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Ab initio optical potentials applied to low-energy e-Hz and e-N2 collisions
in the linear-algebraic approach
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%e propose a method for constructing an effective optical potential through which corre-
lation effects can be introduced into the electron-molecule scattering formulation. The opti-
cal potential is based on a nonperturbative, Feshbach projection-operator procedure and is
evaluated on an L basis. The optical potential is incorporated into the scattering equations

by means of a separable expansion, and the resulting scattering equations are solved by a
linear-algebraic method based on the integral-equation formulation. %'e report the results
of scattering calculations, which include polarization effects, for low-energy e-H2 and e-N2
collisions. The agreement with other theoretical and with experimental results is quite good.

I. INTRODUCTION

The interactions that characterize elastic, low-
energy electron-molecule collisions are traditionally
divided into three categories: (1) static, (2) ex-
change, and (3) polarization (or correlation). The
static potential, which is simply the average of the
electrostatic electron-molecule interactions over the
ground state of the target molecule, has been an in-
tegral part of Rll scattering calculations since the
earliest endeavors some 50 yeaI's Rgo. Despite its
strength, the static potential alone is not sufficient
to give an accurate representation of low-energy
scattering. 2 This shortcoming can be overcome by
introducing exchange effects, which arise from the
constraint that the total system wave function be an-
tisymmetric with respect to electron-pair inter-
changes. This constraint introduces into the scatter-
ing equations nonlocal terIns involving integrals of
the continuum and undistorted bound orbitals. The
nonlocal nature of exchange greatly complicates the
solution of the scattering equations and necessitates
the introduction of special numerical technique, not
required for handling the local static potentials, in
order to treat the exchange exactly. Although the
exact treatments of exchange were first performed
almost 1S years ago, we have only recently been
able to extend this treatment routinely to small and
intermediate-sized molecules. The methods for the
exact treatment of exchange are quite diverse and in-
clude noniterative and iterative close coupling,
R-matrix, T-matrix, ' and Kohn" and Schwinge'
variatloI181 methods.

The past few years have also witnessed a comple-
mentary development' in the area of modeling the

exchange effects so that an accurate, local model ex-
change potential can now be constructed for rather
large molecular systems. Thus, a wide variety of
molecular systems can now be treated at the static-
exchange (SE) level. Despite the better representa-
tion of the scattering process provided by the SE
formulation, the picture remains incomplete without
some consideration of polarization effects.

Polarization effects must be included to complete
the description of the scattering process in order to
obtain better agreement with the experiments ' '
and to better specify resonant widths and
positions. "' ' ' These polarization or correlation
effects arise from the response or distortion of the
target electronic system to the incident electron and,
as such, require consideration of the interaction of
electronic configurations other than the ground
state. " This multiconfigurational nature of polari-
zation implies that even with the most sophisticated
modern computers and numerical methods, the ef-
fect can only be handled in an approximate fashion.

Before proceeding with a description of our own
method, we briefly review some of the more com-
mon treatments of polarization. Our enumeration is
by no means exhaustive, and the interested reader is
referred to several recent reviews' for 8 more
comprehensive exposition. One of the simplest and
most popular forms employed to model these corre-
lation effects is the cutoff, asymptotic polarization
potential. ' ' The asymptotic expression depends
only on the polarizabilities of the molecule and exhi-
bits an inverse quartic dependence (r ) on the radi-
al coordinate of the electron. At small distances,
this expression ls scaled by 8 radial function which
forces the potential to zero ai the molecular center.
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This radial scaling is usually effectuated by a single
parameter or cutoff radius which is selected on the
basis of some physical property of the system (e.g.,
molecular size) or in order to place some prominent
feature in the scattering (e.g., a resonance) at its ex-

perimentally determined position. The short-range
adiabatic and nonadiabatic or dynamic effects are
mocked by the departure of this model potential
from its pure asymptotic form and are thus
represented by the choice of the cutoff radius. This
simplicity provides the chief advantage of this

