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Wigner-Kirkwood expansion of X-body Green's function:
The case with magnetic field
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A systematic method is given to compute the semiclassical signer-Kirkwood expansion
of the off-diagonal thermal kernel of an X-body quantum system.

I. INTRODUCTION

%e consider the X-body quantum system with
Hamiltonian (p = 1,2, . . . , d¹dis the dimension of
space M =8Ã)

H= g [p„—Aq(q)] + V(q),„,2m

where p& ———i fiB/Bq" in the coordinate representa-
tion and q =(q', . . . , q ). Our purpose is to give a
systematic method for computing the semiclassical
%'igner-Kirkwood expansion of the off-diagonal
thermal kernel

P( X
l
Xo;P)—:( X

l
exp( 13H )

l
X—o)

[P=(kT) ']. Such an expansion has recently been
obtained in Ref. 1 for the case in which the Hamil-
tonian H does not contain linear terms in f„[i.e.,
A&( q ) =0]. Our method uses a functional integral
representation of the heat kernel and is a generaliza-
tion of a method that we have presented in Ref. 2.

In Sec. III we treat the exactly solvable model of
X harmonic oscillators in a constant magnetic field.

II. SIGNER-KIRK%OOD EXPANSION

A. Functional integral representation
of the heat kernel

The heat kernel P( q l Xo,P)=( q l
U(P)

l Xo),
U(P)—:exp( PH ), satisfies —the differential equa-
tion (q =A')

with (B&=B/Bq& and a sum over repeated indices is
understood)

where V=—(1/2m ).4„A&+ V. Comparing with Eq.
(1) of Ref. 2 we can see that the method we used

there to obtain a %KB-type (%entzel-Kramers-

Brillouin) expansion needs a slight generalization

here due to the dependence on v r) of the term linear

in the derivatives in (2). If this term is absent the re-

sults of Ref. 2 can be used directly and lead to the
expansion obtained in Ref. 1.

Following Ref. 2 we call Q" and P„ the operators
of multiplication by q" and —iqB&, respectively; the
commutator is [ Q",P„]=ir(5„„Then U. (P) satis-
fies

i' =H'( Q, P ) U(P), U(0) = l

with

H'=ipse( q ~Q, ir(B„~P„—)

given by

+ ( P„&„(Q )+3„(Q P„) i r) V( Q )—, (4)
2m

P(q
l

Xo,p)=~, q;g P(q
l

Xo,&) (l)
Bq

and consequently one can write for P( X
l

Xo;P) the
functional integral representation '

P(X
l Xo,p)= I ~ g&gexp —j dr[P„(r)Q"(r) H'(Q(r) p(r))]—5(Q(f3) —X)5(Q(0)—Xo),

yl[ & /2) p P
(5)
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where H'( Q, P ) is obtained from H '
by the replacement Q ~Q (t), P~P (t), i e.,

H' = — Pp + P„Aq( Q ) i r—i V ( Q ) .

In (5) the symbol yl( —, ) stands for midpoint discretization ' and defines the functional integral in (5) as limI„,
n~ao, with

n n+1 d P.
I.=f gdQ; g exp —g P,„+ P,„— ~Pi„A„(Q,)+irtV(Q, )

2m')M g, ,
'" e 2m '" m

+ 1

where ( n+1) =eP, Qo
——Xo, Qv+1 ——X, and QJ = —,(QJ ~+QJ. ). At this point we can see according to the dis-

cussion in Ref. 2 that the associated "classical" problem for the semiclassical WKB-type expansion (in A'= v t)
here) is determined by the Hamiltonian Hl ——H'(g=O)=——(i/2m)P&. But before doing the corresponding
displacement in (5) and (6) it is more convenient here due to the simplicity of H to perform the Gaussian d Pj
integration and to work with the configuration-space path integral. Doing this in (6) one has

M/2 n+1
dQ;exp e g ' 3„(Q, ) —V( Q, )

