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Validity of the Rosen-Zener conjecture for Gaussian-modulated pulses
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Using the Magnus approximation we show that the Rosen-Zener conjecture holds for a two-

level system in near-resonant interaction with a Gaussian-modulated pulse of sufficiently short
duration.

Within the rotating-wave approximation' (RWA),
the equation of motion for the interaction-picture
state amplitudes of a two-level system dipole interact-
ing with an oscillating field Eof (t) cosrut, arbitrarily
directed along the z axis, is

r 1

, d bt(r) i o 0 e-'"' bt(r)
I—

I, (,) = —, p, E'f(r—);., (l b (,), (I)

where p, = (1[p,,12) = (2lp, , l 1) is the electric dipole
transition matrix element coupling the states ~1) and

~2), which are of opposite parity and have a level

SeparatiOn ro2t In (I)., v = ru2t —cu iS the detuning

frequency, where cu is the carrier frequency of the os-
cillating field; the field, which is of amplitude E, is

modulated by a time-varying pulse envelope f (t).
Uncoupling (I) gives the second-order differential

equation

b )+ [ f (t)/f (r) +i v —]bt+ ( 2 pE ) f (r)bt(t) = 0,
(2)

with a similar equation for b2(t). Under the transfor-

mation z(t) = —,p, E dt'f (t'), (2) becomes

(b '[+b )t( p2E )f(t)+ivbt =0.
On resonance v =0 and, in this case, the general
solution of (3) is

b)(t) = C cos[z(t)]+D sin[z(t)], (4)

where C and D are arbitrary constants to be fixed by
the initial conditions.

Equation (4) is the solution to (2) for any pulse
envelope f (t) when v = 0. If b~( —~) = 1 and
b, (—co) =0, then it follows from (4) that the in-

duced transition probability for excitation from ~1) to
~2), i.e. , P2(t, —~) = 1 —~b&(t) ~', is given by

P2(t, — ) =sin' —,
'

p, E' dt'f(t')

for any modulating envelope f (t). Clearly,
P2(t, —~) is dependent upon the nature of f (t).

The steady-state transition probability is

P2(+ oo, —00) = sin'A

where A is the so-called pulse "area" defined by
+oo

A = —p, E dt'f (t'),

assuming f (t) to be an even function of t. Thus, ir-
respective of the nature of f (t), the steady-state
value of the induced transition probability is the same
for all pulses of equal area interacting on-resonance
with a two-level system within the RWA.

It is more difficult to solve (2) when v & 0. For a
rectangular pulse with a modulating envelope given by

I for )r(~ ,'r-f(t) =
0 for ~r~ & ,r—

where r is the pulse duration, (2) is a differential
equation with constant coefficients whose general
solution is

bt(r) = e '"'(C cos( r[v'+ (p—,E')']' ']

+D sin( —,r [v'+ (lrEo)']'"]), (9)

where C and D are arbitrary constants to be fixed by
the initial conditions. If bt( ——,r) = I and bt( —

2 r)
=0, then it follows from (9) that the induced transi-
tion probability P2(t, ——,r) is given by

EO) 2

P2(t, ——~) =
v2+ ( Eo)

x sin' [—,
' (r + ,

' r ) [v'+ (y E') '] '"—],(10)

the so-called Rabi formula. " The steady-state tran-
sition probability is P2(

2
r, r). If r is arbitrarily

large, so that the oscillating field executes many opti-
cal cycles throughout the duration of the pulse, then
the steady-state transition probability is given by

P (+ ~, —~)=, , ; lim — dr' sin'[ —,r'[v'+ (p E')']' '}=—
v'+(pE )' --r o ' 2 v'+(pE )'
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The rectangular pulse is an idealization since a

physically realizable pulse cannot be switched on and
off instantaneously as suggested by (8). A laboratory
pulse will have an envelope varying smoothly with
time and is switched on [f(—~) -0] and off
[f(+~) =0] so that the pulse has an epochal ex-
istence [f(t) 1 as (t ( 0] of finite duration. The
modulating envelope f (t) = sech(trt/r), it ) & ~ is
"bell shaped, " and like the rectangular pulse in (8),

1
has an area A =

2 p, E ~, where v is a constant charac-

teristic of the pulse duration. Rosen and Zener have
shown that for this pulse (2) is exactly soluble. For
the initial conditions bt( —~) =1 and bt( —~) =0,
they report the asymptotic value of P2 as

= [bt(t)bq(t)]. With

M(t, —~) - XM'"'(t, —~),
k 1

M"'(t, —~) = —i J Ct'H(t'), (17a)
t

M '(t, —~) = — dt' dt" H(t', H(t") ],
(17b)

and M'k'(t, —~) is generally a sum of k-fold in-

tegrals of k-fold —nested commutators of H(t), the
2 x 2 coefficient matrix in (1}. For the Gaussian en-
velope