prescription; it also characterizes the major
drawback —that the form is not flexible enough to
describe the complicated nature of the polarization
interaction. A somewhat better approximation can
be obtained by calculating the effective adiabatic po-
larization potential. ' This procedure accounts for
the distortion of the target molecule by the field of
an electron fixed at a given position in space. This
procedure does not provide a very good representa-
tion of the polarization effects once the electron
penetrates the molecular charge cloud. At this junc-
ture, the strong short-range potential accelerates the
electron from its asymptotic velocity. Thus, dynam-
ic effects must be included to properly represent the
interaction in this region. A popular procedure for
reducing the constraints imposed by the adiabatic
technique at short range is to "cut off" the interac-
tion between the bound and continuum electrons
once the scattering electron is within the charge
cloud. ' ' This truncation procedure provides an
approximate representation of the nonadiabatic ef-
fects and is the basis of the polarized-orbital
method. ' In addition, other models, designed to
correct the adiabatic potential and based on semi-
classical arguments, have been developed. The
problem with all of these nonpenetrating approaches
is the difficulty in systematically assessing the accu-
racy of this representation of the nonadiabatic
terms. A rather different approach has been taken
by Klonover and Kaldor, who introduce polariza-
tion effects into the elastic-scattering equations
through an optical potential. The optical potential
which contains all virtual excitation of the target
system is evaluated on an I. basis through perturba-
tion theory. The perturbative approach allows for
the systematic improvement of the potential; howev-
er, to date, only second-order corrections have been
determined. While this procedure appears to work
quite well for e-H2 scattering, it remains to be seen
whether second-order effects are sufficient to
describe the polarization for larger molecular sys-
tems. In addition, the size of the basis set may be-
come prohibitive for more extended molecules. We
should note that the close-coupling method also pro-
vides an approximate representation of the polariza-

tion effects through the inclusion of energetically
closed electronic states in the wave-function expan-
sion. '5 This ex ansion can sometimes converge
quite slowly, + ' " thus making the evaluation of
the polarization contributions rather time consum-

ing. One procedure for greatly reducing the number
of closed states that must be retained in the close-
coupling (CC) expansion is to introduce pseudo-
states. In this case a few basis functions are selected
to mock the effects of the infinite CC sum. There
are a variety of methods for determining these
states; one involves forcing them to correctly pro-
duce the polarizability of the molecule. This ap-
proach has been particularly successful when corn-
bined with the R-matrix method.

In the remainder of the paper, we describe a new

approach for introducing polarization effects in
electron-molecule collisional calculations. We base
the approach on the optical-potential formulation.
The optical potential is extracted directly from
bound-state sdf-consistent-field (SCF) and
configuration-interaction (CI) calculations with no
resort to perturbative expansions ' ' and is incor-
porated into a linear-algebraic method through a
sum of separable terms in much the same manner as
the exchange terms. +"@' The linear-algebraic ap-
proach has been shown to be quite effective and effi-
cient in handling the nonlocal terms that arise in
static-exchange (SE) potential calculations. A pre-
liminary report on the optical-potential method
which includes an application to low-energy e-Hz
scattering appears elswhere. ' ' The present calcula-
tions incorporate several improvements over this
earlier endeavor. First, we have made a more sys-
tematic study of the adequacy of our basis sets and
discovered that at very low energies ( &1 eV) more
diffuse basis functions are required. Second, a more
realistic attempt is made to represent the polariza-
tion effects by employing pseudostates based on a
coupled Hartree-Pock method. This procedure al-
lows us to incorporate the full static polarizability of
the molecule with minimal computational effort.

In Secs. II and III we develop the theoretical and
computational techniques required to describe the
optical potential and collisional physics. The final
section is devoted to a discussion of the results for
e-H2 and e-N2 scattering and to a comparison with
calculations and experiments.

