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In continuation of an earlier paper [F. Schlogl and R. S. Berry, Phys. Rev. A 21, 2078
(1980)] (referred to as I), small fluctuations in the interface between two phases wiB be dis-
cussed and with this an error in I will be corrected. The dynamics of the fluctuations is con-
nected with the quantum mechanics of the modified Poschl-Teller potential. Moreover, the
fluctuations in the solitary solution of a moving surface are studied and also brought into
connection with a quantum-mechanical system. The regression spectrum of these fluctua-
tions is discussed in dependence on the velocity of the interface. If this velocity exceeds a
certain value, the character of the regression to the kink profile changes qualitatively.

I. INTRODUCTION

In an earlier paper of two of the authors, ' herein-
after called I, the dynamics of small fluctuations in
the interface between two coexistent phases was dis-
cussed. The system under consideration was a
chemical model for a, nonequilibrium phase transi-
tion of first order, which is closely analogous to the
gas-liquid system. This model will be discussed in a
deterministic description in which the temporal
behavior of a fluctuation is that of any perturbation,
regardless of how it was initially prepared. (We
shall consequently use the terms "fluctuation" and
"perturbation" interchangeably in the present con-
text. ) As will be sho~n in what follows, the dynam-
ics of these fluctuations can be identified mathemat-
ically with quantum mechanics of a particle in a so-
called "modified Poschl-Teller potential. " The
treatment of this quantum-mechanical system
makes the fluctuation dynamics more clear in some
respects. Thus an error in I became apparent to the
authors which will be corrected here. This can be
done most easily in the treatment of the above-
mentioned problems. Not only will the fluctuations
in the steady kink be discussed but also fluctuations
in solitary states. These solitary states describe a
moving interface layer analogous to the evaporation
or condensation of a gas-liquid system with a plane
interface. In this case the quantum-mechanical ana-
log is the motion in an unsymmetric potential with
suitably modified boundary conditions for the ad-
mitted solutions.

During the writing of this paper the authors re-

ceived a copy of a paper by Magyari about the fluc-
tuations in the kink. It is our aim to give additional
results in the following.

II. SMALL FLUCTUATIONS IN THE
STEADY INTERFACE LAYER

(p(n)= —n +3n —pn+y (2.2)

and non-negative p, y. If p is smaller than the criti-
cal value 3, there exists a range of positive y such
that Eq. (2.1) has three steady (i.e., time-
independent) solutions 0&n~ &n3 &n2 which are
homogeneous in space. The solutions n&, n2 are
stable and behave in many respects like the densities
of the two gas-liquid phases. As the steady states
are not states of thermodynamic equilibrium, we
speak of a nonequilibrium phase transition. It is
easily seen that in adequate units Eq. (2.1) with
non-negative p, y is the most general form of a cubic
reaction diffusion equation for a positive definite
physical quantity which exhibits bistability of two
homogeneous steady states. Moreover, the dynami-
cal equation (2.1) is valid, at least in the neighbor-
hood of the critical point, for various other systems
with a phase transition of first order. Therefore, the
following discussion is more generally applicable
than with respect to the chemical model only.

As shown in Ref. 2 a certain chemical reaction
diffusion model leads to the dynamical equation

(2.&)

with
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In this Section and in Sec. III we discuss the coex-
istence case only in which, as shown in Ref. 2, the
unstable state n3 ——1 is the arithmetic average of the
stable states n i,n2. There also was shown expliritly
that by introducing

with Bessel functions J„ofinteger order n and with

X i +F2 =f8~ ip

For any kind of boundary conditions in x&,x2 the
separation ansatz

vo ——(n2 —ni )i2,

(2.3) g =u (g )X(x i,xi )e

leads to

(2.15)

the dynamical equation takes on the standard form with

v=V v-v(v -vo) .2 2 (2.5} (2.17)

v~ =votanh(crxi )=vga, (2.6)

