
GENERAL PHYSICS

JUNE 1983

Complex virial theorem and complex scaling

B. R. Junker
U. S. Office of Naua! Research, Code 412, 800 North Qtancy Street, Arlington, Virginia 22217

(Received 19 November 1982)

We present the simple generalization to complex energies of the normal global real scaling
used for bound-state calculations to produce a variational energy which satisfies the virial

theorem. We show that in two limiting cases, one or the other of which is almost always
satisfied in all calculations, the virially stabilized complex energy is sensitive to only the real

part Or the imaginary part of the complex virial expression. We then compute the virial ex-

pression for a number of wave functions for the 1s2s S He, 1s2s2p P' He, and
1s 2s kp P' Be resonances and the corresponding virially stabilized resonance energies.
In all calculations one of the limiting cases was applicable.

I. INTRODUCTION

The complex scaling' theorems stimulated consid-
erable research to develop computation techniques
using square-integrable basis functions for calculat-
ing resonance parameters (position and width) for
many different resonant phenomena. Doolen sug-
gested a variational technique in which one con-
structs a variational wave function from a standard
square-integrable basis such as Slater-type orbitals
(STO's) or Hylleraas functions and then computes
the eigen values of a scaled Hamiltonian
4 (r exp(i0))=A (0) as a function of 0. One then
assumes that the best approximate eigenvalue and
eigenfunction are those for which the rate of change
of the eigenvalue with respect to 0 is smallest, i.e.,
for which the eigenvalue is most stable with respect
to variation in 8. He used a theta trajectory (a plot
of the complex energy as a function of 8) to identify
stabilization points. Subsequently, Froelich et al. ,
Brandas and Froelich, and Yaris and Winkler
showed that if a root of the secular equation satis-
fied the appropriate complex virial theorem, it
would be invariant under a complex scaling of the
form v=a exp(i8). Techniques ' were then sug-

gested for fixing v (or 8) by requiring that the root
satisfy [or satisfy as well as possible if just exp(i 8) is
used] the appropriate complex virial theorem.

On the other hand, in bound-state variational cal-
culations for atoms, the virial constraint has been
used to determine a final global scaling. That is,

scaling the wave-function radial coordinate by a real
parameter a yields

T(a) =a T(1)

V(a) =a V(1),

where T(1) and V(1) are the unscaled expectation
values for the kinetic and potential energy. Minimi-
zation of E, with respect to a, then yields

ct= —[V(1)/2T(1)] .

Direct substitution of Eq. (3) into Eqs. (1) and (2)
shows

V(a)/T(a) = —2,
i.e., the virial theorem is satisfied and by construc-
tion, the energy is minimized with respect to a. The
expression for the energy is then

E"=—[ V (1)/4T(1)] .

In Sec. II, we present the straightforward exten-
sion of the bound-state results to the resonance case,
while pointing out various limiting cases. Section
III contains the results of calculations of the virial
expression using many different complex stabiliza-
tion wave functions. Finally, Sec. IV contains con-
cluding remarks.
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TABLE I. Resonance energies (a.u. ) and virial calculations for 1s2s S He wave func-
tions.

Wave function'

+] (X]=0.1)
+] (X]=0.2)
+] (X]——0.4)
'P] (X]=0.6)
+] (g] ——0.8)

+4

2.190758
2.190758
2.190758
2.190758
2.190758
2.190758
2.190758
2.190758
2.190758

—Eg (10 )

0.222 85
0.222 82
0.222 82
0.222 82
0.222 83
0.222 82
0.222 83
0.222 70
0.222 73

2.190758
2.190758
2.190758
2.190758
2.190758
2.190758
2.190755
2.190747
2.1907 59

—EI (10 )

0.222 85
0.222 82
0.222 82
0.222 82
0.222 83
0.222 82
0.216 86
0.206 36
0.22249

W

2.001 35
2.001 35
2.001 35
2.001 35
2.001 35
2.001 35
2.001 36
2.001 35
2.001 35

2.026 84
2.022 71
2.022 36
2.022 35
2.02044
2.022 92
1.995 97
1.923 06
1.980 77

'g] here is a in Ref. 8.