II. THEORY

The Schrodinger equation for an electron incident
on an X-electron molecule can be written as
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where HT represents the Hamiltonian of the mole-
cule

m

g= QW[P, (1, . . . , N)F, (N+1)]
e=1

2T, = ——,Ve (1b) ++Cqgq(1, . . . , N+ 1),

(1c)

lie = 1

Ir; —r,
l

(1d)

Lb — g I P, )5(&—& ) ——& (((), I

c}r

to Eq. (1a). This operator, first introduced by
Bloch, has the effect when added to the Hamil-
tonian of converting our internal Schrodinger equa-
tion to Herrnitian form. The wave functions

I P, }
are the channel wave functions of the molecule and
the operator L~ provides the link between the inter-
nal and external wave function. Consequently, we
arrive at the equation

where r, (r;) is the position vector of the incident
(target) electron and Z (r ) the charge (position) of
nucleus a. We now divide configuration space into
two regions bounded by a sphere of radius r =a. In
the internal region it is necessary to treat electron
exchange and correlation between the incident and
target particles to full accuracy. Outside the R-
matrix sphere the incident electron is subject to sim-
ple electrostatic forces which are purely local in
character. Since the scattered electron is essentially
distinguishable from the target electrons in the outer
region, the dynamical problem can be reduced to the
solution of a set of coupled differential equations for
r )a. The coupling terms are the long-range direct
and transition moments of the target wave functions
retained in the expansion of the scattering wave
function.

In order to solve the Schrodinger equation in the
internal region we add and subtract an operator of
the form

P+Q =I, (7a)

PX= g W[$, (1, . . . , N)X, (N+1)], (7b)

Q X=+d gq(q1, . . . , N+1),
e

(7c)

where
I
X) is an arbitrary (N + 1)-electron wave

function. In addition, we require that the
tPq(1, . . . , N+1) satisfy the condition

Lb
I fq) =0. (7d)

Thus all asymptotically important information
about the scattered electron is contained in the P-
space part of the wave function. We may derive an
equation for the P-space component of the wave
function by projecting Eq. (5) onto P:

«pp E}P
I
y)+K—pgQ I

f) LbP
I g) .

Using

(Kgg —E)Q I P}+KgpP I 1()=0,
Q I Q) =(E—Kgg) 'KgpP

I Q),

(8b)

(8c)

where $, (1, . . . , N) is the antisymmetrized channel
wave function, F,(r) is the wave function for the
scattered electron, and the symbol M represents the
antisymmetrization operator. The additional set of
functions gq(1, . . . , N+1) is needed to ensure that
the wave function is expanded in a complete set.
The details of how the p, and 1(q are constructed
will be presented in Sec. III. Here it is only impor-
tant to recognize that the expansion implies a
division of Hilbert space into two components. We
may therefore define two projection operators P and

Q having the properties

Hr+T, +V,„+gg;,+Lb —E
I
f)=Lb

I
g) (3)

we finally arrive at the desired result

(Kpp —E)P
I Q)+Kpg(E —Kgg ) KgpP I Q)

N

K=HT+T, + V,„+gg;, +Lb (4)

and rewrite Eq. (3) as

« E}
I q) =Lb

I q) . —

The scattering wave function is now expanded as

(5)

for the wave function inside the R-matrix sphere.
To simplify the notation in what follows we define
the operator

=LbP
I f) . (9)

The second term on the left-hand side of Eq. (9) is
the optical potential. It is a highly nonlocal,
energy-dependent potential which accounts for the
coupling of the P and Q-space comp-onents of the
wave function. However, in contrast to more stand-
ard treatments it is a Herrnitian operator. This ar-
ises because Eq. (8) is defined using R-matrix boun-
dary conditions within a sphere of radius r (a. An
important consequence of this property is that it is
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possible to use all of the powerful techniques
developed for bound-state problems in finding suit-
able representations for this operator. This will be
discussed ln mole detail in Sec. III. Equation (9)
may be reduced to a set of coupled one-particle
equations by multiplying by P, (l, . . . , N) and in-

tegrating over the target coordinates. The derivation
of these equations, while tedious, is quite straight-
forward and may be found in Ref. 27. Here we only
state the results

(h, E, ) ~F,—)+gU„~F;)

(10c)

where F., are the channel energies and U« is taken
to be the full electron-electron interaction potential
including both local and nonlocal parts. The second
term on the right-hand side contains the Lagrange
multiplies A.