The steady kink solution belonging to a plane inter-
face layer perpendicular to the x3 axis and separat-
ing the two homogeneous phases +vo is given by

The solutions u (g) of Eq. (2.16) are dependent on p
only, whereas the damping coeffirient A, of the Auc-
tuation inode, Eq. (2.15), depends on p and k. Since,
for a fixed value p, the value k gives only an addi-
tive term in A., we introduce

v —v =vog
assumes the foll

1(t =e (1 g)&2/+—b p
with

(2.8)

(2.9}

A.fter the change from the variable xi to g the
linearized differential equation for small deviations

The special modes with vanishing k have space
dependence with respect to x3 only. Moreover, they
are the least damped and thus constitute the most
interesting fluctuations.

As Eq. (2.17) shows, I, is proportional to 0 which
is a measure of the distance from the critical point.
It ls

2+
GX i Bx2

(2.10)

g =J„(kr)e'+ (2.13)

Application of S™1with integer /, m to the Legendre
function Pi (g) gives zero.

In paper I the differential equation (2.9) for P was
transformed to new variables. The transformation
used there, however, is not correct if the new vari-
ables are treated as independent, since the derivative
with respect to time then has a different meaning
before and after the transformation, dependent on
which variables are hdd fixed. In the following this
transformation will not be used.

Now let X(x&,x2) be the solution of the two-
dimensional boundary-value problem

(2.12}

leading to eigenvalues k. If, for instance, the boun-
dary conditions require vanishing X at infinity, there
exists a complete set of solutions

where 3 is the critical value of P. Thus the ap-
proach to the critical point is connected with a de-
crease of A, to zero, that means, with a "critical
slowing down. "

We can distinguish two classes of solutions u (g)
of Eq. (2.16) belonging to our problem. The first
one is the class of solutions u which vanish for in-

finite xi, i.e., for g =+1. Only two modes belong to
this class, the Legendre functions

u =&~i(g)

with p, equal to 2 and to 1. The first is

uG ——P2(g) =3(1—g') =-
cT Bxy

A small fluctuation of this type changes the steady
kink solution v~(xi ) into

v(x3) = 1+a v~(x3)
8

Bx3 }

=v~(x3+e) .

This is nothing but a shift of the kink in the direc-
tion. For this mode A, clearly vanishes because the
shifted kink is steady as well. This mode is the so-
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called "Goldstone mode. " Its existence is a conse-
quence of the invariance of the dynamics with
respect to a shift in x3.

The only time-dependent mode which vanishes at
infinity belongs to p = 1,

trivial Goldstone mode uG there exists one discrete
mode ul with the reduced damping factor A, =3o.
and a continuum of shorter-living modes u, with A,

greater than 40. . All modes show the critical slow-
ing down. The mode ul is of particular interest be-
cause it describes the long-time regression of pertur-
bations onto the original density profile.

sinh(ox3)= —3
[cosh(crx 3 )]' (2.23) III. MODIFIED POSCHL- TELLER

POTENTIAL
It is the first nontrivial perturbation mode and is of
particular interest because it describes the long-time
regression of a perturbation to the original density
profile.

Whereas the two values A, of this first class are
discrete, the second class of modes has a continuous
spectrum of A, . The second class is characterized by
the asymptotic behavior for x3~+ 00,

u, icos(qx3+5) .

The singularity at /=1 in the differential equa-
tion (2.16) leads to the existence of two independent
solutions with behavior differing by a circulation of
g in the complex plane around this singularity. By
convention the solution which behaves for (~1 in
the following way:

The one-dimensional potential

V(x) = —Vo[cosh(ox )] (3.1)

$2 Q2
+V(x)—E u =0

2m

of a mass point.
The differential equation (2.16) written in the

variable x3 is

+6o'[cosh(ox3)] —4o2+X u =0
Bx 3

is called the modified Poschl-Teller potential and is
used as a model potential in the Schrodinger equa-
tion

u(1+(g —1)e'2 )=e ' "u(g)
is called

(2.25)

and thus equivalent to Eq. (3.2) if we put

(3.3)