II. VIRIAL THEOREM
FOR RESONANCE STATES

The virial theorem for complex resonant states for
Coulomb potentials takes the form

(2'+ Vs)+i(2Tr"+ Vr)=0,

or

(7a)

E,"=(Tg+ Vg)+i(TI"+ VI)

=g2T+gV,
where g is defined such that

2(g~ T~ —ql Tl )+ V~ ——0

and

2(gz Tl+gl Tz)+ VI =0 .

(10a)

(10b)

(7b)
The solutions of Eqs. (10) can be put in several
forms. Two of these are

Just as is the case with bound-state variational cal-
culations, there is no reason to expect a wave func-
tion determined by the stabilization of the energy
with respect to variations in the nonlinear parame-
ters to satisfy the complex virial theorem. One can,
however, define a final complex global scaling of the
wave-function radial coordinate such that the com-
plex virial theorem is satisfied.

Let yexp(ig) be a complex scale factor. Since it
contains two parameters, one can, in general, adjust
the two parameters to satisfy two constraints such
as in Eqs. (7). That is, for

g=g„+ig,=y-'exp( —u)
and T~ and TI ( V~ and VL, ) being the real and ima-
ginary parts of the expectation values for the kinetic
(potential) energy, respectively, one has the virially
stabilized energy E,",

rjrt = —
2 (Vs/Ts)+ ~ (Tr/Ts ) [1+(Tr/Ts ) ]

X [(Vg /Trr ) —( Vr /Tr ) ]

= —(Trr Vrt+ Tr Vr)/[2(TR+Tr )]

and

gr = —,(Tr/Tz)[1+(Tr/'T„) ]

X [(V„/T„)—(Vr /T, )]

=(Tr Vq —Ts Vr)/[2(TR+ Tr )] .

Alternately, y and X are given by

y=2[ (Vs/Ts) —(Tr/Ts) [1+(Tr/Ts) ]

X [(Vz /TR )'—( Vr / Tr ) ] ]

=2[(T„+Tr )/( V„+Vr ) 1

(11a)

(11b)

(12a)

TABLE II. Resonance energies (a.u. ) and virial calculations for 1s2s2p P' He wave func-
tions.

Wave function

%6(72)
%,(94)

s(126)

—E

2.157 427
2.156 553
2.156 543

—E', (10-')

0.761 54
0.677 81
0.652 56

—Eg

2.157427
2.156 553
2.156 543

—Ez (10 )

0.761 54
0.677 81
0.652 56

Wg WI

2.002 97 1.636 97
2.007 84 7.445 31
2.007 58 3.878 84
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TABLE III. Resonance energies (a.u. ) and virial calculations for 1s'2s kp P' Be wave

functions.

Wave function —E —Eg (10 ) —E -E, (10-') Wg

14.544 273

&p (» =0.60) 14.575 358
%]p (» ——0.65) 14.575454
+)p (» ——0.70) 14.575 519

0.763 03
2.122 16
2.121 68
2.117 12

14.544 273
14.575 358
14.575 454
14.575 519

0.763 03
2.122 16
2.121 68
2.117 12

2.000 11
2.001 16
2.001 13
2.00097

1.659 89
2.384 66
2.304 79
2.26098

and

(Tr/TR)[(vrr/Tz) —(Vr/Tr)]X=tan-'
(Vg/Tg) —(Tl/TR) (VI/Tl)

[( Vz /TR ) —( Vr /Tr ) ]=tan-' (12b)
[(Vz/Tr)+(Vr/TR )]

gr ——,( Tr /TR )[( Vg /Tq ) —( Vr /Tr )],
r=2

I
T~/VR

I

(14b)

(14c)

as required. Alternately, if
~

T~
~

&&
~

Tr
~

and

V~
I
»

I
Vr

I
then

1

(14a)

and

gg ——1,
0

(13a)

(13b)

(13c)

Equations (11) and (12) then define the alternate
forms of the complex global scale factors such that
when they are substituted into Eq. (9), they yield a
complex energy E„"which satisfies the complex viri-
al theorem.

