
PHYSICAL REVIE% A VOLUME 27, NUMBER 5 MAY 1983

Comments about energies of parameter-dependent systems
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It is shown that the proper dependence of eigenvalues with respect to the parameters and
quantum numbers can be found by calculating the extremum of the energy functional.

Recently, Rosen' has shown that the quantity E de-
fined by

E=mtne(q), q=(qt, ql, . . . , q~)7

a(q) =2A Xqi + $(,q,.'+ X Xy jq, 'qj',

demonstrated in a very simple way, so that it offers
an appropriate manner by means of which Rosen's
conclusions may be applied to more complex prob-
lems.

Let us suppose that the energy functional e(q)
possesses the form

i 1 i~1 (~1

satisfies the following equations:

E=2$g, +3 X Xy,, B

i l Bti i l j 1 Byrl
(3)

~(q) = T(q) + &(a, q), (6
where T(q) is a homogeneous function of degree
—2, and 0. is an arbitrary parameter. Besides, we as-
sume that the form of V(a, q) is such that it allows
the existence of an extremum value for e(q), i.e. ,

(q=qo)=0; i =1,2, . . . , jV

The real constants g; are positive or negative and

y» constitute a positive-definite array.
Using the Hellmann-Feynman theorem (HFT) and

thc qllalltllfll-lllcchalllcal vlf lal 'tllcorclll (VT), lt ls
easy to show that the eigenvalues of the Hamiltonian
operator

N

+Ciqi + x X'Ygqi qj
/-1 ~tIi i 1( 1

i

fulfill (3), while Eq. (4) foliows from the semiclassi-
cal relation (q;lqjl) = (q;l) (qjl) .

This result is very interesting and it should be able
to find important applications for determining the
dependence of eigenvalues with respect to the param-
eters included in the Hamiltonian. Ho~ever, we con-
sider that the demonstration presented by Rosen for
Eq. (3) seems to be too cumbersome in order to per-
form its extension without additional difficulties for
more complex problems.

In this paper we will show that Eq. (3) can be

Furthermore, the condition of variational extremum
(7) assures us the fulfillment of the HFT:

iV
BE

X
Bt

( )

r

qio+ BE ( )
80! QA

(a, q=qo),
QA

where E = e(qo). Equations (g) and (9) enable us to
generalize at once Rosen's resu1ts.

As an illustrative example, let us consider the
functional

From a physical point of view it is necessary that
e(q) has only one extremum value, a minimum, but
our mathematical result is independent of this as-
sumption. Equation (7) leads us at once to the VT:

2T(qo) = qo '7 &(a qo)
(S)

8 8 8

' -1/)I, N N

~(q) =2& Xlqil + Xqi 4i+ X'Vrjqj + X X'Yijkqj qk
j 1 ] 1 k 1

—1&A. &1

~here the real constants g;, yl(= y(; are positive or negative numbers, and y,(k is a positive-definite array, which
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is symmetric with regard to the exchange of all the indices. Equations (8) and (9) make certain that

' —1/X N N N

2W Xlq;p['" = g q) 0 6 i + 2 X 'Y sq/0 + 3 X g y (~/k q/pqk p
i 1 J~l )~1 k~1

QE 2 BE 2 2 BE
ViO s ~ Qi(NJO s ~ r Qi&J&kO

i Vi) OP(j[k

Substituting (11) and (12) in (10) (with q = qp), we obtain

N N N N

E - X 2(„+3 Xy,/ + 4 g g y,'„/
i 1 ~(i ) 1 ~fiJ ) 1 k 1 ~Yijk

(13)

This last equation is satisfied too by the eigenvalues of the Hamiltonian

N 2 N N N

, +kq; + Xy/q'q/'+ X gr/kq'q/'qk
) 1 J~l k 1

(14)

Our demonstration makes self-evident the reason
from which the extremum E corresponding to the
functional s(q) fulfills the same differential Eq. (13)
as do the eigenvalues associated to the operator (14):
both satisfy the VT and HFT. Besides, Eqs. (8) and
(9) are of a general nature and may be applied
without further difficulites to a large class of physical
problems.