By Eq. (2.6) we obtain for the plane wave
' iq/20

iqx3 1+ge 1— (2.27)

Vo ———3o
m

A2
E —+

(g 4 2)
2m

(3.4)

(3.5)

Thus the solution u, which for positive infinite x3
becomes proportional to this plane wave, is propor-
tional to

~Apl(F(g ) (2.28)

A. =M +q (2.30)

The lower limit of this spectrum is 4o. and belongs
to

The solution which has the asymptotic behavior
equation (2.24) is

u = —,e' +2q (g)+ —, e ' H2'q~ (g) . (2.29)

These solutions belong to the continuous spectrum
of values

The different modes discussed in the preceding sec-
tion correspond to the following motions of the
mass point. There exist only two bound states with
negative energy value E. The lowest level

Eo———2A 0' /m, (3.6)

represents the long-living mode ul. These modes
are vanishing for infinite ~x3 ~. Then we have a
continuous spectrum of values E&0 belonging to
scattering states u, . For infinite x3 they become
harmonic ~aves of the form of Eq. (2.24) with

the ground state, corresponds to the Goldstone mode
u6. The excited bound state with

E, = —W20'/(2m)

u, =P2(g )= —,g ——,
3 2 1 E=R q /(2m) . (3.8)

= 1 ——,[cosh(o'x3)) (2.31)

Summarizing, we can state that apart from the

The wave number q in the x3 direction enters, due to
Eqs. (2.17) and (2.29), into the damping factor A, in
exactly the same way as the wave number k of a
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plane wave perpendicular to the x3 axis.
As a special case of the bound solutions of the

problem which will be discussed in Sec. V the solu-
tions of the Schrodinger equation (3.3) can be ex-
pressed by special hypergeornetric functions, so the
connection of the functions of Eq. (2.26) with cer-
tain hypergeometric functions can be traced.

make the analogy to a quantum-mechanical system.
We have to distinguish between the time derivatives
for fixed x3 or for fixed s

{4.8)

and obtain

IV. FLUCTUATIONS IN SOLITARY STATES

The static interface layer between two phases
n&, nz exists only if n3 is equal to the arithmetic
mean value n of n&, nq. If however it differs from
the latter

t(' = —L0+ ~1('

with the linear operator

L = — —2oa —+2o [ 2 3[—cosh(os)]
c)

Bs

(4.9)

n3 ——n+vpa {4.1) —2a tanh(os)] .

there exists, as shown in detail in paper I, a "solitary
solution" of the dynamical equation

(4.10)

v=V' v —{v—voa)(v —vo)2 2

for the deviation v of n from jT. This solution

v =vp g =vp tanh ( os )

s =x3 —ct,

{4.2)

(4.3)

(4.4)
ltd =e "'u (s)X(x (,xp) (4.11)

This is the equation of motion of small fluctuations
in the inertial system of the kink which describes the
moving interface layer.

In this inertial system there exist separable modes

describes an interface layer moving with constant
velocity

with X fulfilhng Eq. (2.12). Thus we obtain

Lu =Au, (4.12)

c =2' (4.5)

in the direction of the x3 axis like a fluid surface if
condensation or evaporation takes place.

If we insert the definition equations (2.4) and (2.7)
of o into Eq. (4.5), we easily obtain

where A, again is defined by Eq. (2.18).
If we write

L =Lp+aL)

with

(4.13)

c -(nz n, ) '—[y'(nz) —qr'(n
& )] (4.6)

which admits a simple interpretation. q (n;) are the
reciprocal lifetimes of small homogeneous perturba-
tions of the homogeneous steady states n; and Eq.
(4.6) states that c is greater, the larger the difference
between these reciprocal lifetimes, which is evidently
reasonable. For fixed value of this difference, c is
smaller, the larger the difference of nq and n~,
which is also clear because the conversion time of n

&

into nz (or vice versa) will increase with increasing
distance of n& and nq.