q
needed to enforce orthogonality of the

channel functj ons p to any bound state orbj tais
used to construct the l(&(1, . . . , %+1). The radial

parts of these bound-state orbitals are the Z q of Eq.
(10d). The I.agrange multipliers are determined by
enforcing the orthogonality at the end of the calcu-
lation. This condition is necessary to maintain the
many-electron orthogonality of the P and -g-space
components of the total wave function. In actual
calculations the number of these terms is quite limit-

ed, and they present no real computational problem.
Following our usual procedure, we now convert

Eq. (10) to integral form

F,(r)+g fG, (r
~

r')U„(r', r",E)F, (r")dr'dr"=G, (r
~
a)

+QAq JG, (r
~

r')y, q(r')dr',

where G, (r
~

r') is the unperturbed Green's function.
The coupled equations (11) are the fundamental
working equations of our approach. By introducing
a suitable quadrature for the integrals, they may be
converted to a set of linear-algebraic equations
which may then be solved by standard techniques.

III. COMPUTATIONAL AND NUMERICAL
DETAILS

The solution of Eq. (11) requires a number of
steps. In this section we shall consider these in some
detail.

As is the case with any bound-state calculation, it
is necessary to choose a one-particle basis set which
is efficient for representing the many-particle wave
functions of the problem. This question of ap-
propriate basis sets is more difficult in the scatterirlg
problem for several reasons. First, low-energy
scattering processes are dominated by exchange and
polarization effects which require basis sets not
needed for bound-state calculations. Second, if we
are to find efficient techniques to represent the opti-
cal potential, it will be necessary to project parts of
U„(r„r',E) onto a finite basis set. Although the
type of basis function required for this projection
has certain features in common with the usual

bound-state functions, it is often important to in-

clude more diffuse functions to better span the space
of the channel functions. In order to accomplish
these objectives we begin by choosing a primitive
basis which includes the usual bound-state basis,
augmented by more diffuse functions to represent
the optical potential. Additional primitive functions
are added to represent the polarization effects if they
are not already present in the basis. The choice of
these functions depends on what type of induced
moment needs to be represented. If, for example,
the target state was of Xg symmetry and the induced
dipole was important to the problem it would be
necessary to include moderately diffuse functions
which gave good representation of the X„and H„
pseudostates of the molecule. By examining the or-
bital structure of the target it is straightforward to
deride which symmetries would need to be included
in the primitive basis. Having chosen an appropri-
ate primitive set one performs a few SCF-type cal-
culations to contract this basis to a physically mean-
ingful form. Ground-state occupied orbitals are ob-
tained from standard SCF or generalized —valence-
bond (GVB) calculations 8 on the target. If electron-
ic excitation is being considered, appropriate
excited-state orbitals are constructed using the
improved —virtual-orbital (IVO) procedure. The
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one-particle pseudostate orbitals are obtained using
the coupled Hartree-Pock method. In this ap-
proach the SCF equations are solved in the presence
of an electric field. The field may be inserted into
the SCF equations directly or by adding an addition-
al nuclear charge placed at large distances from the
molecule. ' The coupled Hartree-Pock method is
known to be useful for the calculation of the static
polarizabilities of atoms and moleculcs, and it is this
that makes it an excellent zeroth-order description
of the pseudostates for low-energy electron scatter-
ing. Having chosen the one-particle basis set, the
many-electron target and pseudostates P, ( 1, . . . , N)
and Pq( 1, . . . , N + 1) are constructed by diagonaliz-
ing the appropriate Hamiltonian in antisymmetrized
products of the occupied, IVO, and pseudostate or-
bitals. The remaining part of the one-particle basis,
which is needed for a complete description of the
scattered electron, is excluded from this diagonaliza-
tion. This is necessary in order to maintain the
orthogonality of the many-particle wave functions.
Thus we have the relations

fg, (l, . . . , N)'P, (1, . . . , N)dr, dr„=5„,

tial there is no loss of generality in requiring this
orthogonality. The generalization of these ideas to a
many-dimensional Q space is quite straightforward
and adds little complexity to the above argument.

