering from a point Coulomb po-
tential according to nonrelativistic quantum
mechanics was obtained in dipole approximation by
Sommcrfcld. Near the tip of the spectrum for
high incident energies such that 2m'; gal, where
v;—:Za/p; and p; is the velocity of the initial elec-
tron (E=p; /2), the result reduces to

Go' 64K Z t
(A1)

de 3 p; to

small p)

aa a

-Z /Z

Q(af Q(a )

E) &0

br emsstrahlung

(d = K+ E ls

Et &0
&e(:ombination

energy brcmsstrahlung spectrum Eq. (A2) by multi-
plying Eq. (A4) with the same factor
(u /2E)(n /Z u ). Note that the normalization of
a low-energy Coulomb continuum s state, for exam-
ple, is proportional to Z ~, so that reduced s-state
Inatrix elements foI' small positive and small nega-
tive final energies (factoring out normalizations) are
proportional to Z '~ for low initial energies and to Z
for high initial energies.

Figure 5(a) schematically illustrates the connec-

where m is the photon energy radiated. At relativis-
tic energies the final low-energy electron is predom-
inantly in an s-wave state, while p states remain of
importance in high-Z elements. For /our incident en-

ergies v;gal all angular momentum states con-
tribute, and away from the soft-photon limit the
Sommerfeld result reduces to the Aat spectrum
(valid including the tip region),

tu tz
&

0-Zder 16m 3 Z
(A2)

dN 3 3 p;

sma ll

"irn por tant

&"

Now, the cross section at high energies for s-state
photocffcct goes as Z, with Z coming from thc
square of the bound-state normalizations. The
Sauter formula for K-shell photoeffect gives

x 16m(2E)32Z as
0'photo=

36k

for nonrelativistic photoelectron energies.
If we multiply the right-hand side of Eq. (A3) by

(co /p ) =(ro /2E) to convert it into the correspond-
ing DRR cross section, Rnd by the density of states
(n /Z a )=(1/Z a ) to convert 0. into do./d~, we
obtain Eq. (Al), assuming F0=K By contras. t, low-

energy photoeffect cross sections for outer shells are
well predicted by the Kramers formula

Krarners
5 4

+phOtO / 3

Again, we can obtain the same do/d~ of the low-

Q(aI 0(a )

E)&Q

br emsstrahlung

QP-K+E

E)&Q

recombination

PIG. 5. Schematic diagrams. (a) Illustration of the
smooth connections between the reduced cross sections of
positive and negative final electron kinetic-energy regions.
%hile these reduced cross sections are independent of
final-state angular momentum, the cross sections and nor-
malization Z dcpcndences shown are for a final s state.
(b) Illustration of important regions of matrix elements
for high and low incident electron energies as a function
of final electron energy. Downward arrows indicate that
the important distances are below each solid curve. Shad-
ed area indicates thc ranges of r where the low-energy
wave-function shapes are similar, and the outer pair of
the dashed curves represents the typical distance which
determines a bound state of energy ~E ~. Horizontal
barred lines indicate, for the two choices of p t, the ranges
of Ey in which the reduced cross sections will be similar.



tion between the reduced cross sections for positive
and negative final electron kinetic energies. %'e also
schematically show in Fig. 5(h) the important re-
gions of matrix elements for high and low incident
electron energies as a function of final electron ener-

gy. The shaded area indicates the range of energy
where, for each given r, the low-energy wave-
function shapes may be considered similar and
largely independent of energy. The two curves la-
beled as small I'«and large I'«represent, for two
definite initial electron energies, the maximum im-
portant distance for the matrix element as a func-
tion of final electron kinetic energy. The portion of
such a curve lying within the shaded region there-

fore represents the range of final electron kinetic en-
ergies for which the reduced matrix element will be
only a slowly varying function of the final energy.
Note that the important distances at which matrix
elements are determined are smaller for higher in-
cident electron energies. Further, note that the ef-
fective charge the electron will "see" in the transi-
tion is typically larger than either the ionic charge
or the effective charge which produces accurate en-

ergy levels. %e also show in Fig. 5(b) the typical
distance which determines a bound state of energy
~E ~; particularly for high incident energies this

distance will be larger than the distance at which the
matrix element is determined.
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