The dynamical equation

g =vp(1 —3g +2ag )1( +V g (4.7)

for small fluctuations vpl( from v was transformed
in paper I from the variable x3 to g. For the same
reason as given in Sec. II this transformation was
not correct.

We shall give here a correct transformation with
the additional slight change that s will be used as a
new variable instead of g because it serves better to

L
~
———20.——40. tanh(os),

a 2

Bs

the Goldstone mode

(4.14)

uo — o(1—g
——),

Bs
(4.15)

which is a small shift in the inertial system of the
kink, leading from v(s) to

Bv
v(s +e)=v+e

Bs

fulfills

L)uG ——0

in addition to

LpuG ——0.

(4.16)

(4.17)

(4.18)

This again reflects the invariance of the original
problem against time shift. The shape of the Gold-
stone mode is independent of the velocity c.



2702 F. SCHLOGL, C. ESCHER, AND R. STEPHEN BERRY 27

V. SCHRODINGER EQUATION
OF FLUCTUATIONS

IN SOLITARY SOLUTIONS

which differs from a Schrodinger equation similar
to Eq. (3.2) by the occurrence of the derivative of
first order. This term can, however, be removed by
a transformation to Liouville's normal form

u =e ' 'g(s)

which leads to

(5.2)

With g defined by Eq. (4.3) the differential equa-
tion (4.12) for u has the explicit form

2

+2ao +[2o (1—3g +2ag)+7)]u =0,
ds~ ds

(5.1)

[see Eq. (4.12)] by carefully analyzing the
Schrodinger potential V(s) of Eq. (5.5) which is
schematically depicted in Fig. 1.

The behavior of the Schrodinger function g(s) in
the asymptotic region s~+ ao is given by

1/2

i)(s)~exp + [V(+oo)—E] s
2m

(5.10)

With the expressions (5.6) and (5.7) this yields

i)(s)~exp{+[(2+a)'o —I,]'/~s
j . (5.11)

Equation (5.2) then gives us the asymptotic behavior
of our perturbation u,

u (s)= A+exp[( —o +b ~ )os]

+[2o (1—3g +2og) —o a +X]i)=0 .
ds

(5.3)

where

+B+exp[( —o b~ )os—],

[(2+o)2 g/o2]1/2

(5.12)

(5.13)

This form now is equivalent to the Schrodinger
equation (3.2) with

f2
V(s)= ——o [3(1—g )+2ag] (5.4)

= ——o [3[cosh(os)] +2a tanh(mrs)],
m

(5.5)

and where the upper and lower signs belong to
s —++ oo, respectively. Now we have to require that
u vanishes for both s —++ 00 and —~. As a is posi-
tive this means that B has to vanish. A+ and B+
then are determined up to a common factor. If A+
is not zero by accident, the range of possible values
A. is given by

A.
~

——4(1—a)o &A. &A,3

E= [X—(4+a')o ] .
2m

(5.6) =4(1+a)cr (5.14)

V(+m)=+2 —o' a .
m

The minimum is

(5.7)

The potential V(s) is unsymmetric in s not only for
finite s. The values of V are different for s =+ oo

and —oo,

It is easily seen from Eq. (5.12) that the part

k~ ——(2—a) o. &A, &A3 (5.15)

belongs to modes which constitute damped oscilla-
tions in space for s~+ 00, whereas the other part of
the spectrum belongs to monotonically damped
modes.

a
Vmin = 3 + 1+

m 9
(5.8)

belonging to

g =tanh(os) =a/3 . (5.9)

As n3 lies between n& and nz Eqs. (2.4) and (4.1)
show that the parameter a varies between —1 and
+ 1. From Eq. (5.3) we see that a change of sign of

a is equivalent to a change of sign of s; that means a
space inversion. Thus we need only consider posi-
tive a.