Perhaps the most difficult part of the scattering
calculation involves the construction of the interac-
tion potential U„(r,r', E). Our approach is to
divide this interaction into two parts

U„(r, r ',E)=U,',"(r,r ')5(r —r ')

+ U(2)(~ ~q E)

and to use different methods for. each of the parts.
The calculation of the local energy-independent stat-
ic potential may be accomplished by generalizing
methods already developed for the SE problem. To
bc morc prccisc wc have

&&Pe(ri . rx)dry ' ' ' dry

f t(q(1, . . . , N+1)fq(1, . . . , N+1)dr . drN+)

=5«, (12b)

=V,„5„+fp„(r)
fr —r,

f

d r, (15)

fP', (1, . . . , N )F, (1)dr ( ——0,

f lq((1, . . . , N+1) F(1) dr~
——0,

(12c)

to ensure the orthonomality. The presence of the
Lagrange multipliers in Eq. (11) is a consequence of
the condition (12d) placed on I', and it necessary to
determine the A,

&
so that the condition is satisfied.

A simple example, 'X scattering in e+H2+,
should clarify these points. In the SE approxima-
tion the wave function would be written as

F
f
4) =W(lrrsF),

Q I
+~=M(lcrg) .

The effect of the single Q-space configuration ~ould
be folded into scattering calculation using the opti-
cal potential. In order to ensure the orthogonahty of
thc scattering orbital F to thc 1cTg target function, a
single nonzero Lagrange multiplier would appear on
the right-hand side of Eq. (10a). This multiplier
would be determined at the end of the calculation by
enforcing the orthogonality condition on I'. Since
the 1og configuration appears in the optical poten-

where p„(r) represents the transition density ma-
trix. The transition density matrix may be extracted
from bound-state CI codes. These programs,
which are used routinely to compute one-electron
molecular properties and natural orbitals, provide a
decomposition of p„(r) into the one-particle com-
ponents of the basis. Thus we start with

p„(r)=gg (r)y"pgp(r),
o;,P

where y'~ are the structure factors from the CI
codes. It is a straightforward procedure to decom-
pose the product of the two molecular orbitals into
spherical harmonics. First, using codes already
developed for the SE calculation, we perform a YJ
decomposition of the individual orbitals. Then us-
ing Clebsch-Gordon algebra these are combined to
give

p„(r)=gp„(r)Fg (0)
Jm

[with Q being the solid angle (8,$)j, which when in-
serted into (15) provides a single-center decomposi-
tion of the interaction potential.

The techniques used to treat the nonlocal energy-
dependent potential U,', '(r, r ',E) are quite different.
While it would certainly be possible to follow pro-
cedures similar to those used for the local interac-
tion, the size of the Q space would make these
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prohibitively expensive. Fortunately, the generally
shorter-range character of this potential allows us to
employ separable expansions of the form

U,',"(r, r ',E )=gy, g( r )A(E)y, g ( r ') (l8)

with high efficiency. To accomplish this, we replace
the P-space projector by

the Hamiltonian matrix may be transformed into
the optical potential. This potential is then
transformed to a diagonal representation

U"'=g I gf( 1, . . . , N +1))

XA(E)(gf(1, . . . , %+1)~,

X(~[/, (1, . . . , &)X (&+1)]~,

where the X are sets of square integrable functions,
orthogonal to all the orbitals used to construct the
target states. Proceedings in this fashion we may
use standard bound-state CI codes to construct a
matrix representation of the Hamiltonian. By em-

ploying the partioning techniques outlined earlier,
I

where P~(1, . . . , % + 1) and A,(E) are the eigenfunc-
tions and eigenvalues which diagonalize the optical
potential. By projecting U' ' onto the channel func-
tions $,(1, . . . , N) we obtain Eq. (18) with

y g(rpg+, )=fP",(1, . . . , E)gg(1, . . . , % +1)

)(dl) ' ' ' dr~

%%en we insert the above developments into Eq.
(11) we obtain

F,(r)+g fG, (r, r')U,',"(r')F;(r')dr'+ g fG, (r i
r')y g(r')A(E)y, g(r")F, (r")dr'dr"

=G (r ~a) b—F— +g f kqG (r
~

r')y q(r')dr', (22a)

where c now refers to the complete channel index. %e now define the functions

X,'dr)= fG, (r I
r')r'dr')«',

X, (s)r= fG, (r
~
r')y, ~(r')dr',

to get

F,(r)+g&, (r
~

r')U,',"(r')F; (r')dr'+giWE)X, g(r) f y, g(r')F, (r')dr'