Orland2 sho~ed that the HFT, the VT, and the
semiclassical approximation fix the A, dependence for
the eigenvalues of the operator

(15)

%e shall show here that those theorems determine,
too, in an approximate fashion, the dependence of
the eigenvalues on the quantum number n.

As an illustrative example, we choose the 2k oscil-
lators [ V(x) = 0, IV(x) =x'"] and the 2k-
anharmonic oscillators [ V(x) =x', W(x) =x'"]. In
the first case we have

[

large n regime:

(k + I ) ( ( /k )k/(k+i ) (n + i
)2k/(k+1)k i/(%+I )

(19)

Choosing Ck in a convenient way, Eq. (19) and the
%KB method yield identical results. This equation
holds also for the Coulombic potential (A. & 0,
2k = —1).

In Table I we present the exact numerical eigen-
values for the quartic oscillator (k = 2, I = 1) calcu-
lated by Banerjee er al )(E„')by. means of a very ac-
curate method (we only show their results up to the
sixth decimal place), together with our approximate
eigenvalues determined from Eq. (19). %e have

TABLE I. Eigenvalues of the quartic oscillator (0=p +x ).

E b

s„(q)=A (k, n)/q'+Xq'k, (16)

E„-p„(qp)

= (k y I) [g (k, n )/k]k«k+)))()«k+))

When k =1, the exact result is A (l,n) = (n +
z
)'.

This result suggests to us that, as a first approxima-
tion, we may choose

A(k, n) =Ck(n+ —)', n =0, 1, 2, . . . (i8)

where the constant A (k, n ) only depends on k and on
the quantum number n. The extremum condition
(7) yields

0
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1 000
10000

1.060 362
21.238 373
50.2S6 255
S4.457 466

122.604 639
164.012 044
208.232 339
254.946 198
303.912066
354.939633
407.S74 363

1 020.989992
21 865.262 118

470 790.294 427

0.867
21.21S
50.243
84.450

122.601
164.012 044
208.236
254.953
303.922
354.953
407.891

1 021.
21 866.

470 S15.

The substitution of (18) in (17) allows us to obtain
the correct dependence for the eigenvalues in the

'Exact numerical (Ref. 3).
bEquation (18) with C2=1.2433155.
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chosen arbitrarily C2= 1.243 31155 to perform the
computations in order to obtain the exact result for
E2q. Except for Eo, the exactness of our results is re-
markable within the great range of values considered.

For the 2k-anharmonic oscillators we have

TABLE II, Eigenvalues of the anharmonic oscillator
(0=p2+X2+~4).

En'

e„(q) =A (k, n )/q'+ q'+ Xq'", (20)

and Eq. (7) leads to

)(kq02k+ + q
—A (k, n ) = 0

k+1A(k ) 2+ k —1

(21a)

(21b)

In the large n regime, Eqs. (21a) and (21b) give the
following approximate result:

(k + I ) ( C /k )k/(k+()/(1/(k+() ( n i )
) 2k/(k+()

II

+ (k I) (C k( k) )/(k+1)) 2/(k+))( + (
) 2/(k+1)

2 2

(22)
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10000

1.392 351
23.297 441
53.449 102
88.610349

127.617 778
169.817 528
214.779 684
262.195 757
311.831 518
363 ~ 501 895
417.056 263

1 035.544 183
21 932.783 711

471 103.777 791

1.325
23.572
53.739
88.816

127.673
169.673
214.394
261.534
310.863
362.200
415.396

1 029.
21 736.

466 575.

where we have used the approximation (18). The
powers corresponding to A. and (n +

2 ) in the two

right-hand side terms of Eq. (22) are identical to
those provided by the WKB method. 4

Our results deduced from Eqs. (18) and (21) for
the anharmonic oscillator (k = 2, X = 1) are com-
pared in Table II with the exact numerical eigen-
values' for different n values. In this case we have
used C2= 1.225 with the purpose to obtain good

'Exact numerical (Ref. 3). Equation (21) with C2=1.225.

results between n = 20 and 25.
In spite of the fact that we have employed a very

simple model, the results possess in both cases an ac-
ceptable accuracy. Thus the present method could be
very useful to estimate the eigenvalues in more com-
plex problems, and to determine their functional
dependence with the quantum numbers.
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