We can already obtain deep insight into the nature
of the spectrum of the non-Hermitian operator L

FIG. 1. Potential V(s) and eigenvalues E of the
Schrodinger equation belonging to the fluctuation regres-
sions in the solitary solutions. E~ is Goldstone mode, EL
long-living discrete mode. Between E~,Ez lie the continu-
ous modes with monotonic decrease in space, between
Eq, E3 those with damped oscillations in space.
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g =tanh(os) =2z —1,
Eq. (5.1) takes the form

z (1—z) +(1+a —2z)
6f u du

dz Gfz

(5.16)

It should be noted that (5.14) is not the only possi-
bility to get nonexplosive solutions, (5.12). Another
possibility is that A, is smaller than the upper limit
of (5.14) and A+ is zero by accident. This is just the
case for the discrete modes of our problem which we

discuss in the following. By a transformation

is the Goldstone mode u~. The second case belongs
to the value —1 of n and represents the bound state
ul With

1

p =-, {1—a),

q = —,{1+a),
AL ——30(1—a ).

(5.29)

(5.30)

(5.31)

The corresponding solution gL of Eq. {5.22) can be
expressed as a polynomial of first order by a recur-
sion formula for the coefficients

p —a —1 p+g +1+ u=0,
z 1 —z

gL (z) = 1 —2z /(1+ a) .

That gives
' u/2

uL,
——(1—g) (u —g)1/2 1+0

1—

(5.32)

(5.33)

In the ansatz

u =(1—z)szsg(z), (5.19)

g(z) becomes a power series uniformly convergent at
z =0 and z =1, that is for s =+ oo, if

p —Qp +Q —1+p=O ~

q +aq —a —1+p=O .

(5.20)

These equations are connected to each other by a
change of sign in a. The differential equation for g
then ls

z(1 —z)g"+[y—(1+a+P)z]g' —aPg =0

(5.22)

=e'~'[a —tanh(as)]/cosh(os) .

A remarkable feature of the spectrum of our
operator I. can be seen in Fig. 2. At

~

a
~

= —, the
eigenvalue A,l. crosses the lower boundary of the
continuous spectrum A, &. This means that uL for

i
a

i
& —, no longer describes the long-time regres-

sion of the fluctuations onto the profile of the soli-
tary solution. As there is no longer a separation of
time scales, the regression of perturbations can be
expected to be quite complex.

&=p+q —2

p=p +g + 3»

y=1+a +2q .

(5.24)

(5.25)

The polynomial solutions g(z) of Eq. (5.22) are
the hypergeometric functions

g =F(a,p, y;z) (5.26)

A,G
——0, (5.28)

with a or P an integer negative number including
zero if, moreover, p, q both are positive definite.
These conditions allow only two cases which give
two bound states. The first, belonging to vanishing
a and thus due to (5.18), (5.20), (5.21), and (5.23) to
the values

(5,2'7)

FIG. 2. Spectrum of the reduced damping factor of the
fluctuation modes in the solitary solution. Xq, XL are the
discrete modes. Between XI,X2 lie the continuous modes
without oscillations, between X2, X3 those with damped os-
cillations in space.
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VI. COMPARISON WITH PAPER I

The dynamical equation of the fluctuations in the
steady kink (2.9) is identical with Eq. (3.1) of paper
I. As carried out in paper I, the transformation of
this equation to the new independent variables g;
was not correct. Here the transformation is avoided
altogether. The results differ in the following: The
fluctuation modes correctly derived are separable in
time and space, unlike those given in I. Moreover,
the spectrum of the modes has a continuous part.

The fluctuations in the solitary kink solution ful-
fill Eq. (4.7) which is identical to (4.12) of paper I.

The transformation in paper I from x3 to g was not
correct and is here replaced by the transformation
from x3 to s. Unlike paper I, this paper is not re-
stricted to small values of a, that is, to small veloci-
ties of the solitary kink. The development of the
theory for finite a brings in a new set of nontrivial
results.
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