=G, (r ~u) ——b F, ++X,X„(r) . (23a)
a

An important point to be noticed about Eq. (23a) is
the clean separation of the variables r and r' in the
optical-potential term. This separation, which is a
direct consequence of the use of matrix methods to
form U„(r, r '~, leads to important simplifications
in the solution of Eq. Q3a) by the linear-algebraic
method (see also, Rescigno and orel3 ). The ap-
proach we use depends on whether there are nonzero
Lagrange multipliers in Eq. (23a). If there is no
nexi to impose any orthogonality constraints on the
channel functions it is quite straightforward to in-
corporate the effects of the optical potential directly
into the definition of the matrix to be inverted.
Another approach, which works for the both zero
and nonzero Lagrange multipliers, is to define the

following homogeneous and particular solutions:

g fM„.(r
I
r')F, ,(r') =G,(r

I
a)8,r,

gfM„(r
~

r')F, q( ')=rX,q(r),

M„(r i
r')=5„5(r r')+G, (r

i
r')U,',"(r') .— (23e)

The solution for F, can then be written as (b equal
to zero)
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BE,*
F,(r) =gF,', (r) +gkqEq(r)

Bp

—QA, (E)F,g(r)A ~
Tqg=g(y, q ~

F,g&A, (E),

Let us define the following two vectors:

Xq ——k,q,

Equation 4,27b) ls thc condltlon fof orthogonality of
thc channel functions to thc olbltals used to coQ-
struct the Q-space wave functions. The solutions of
Eqs. (27) may be written as

BF,=g Uac
Bf

where a can be either A, or q, and e labels the various
linearly independent scattering solutions. Substitut-
ing Eqs. (29) into (26) and setting r =a we obtain

The unknown vector components may be deter-
mined by solving the following set of algebraic equa-
tions:

BE,
F, (a) =JR„

Bf

R, =F,', (a)+ gF, (a) U ~

+QF.da)U~. ~(E) .

(30s)

BE,
g&p + + Tqq &q+ QTqP'x =o This expression for the 8 matrix on the surface can

be used as an initial condition for propagating the
solution into the asymptotic region. Since all of the
lntclactlon outsldc thc R-matnx surface ls governed
by local potentials, well-established techniques, such
as the 8-matrix propagation method of Light and
%alker, ' may be used for this last step, After prop-
agating R„ into the asymptotic region, a simple
matching of logarithmic derivations gives the
scattering information from which it possible to
construct all of the cross sections.

TABLE I. Exponential coefficients of Gaussian-type orbitals for e+ H2 scattering and
computed polarizabilities.

SCF space
s-type P„,P„,P, type

Polarization
space

s-type P„,P„,P, type

Scattering space
(All functions
at midpoint)

s-type P„,P„,P, type

Polariz ability

48.447 9
7.283 46
1.65139
0.462447
0.145 885 0

1.5
0.5

0.072 5
0.036 25

0.25
0.125
0.0625
0.0312

0.018
0.009
0.0045

0.0156
0.0078
0.0039

a)( =6.39
al ——4.54
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O represents the experiment by Golden et al. {Ref. 31);
(3) C3 represents the experiment by Dalba et al. (Ref. 32).

FIG. 4. Comparison of theoretical and experimental
total cross sections for e-H2 scattering. Curves are as fol-
lows; (1) k represents the effective optical potential (2) 0
represents the experiment by Firch (Ref. 34).