Pq(+~, —aa) = ~A sech( —v7}(',sin A 1

A 2

and recognizing that

(12)
f (t) = exp( —tr t'/r'), (18)

having the same area A = —,p, E v as the rectangular

and hyperbolic secant pulses,

A sech( —,vr) =AS —sech
1 mt

where

ieff(e&]= f ee'e '"'fee') (13)

e

Mt ~(+ aa, —aa ) = iA exp
v2 2 0 1

4~

and

M'"(+, — )

(19)

is the Fourier transform of f (t), Rosen and Zener
further conjectured that for an arbitrary envelope

f (t), of area A = , tt, E r, —
t

Pt(+ oa, —ao) = AS f(t)—sin 2A 1

A
t

(14)

is approximately true for a pulse which is near
resonant with the two-level system. The basis for
this suggestion is twofold: firstly, if v = 0, then using
(7) and (13) in (14) gives (6); and secondly, if A is
small, so that sinA =A, then (14) reduces to

Pt(+~, —~) = AS f(t)—1 (15)

b(t} =exp[M(t, —~)]b(—~},
where M(t, —oo) = M(t, —~) and b (t)—

(16)

precisely the result given in first-order perturbation
theory using the RWA.

With increasing use of pulsed light sources in phys-
ical applications it is important to establish the validi-

ty of the Rosen-Zener formula (14) for arbitrary
pulse envelopes. To do this it is necessary to adopt a
different approach to the solution of (2) than that
employed by these authors since their approach is ap-
plicable (albeit exactly) only to the hyperbolic secant
shaped pulse and to a class of envelopes asymmetric
in time.

The Magnus' unitary approximate solution to (1) is
given by

—v2T2

2' ) ti2

respectively. Thus the second-order Magnus approxi-
mation gives

(b+~) -exp .
' b( —~),

.iP —0.. —

where n- —tP'erf[i r/(v2n)'i'] and P=A
x exp( —v r'/4n ), as the asymptotic solution to (1).
For the initial conditions bt( —~) = 1 and by( —~)
=0, (21) gives, for Pq(+ ~, —~)= )b, (+~) ~',

1

Pq(+~, —~) =A exp
2tr t 2I + 1 !

(21)

(22}
If v = 0 and r is sufficiently small, say, v r &( 2m,
n —P'= —A which, when used in (22), gives

Pq(+ oo, —oo) = exp( —v r /2w) sin A . (23)

This is in agreement with the Rosen-Zener conjecture
(14), since

5 —f (t) = exp
4m.

t e

for f (t) defined in (18). Both theoretical and exper-
irnental' evidence suggest that, ideally, the field out-
putted from a perfectly mode- and phase-locked
pulsed laser consists of a train of Gaussian-amplitude
sinusoids. For a two-level system, (23) represents
the asymptotic value of the induced transition proba-
bility for excitation to level ~2} under the assumption



that the Gaussian-modulated pulse, of sufficiently
short duration v, is near resonant with the system.
Skinner has numerically confirmed the validity of
(23) for sufficiently small v.

In comparing (12) and (23) with (ll) we note that
for the cw case the two-level system saturates at on-
resonance frequencies or as the coupling strength
p.EO becomes sufficiently large. In contrast, for
amplitude-modulated fields complete population in-
version may occur, such as for a resonant n /2 pulse,
since the two-level system undergoes induced absorp-
tion only over the epochal duration of the pulse.

It is 50 years since Rosen and Zener presented
their analysis in this journal within the context of a
two-level atom interacting with a magnetic field. The
essence of their treatment is the transformation of
(2) into the hypergeometric equation. More recently,
Robiscoe9 —recognizing the relevance of their results
to the problem of a two-level atom interacting with

an oscillating field within the R%A-has shown how
to generalize the Rosen-Zener approach to the case
of decaying states and has given a comprehensive
comparison between the rectangular and hyperbolic
secant pulses. In a further generalization of the
Rosen-Zener problem, Bambini and Berrnan' have
shown that there is an entire class of modulating en-

velope functions that may be mapped into the hyper-

geometric equation; of this class only the hyperbolic
secant is symmetric in time. In contrast to the rec-
tangular and hyperbolic secant pulses, this class of
asymmetric envelopes is such that at off-resonance
frequencies one cannot define a value of the pulse
area for which the transition probability vanishes.
Direct numerical integration' for the transition pro-
babilities, without invoking the R%A, indicates an
oscillatory behavior in P2 as a function of A at both
on- and off-resonance frequencies for Gaussian-
modulated pulses, and only in the case of ultrashort
pulses does I'2 fail to vanish throughout the pulse
duration. Robinson, " in an investigation of the find-
ings of Bambini and Berman, introduced a transfor-
mation of (2) which Robiscoe" used in conjunction
with the Jeffreys-%entzel-Kramers-Brillouin approxi-
mation to estimate the transition amplitudes in the
asymptotic region for an arbitrary smoothly varying
pulse envelope, although the important question of
establishing the validity of the Rosen-Zener formula
(14) for Gaussian pulses was not addressed. Using
the Magnus approach we find the conditions of vali-
dity are that the field be near resonant with the two-
level system and that it be of sufficiently short dura-
tion.
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