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Validity of the Rosen-Zener conjecture for Gaussian-modulated pulses
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Using the Magnus approximation we show that the Rosen-Zener conjecture holds for a two-
level system in near-resonant interaction with a Gaussian-modulated pulse of sufficiently short

duration.

Within the rotating-wave approximation! (RWA),
the equation of motion for the interaction-picture
state amplitudes of a two-level system dipole interact-
ing with an oscillating field E°f (¢) coswt, arbitrarily
directed along the z axis, is

vl i) o

where u= (1|p.12) = (2|u.|1) is the electric dipole
transition matrix element coupling the states 1) and
|2), which are of opposite parity and have a level
separation w,;. In (1), v =w, — o is the detuning
frequency, where o is the carrier frequency of the os-
cillating field; the field, which is of amplitude E°, is
modulated by a time-varying pulse envelope f (7).

Uncoupling (1) gives the second-order differential
equation

bi+ (=7 /f (1) +iv]bi+ (FREDADb1(1) =0
(2)

with a similar equatlon for b,(¢). Under the transfor-
mation z () =—p.E°f_w dt' f(t'), (2) becomes
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(b +b)(FHEO (1) +ivb{ =0. (3)

On resonance v =0 and, in this case, the general
solution of (3) is

bi()=Ccoslz()]1+Dsin[z()], ()]

where C and D are arbitrary constants to be fixed by
the initial conditions.

Equation (4) is the solution to (2) for any pulse
envelope f (1) when v=0. If ;(—o) =1 and
b1(—o0) =0, then it follows from (4) that the in-
duced transition probability for excitation from |1) to
12), i.e., Po(t,—o0)=1—|b,(1)|?% is given by

Palt,— o) =sin2[ Lul® [ ar (2] (s)

for any modulating envelope f (). Clearly,
P,(t,— o0) is dependent upon the nature of f(¢).
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The steady-state transition probability is
Py(+ o0, — o) =sin’4 , (6)

where A is the so-called pulse ‘‘area’ defined by
1 +oo0
A=uB [ arr, Q)

assuming f(¢) to be an even function of t. Thus, ir-
respective of the nature of f(¢), the steady-state
value of the induced transition probability is the same
for all pulses of equal area interacting on-resonance
with a two-level system within the RWA.

It is more difficult to solve (2) when v # 0. For a
rectangular pulse with a modulating envelope given by

1 for |t| <<+

f()= 0 2 €))
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where 7 is the pulse duration, (2) is a differential
equation with constant coefficients whose general
solution is

b()=e""(C cos{%t[v2+ (RE®)?]VY
+D sin{—;t[v2+ (LEDNY), (9)

where C and D are arbitrary constants to be fixed by
the initial conditions. If &,(— %r) =1 and b,(— %T)
=0, then it follows from (9) that the induced transi-
tion probability P,(t, — %r) is given by

1 (nE®)?
Pt 3m) = S By

X sin2{—;(t +—;-r)[v2+ (LE®1VY , (10)

the so-called Rabi formula.""? The steady-state tran-

sition probability is Po(57,—57). If 7 is arbitrarily

large, so that the oscillating field executes many opti-

cal cycles throughout the duration of the pulse, then

the steady-state transition probability is given by
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The rectangular pulse is an idealization since a
physically realizable pulse cannot be switched on and
off instantaneously as suggested by (8). A laboratory
pulse will have an envelope varying smoothly with
time and is switched on [f(— o) =0] and off
[f(+o00) =0] so that the pulse has an epochal ex-
istence [f(¢) —1 as |t| — 0] of finite duration. The
modulating envelope f (1) =sech(mt/7), [t]| < oo is
“‘bell shaped,” and like the rectangular pulse in (8),
has an area 4 = —;p.E 07, where 7 is a constant charac-

teristic of the pulse duration. Rosen and Zener® have
shown that for this pulse (2) is exactly soluble. For
the initial conditions 5;(—o0) =1 and b,(— ) =0,
they report the asymptotic value of P, as

]
s1:2A |4 sech(5v7) |2, (12)

Py(+00,—0) =
and recognizing that

A sech(%vr) =A§[% sechl-—";—'” ,
where

slr(01= [ are'r () (13)
is the Fourier transform of f(¢), Rosen and Zener

further conjectured that for an arbitrary envelope
f(1), of area 4 = %}LEOT,

)= S| 1
Py(+ oo, ) VE ’AS[Tf(t)]

2

(14)

is approximately true for a pulse which is near
resonant with the two-level system. The basis for
this suggestion is twofold: firstly, if v =0, then using
(7) and (13) in (14) gives (6); and secondly, if A4 is
small, so that sind = A, then (14) reduces to
2
P2(+oo,—oo)=|,49 , (15)

lf(t)]
.

precisely the result given in first-order perturbation
theory using the RWA.