Several special cases of Eqs. (11) and (12) are of
interest. First, if Tz, Vz, TI, and Tz do indeed
satisfy the virial theorem, Eqs. (7), then

and

X=tan '[ (Tr/Trr)(vrr/T&)

X [( Vg /TR ) —( Vr /Tr ) ] ] . (14d)

and

1= ——,(VI/T

'r)r = —,( TR /Tr )[( Va /TR ) —( Vr /Tr ) ] i

r=2
I
Tr/Vr I,

I=tan '[ (Tz/Tr)(Vr/Tr)

(15a)

(15b)

(15c)

Finally, if
~

Tr
I

&&
I
T~ I

and
( Vr

~
&&

~
VR (, t"en

X=0, (13d) X[(V,/T, ) (Vr/Tr—)]] . (15d)

Wave function

+l (»=0. 1)
+] (»=0.2)
+l (»=0.4)
+l (» ——0.6)
%'l (» ——0.8)

%4

+,(72)
%,(94)
%,(126)
49
'(IIlp (gl ——0.60)
4'lp (g& =0.65)
%lp (» ——0.70)

0.999 32
0.999 33
0.999 33
0.999 32
0.999 33
0.999 33
0.999 32
0.999 33
0.999 33
0.998 52
0.99609
0.996 22
0.99995
0.99942
0.99944
0.999 52

TABLE IV. g and E,".

—0.126 33( —5)
—0.106 30( —5)
—0.104 56( —5)
—0.104 54( —5)
—0.952 04( —6)
—0.107 31(—5)

0.268 07( —6)
0.399 72( —5)
0.106 58( —5)
0.101 56( —2)

—0.133 10( —2)
—0.987 16( —3)

0.135 24( —3)
—0.201 75( —3)
—0.16948( —3)
—0.149 83( —3)

2.190759
2.190759
2.190759
2.190759
2.190759
2.190759
2.190756
2.190748
2.190760
2.157430
2.156 582
2.156752

14.544 273
14.575 363
14.575 459
14.575 522

—EI

0.222 85( —3)
0.222 82( —3)
0.222 82( —3)
0.222 82( —3)
0.222 83( —3)
0.222 83( —3)
0.216 86( —3 )

0.206 35( —3)
0.222 48( —3 )

0.760 89( —2)
0.680 06( —2)
0.654 18( —2)
0.763 01( —2)
0.212 25( —1)
0.212 20( —1 )

0.211 73( —1)

'Number in parentheses is exponent of ten.
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Using Eqs. (11), one can put Eq. (9) into several
useful forms:

E,"=——V /T

= ——,(Vii+iVj) /(Tg+iTI)

= —[ ( Tg Vii +2TI VI Vg —TR VI )

+i(2' Vq VI+T
—Tl Vii )]/[4(TR+TI )] .

(16a)

(16b)

(16c)

Equation (16c) is particularly interesting for two
limiting cases If .

I
Tii I

» I TI
I

and (V~/Tg ) = —2,

E,'=( —I/4Tii )[(Tz Vii)+i(2' Vg VI —Tl Vii)]
1= —, V& +i(TI+ ~r )-E~+iEI=Er (17a)

Also, if
I
TI

I
»

I
Tii I

(VI/Tr)= —2

E,"=(Vit+ TR )+i—, Vg

=Eg+iEI ——E, . (17b)

Equations (17) show that for two very interesting
cases E," is approximately equal to the variational
energy E, regardless of how well TI and VI in the
first case and Tz and Vz in the second case satisfy
the virial theorem. That is, the complex energy E,"
really only depends on how well the larger of ER or
EI satisfies the virial theorem in these limiting
cases.