Hartree-Fock (HF) method to construct accurate
pseudo-orbitals and a slightly more diffuse basis set
for the scattered electron. In Fig. 2 we show the re-
sults of our calculation compared with that of Gib-
son and Morrison ' ' and IGonover and Kaldor.
All of the calculations were performed with
l=0,2,4,6 partial waves and exchange was included
in each channel. The box radius was 10ao and the R
matrix was propagated to 5000. Our present calcu-
lations are practically indistinguishable from those
of Gibson and Morrison @ ' at very low energy and
are within a few percent at higher energies. Both
calculations are larger in magnitude than that of
Klonover and Kaldor and agree better with the ex-
perimental data of Golden, Handel, and Salerno.
In Fig. 3 we compare our calculation with the older
experimental data of Golden et al. and the recent
data of Dalba et al. On the basis of all of theoreti-
cal and experimental data available to us we would
have to conclude that there is better agreement be-
tween the theory and the experiments of Golden

et al. than those of Dalba et a/. In Fig. 4 we
present a comparison of our theoretical calculations
with the very low-energy experiments of Firch.
The agreement is excellent.

8. e+ N2

In order to demonstrate the power of our optical-
potential approach in more complicated problems,
we have examined low-energy e+ N2 scattering.
The object of this calculation was not to perform an
exhaustive study of e + N2 collisions but to demon-
strate how an ab intitio treatment of target polariza-
tion of the Xg+ channel brings experimental and

TABLE II. Exponential coefficients of Gaussian-type
orbitals used to expand scattering functions for e+ N2
scattering.

All functions at midpoint

s-type 0.02, 0.006, 0.002, 0.0007
d type 0.05, 0.017, 0.005, 0.0019, 0.0006
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TABLE III. A comparison of low-energy SE, effective optical potential (POL), and experi-
mental (Kennerly) e + N2 cross sections. '
k2 (Ry)

0.02
0.1

0.2
0.3

5b (SE)

—0.3392
—0.7429
—0.9984
—1.1732

5 (POL)

—0.2330
—0.5749
—0.7691
—0.9036

a' (SE)

72.28
60.57
48.72
41.95

a (POL)

33.45
40.50
36.73
35.24

a (Expt)

31.10
38.09

'The box radius was taken to be 10ao and b was zero.
5 is phase shift in radians.

'All cross sections 0 are in bohr .

theoretical results into better agreement. The atom-
ic basis set consisted of a 9s 5p 1d/Ss 3p 1d augment-
ed by additional s, p, and d Gaussians to describe the
polarization and scattering electron. The polariza-
tion functions were chosen as those used by Mor-
rison and Hay' in their study of the polarizability
of N2. The occupied and polarization molecular or-
bitals were obtained in the same fashion as the
e+ H2 study by performing SCF calculations in the
absence and presence of an additional, distant nu-
clear charge. The polarizability obtained in this cal-
culation was in perfect agreement with the results of
Ref. 18. The additional molecular orbitals which
are needed to describe the scattering electron were
all of og symmetry and were obtained by Schmidt
orthogonalizing the remaining s and d atomic orbi-
tals shown in Table II to the occupied plus polariza-
tion functions. In the final Xg CI calculation no
excitation of the 1cr and 10„molecular orbitals was
considered and they were transformed away by in-

cluding their effects in the core potential. The final
set of molecular orbtitals consisted of only 40 func-
tions. The CI calculation used to construct the opti-
cal potential was of the POLCI or first-order type.
The reference space consisted of the 18 SE configu-
rations. All double excitations of these 18 references
were included which obeyed the restriction that no

more than one electron be present in the virtual or
scattering molecular orbitals. The partitioning of
the orbital space into valence and virtual functions
was done by including all molecular orbitals from
the SCF and finite field calculations in the valence
space. This partitioning assures us that all impor-
tant polarization effects will be included in the CI.
The final calculation contained 18 configurations in
P space and 729 configurations in Q space. The
most time-consuming part of the scattering calcula-
tion consists of the construction of the optical po-
tential from the Hamiltonian matrix elements. This
step takes about 10 sec of computer time on the
CRAY I computer. The actual scattering calcula-
tion which included I =0 to 14 channels took only 4
sec of computer (central-processing-unit) time. The
results of the calculation are shown in Table III.
The dramatic reduction of the total cross section
due to polarization is similar to that observed in
e+H2 collisions. The agreement between theory
and the recent experiments of Kennerly is quite
good considering that we have not considered the ef-
fects of nuclear motion on the cross section. The
success of our approach has now been clearly
demonstrated in three separate systems. An exten-
sion to inelastic scattering is underway and results
should be available soon.
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