With increasing use of pulsed light sources in phys-
ical applications it is important to establish the validi-
ty of the Rosen-Zener formula (14) for arbitrary
pulse envelopes. To do this it is necessary to adopt a
different approach to the solution of (2) than that
employed by these authors since their approach is ap-
plicable (albeit exactly) only to the hyperbolic secant
shaped pulse and to a class of envelopes asymmetric
in time.*

The Magnus® unitary approximate solution to (1) is
given by

b()=exp[M(t,—o00)]b(—o0), (16)
where M (f, —o00) =—M"(1,— ) and b"(?)

=[5:()b2(1)]. With

Mt —)= S M®(1-w),
k=1

MY (t,—o00)=—i f_;dt'ﬂ(t') , (17a)
M(z)(t.—oo)=% f_;dt' ﬁ;dt”[ﬂ(t'),ﬂ(t”)] ,

(17v)

and M¥ (1, — =) is generally a sum of k-fold in-
tegrals of k-fold—nested commutators of H (), the
2 x 2 coefficient matrix in (1). For the Gaussian en-
velope

() =exp(—mt¥Y1?), |t] < oo (18)

having the same area 4 = —;-;:.E 07 as the rectangular
and hyperbolic secant pulses,

2.2
MV (+00,—0)=i4 exp[ :1: ](l) (1) (19)

and

M@ (400, — o)

2.2 -
__ 1 —vT vt 1 0
=—=4 expl e ]erf[uﬂ)m][O _1]. (20)

respectively. Thus the second-order Magnus approxi-
mation gives

b(+oo)=exp|d B |b(-0), @)

where a=—%ﬁ2erf[iv~r/(2w)”2] and B=A

x exp(—v2r2/4m), as the asymptotic solution to (1).
For the initial conditions b;(—o0) =1 and b(— o)
=0, (21) gives, for Py(+ 00, —c0) = |by(+ o) |?%,

oo (aZ_ﬁZ)l ‘2

2w = (2[+1)'
22)

If v =0 and 7 is sufficiently small, say, v?r% << 2m,
a?—B?=— 4? which, when used in (22), gives

2.2
Pz(+oo,—oo)=A’exp[ ”]

Py(+ 00, —o0) =exp(—v?r¥2m) sin’4 . (23)
This is in agreement with the Rosen-Zener conjecture
(14), since

_ 2.2

F lf(t) =exp[ Lo ]

T 4m

for £ (¢) defined in (18). Both theoretical® and exper-
imental’ evidence suggest that, ideally, the field out-
putted from a perfectly mode- and phase-locked
pulsed laser consists of a train of Gaussian-amplitude
sinusoids. For a two-level system, (23) represents
the asymptotic value of the induced transition proba-
bility for excitation to level |2) under the assumption
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that the Gaussian-modulated pulse, of sufficiently
short duration 7, is near resonant with the system.
Skinner® has numerically confirmed the validity of
(23) for sufficiently small v.

In comparing (12) and (23) with (11) we note that
for the cw case the two-level system saturates at on-
resonance frequencies or as the coupling strength
wE® becomes sufficiently large. In contrast, for
amplitude-modulated fields complete population in-
version may occur, such as for a resonant 7/2 pulse,
since the two-level system undergoes induced absorp-
tion only over the epochal duration of the pulse.

It is 50 years since Rosen and Zener presented
their analysis in this journal within the context of a
two-level atom interacting with a magnetic field. The
essence of their treatment is the transformation of
(2) into the hypergeometric equation. More recently,
Robiscoe’—recognizing the relevance of their results
to the problem of a two-level atom interacting with
an oscillating field within the RWA —has shown how
to generalize the Rosen-Zener approach to the case
of decaying states and has given a comprehensive
comparison between the rectangular and hyperbolic
secant pulses. In a further generalization of the
Rosen-Zener problem, Bambini and Berman* have
shown that there is an entire class of modulating en-
velope functions that may be mapped into the hyper-

geometric equation; of this class only the hyperbolic
secant is symmetric in time. In contrast to the rec-
tangular and hyperbolic secant pulses, this class of
asymmetric envelopes is such that at off-resonance
frequencies one cannot define a value of the pulse
area for which the transition probability vanishes.
Direct numerical integration' for the transition pro-
babilities, without invoking the RWA, indicates an
oscillatory behavior in P, as a function of 4 at both
on- and off-resonance frequencies for Gaussian-
modulated pulses, and only in the case of ultrashort
pulses does P, fail to vanish throughout the pulse
duration. Robinson,'! in an investigation of the find-
ings of Bambini and Berman, introduced a transfor-
mation of (2) which Robiscoe!? used in conjunction
with the Jeffreys-Wentzel-Kramers-Brillouin approxi-
mation to estimate the transition amplitudes in the
asymptotic region for an arbitrary smoothly varying
pulse envelope, although the important question of
establishing the validity of the Rosen-Zener formula
(14) for Gaussian pulses was not addressed. Using
the Magnus approach we find the conditions of vali-
dity are that the field be near resonant with the two-
level system and that it be of sufficiently short dura-
tion.
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