III. CALCULATION OF VIRIAL EXPRESSION

As noted in Sec. II one can define a final overall
complex scaling of the wave-function radial coordi-
nate relative to the radial coordinate of the Hamil-
tonian. Here we report the results for a number of
wave functions which have previously been obtained
in complex stabilization calculations. In Tables
I—III we give the results for a number of wave func-
tions fpr the 1s2s S He, 1s2s2p 2Po He, and
1s 2s kp P' Be resonances. The wave functions
are given in Refs. 8—11. 4& is the 51 configuration
wave function with the open shell single configura-
tion target state. +2 is +& of Ref. 9, while '03 is +i&
of Ref. 9 with the complex basis function
r exp(ikr) exp( —5r ) replaced by exp(ikr) exp( —5r ).
+4 is identical to 4» of Ref. 9. 45 is the same as +q
but with the configuration [( isis')Ss (5=0.5)] re-
moved. 4'6, 4'7, and +8 are the 72, 94, and 126 con-
figuration wave functions of Ref. 10, respectively.
Finally, 49 and 0 ~p are two wave functions, " one
with 32 configurations and one with 96 configura-
tions, respectively, fpr the 1s 2s kp P shape reso-



27 COMPLEX VIRIAL THEOREM AND COMPLEX SCALING 2789

nance in Be . The difference between them is just
the types of correlation of the (2s) part of the wave
function. In %'9 only s orbitals are used for this
correlation, while %']0 includes npn'p 'S correlation
effects. E~ and EI are the real and imaginary parts
of the complex resonant energy as obtained from the
solution of the secular equation, while Ez and EI
are the same except they are computed as the expec-
tation value of the Hamiltonian using the eigenvec-
tor obtained from the solution of the secular equa-
tion. A comparison of Ez with Ez and EI with EI
provides an indication of the quality of the wave
function. The potential difficulties in solving for
the eigenfunctions are particularly evident for wave
functions +3, 4'4, and 4'&.

Computing the eigenvalues of the overlap matrix
for the configurations in 44, one finds some approx-
imate linear dependence. The configuration re-
moved from %'4 to give +5 is the primary source of
the problem as indicated by the considerable im-
provement. All other wave functions yield excellent
results.

8'~ and 8"~ are —(Vz/T&) and —(Vz/Tq). The
wave functions in Table I satisfy the real and ima-

ginary parts of the virial expression quite well, while
those in Table II only yield a good value of the real
part of the virial expression. Those in Table III
again yield excellent results for the real part of the
virial theorem, but only moderately good results for
the imaginary part.

The global complex scaling factors y exp(ig)
which yield wave functions which satisfy the real
and imaginary parts of the virial theorem for each
wave function along with the virially stabilized ener-

gies are given in Table IV. It is clear that even for
those wave functions for which —( Vz/Tz) was very
different from two, E," is approximately equal to E,
from the variational calculation. The reason for this
can be seen in Table V. Here, we give the values of
Ts, T~, Vs, Vr, y [from Eq. (14c)],and I [from Eq.

(14d)]. From Tables V and I—III it is obvious that
these resonances and wave functions satisfy the lim-

iting case in Sec. II, where
( Ts ( » ( Tr (,

I
VR I » I

VI I
and —(VR~T~)=2 Thu»E."i»n-

sensitive to the imaginary part of the virial expres-
sion. That is, while one can force the real and ima-
ginary parts of the virial expression to be satisfied,
E, is insensitive to the imaginary part.

IV. DISCUSSION

%e have discussed the extension of the virial scal-
ing technique often used in bound-state calculations
to the case of resonance calculations involving com-
plex energies. Unlike the case for variational
bound-state calculations where one obtains an upper
bound so that the global real scaling to force satis-
faction of the virial condition yields a necessarily
improved energy, forcing satisfaction of the complex
virial theorem does not guarantee an improved ener-

gy, but only that the complex energy is stabilized
with respect to variations in the final global complex
scaling parameter. In neither case, bound or
resonant, is the energy guaranteed to be minimized
or stabilized with respect to variations in any of the
other nonlinear parameters in the wave function.
Neither computing the virial expression nor con-
structing a virially stabilized energy E," provides in-
formation on either stabilization of E," with respect
to other nonlinear parameters or convergence with
respect of configuration interaction. This is particu-
larly evident in Tables III and IV where the globally
scaled wave functions %9 and 4'io yield very dif-
ferent real and imaginary resonant energies.

Finally, we have derived several limiting cases for
the virially stabilized energy and the corresponding
global-scaling parameter. This analysis shows that
often the resonant energy is sensitive only to either
the real or the imaginary part of the virial expres-
sion.
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