We now do in (7) the displacement Q (t)= x (t)+ v t) q (t) which in the discrete is QJ ——xJ +v rt qj, xj ——x(t ),
t =jr, j=0,1,..., (n+1},and x (t) is the solution of the classical problem determined by H& ——H'(g=0) [here
the free-particle problem for the boundary conditions x (0)=Xo, x (P) =X ]. Consequently,

hXx(t)=Xp+t, hX =X—Xp,

and we see then that qo=q„+, ——0. One obtains [6 xj—= x(t~ ) —x(tj &), .6 q,
—= qj —q, , ]

M/2 n+1
dq;exp e g

j=l

Aqj".
+vg A„( xJ+v r) q~}

—V( x +vqq )

with qi= —,( qj 1+qz). We note that the argument of A„ in (9}should be xj+v rtqj. , xj ——,( xj 1+xj), in-

stead of xj+v g qi as we wrote; however, the difference is O(ev e) since hql =O(v e} and consequently plays
no role. Finally, we have for P( X

~
Xo,'P) the path-integral representation

P(X
i Xo,p}= f & q exp ——f dt (x"+~gj")—iVrt(x" —+~g j")

yl(l/2) q p

X A„( x(t)+v g q (t))+rtV( x+v ri q ) 5( q (0))5( q(p)) .

(10)

In (10) y&(1/2) indicates midpoint discretization as specified in (9); this is important in the term
( x"+v g j")2„(x+ v g q(t) ) since it tells us that we can do partial integrations using the normal rules of cal-
culus.
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B. Semic1assica1 expansion

The next step is to develop the integrand in the argument of the exponential in (10) in powers of A'= v g. In
the first term

f dtx"q"= —f dtq"x"=0

since i]'=0, the development of Vis

, c„, „(t)q"'(t) q""(t), c„, „(t)= —B„B„&(x(t)),
n&0

and that of the A„ term is (see Appendix A)

f dt Q"A„(Q ) i & -„z-——f dt[x"A„( x(t))—fix"F„„(x(t))q"(t)]

f dt[(n —1}q"q '
q

" '(Bp B~ F„„)q"
5 N2

+x"q '
q

" '(8 8 F )q "]&n —l
~n —1

In (12), F&„——B&A, —BP& is always evaluated at x(t) and x"(t)=~"/P. Using these developments we obtain
from (10)

P(X
~

XO,P)=exp f dt — (x")~+—x"A (x(t))—V(x(t)) I,
2q A'

I= f, ,&q exp f dt ——( q") iq "Fz„x"—+K( q, t,A) 5( q(0))5{q(P)},

where K =g„,fi"K„with

1 InE =—c (f)g 0 ~ 0

5 t P'ty e ~ ~ PP"ts

(Plg~g g 8 8 I' g +x~g g 3 3 I' q )
~1 I tt —1 v ~1 I'n

(tt +1}{

For practical purposes it is convenient to eliminate
in (14) the term b„(t)q",

b„(t)= i'„{x(t))—

doing a translation q(t)~y (t)+q (t), and deter-
mining y (t) by

y' "(t)= ——b„(t), y"(0)=y "(P)=0 .1

The solution of (16) is

P
y&(t)= f, d '6t( , t')tb„( ')t

with

i)(t, t '}= — [e(t t ')t '(t —p—)

+e(t ' t)t(t ' P)] . — —

Owing to the boundary conditions of (16) one still
has q(0) =q(P}=0 and one obtains from (14)

I= exp f dt ——(y") +b~~m
0 f„„„&qexp f, « (q")'+K y+—q—,tA) &( q(0))5( q(P)) .

Using (16) one has

f dt ——(y&) +b~" = —, f dtbq(t)y&(t) .
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We call I' the functional integral in (19). In order to set up the R expansion we compute it as usual in the
form

PI'= exp dt K( y +q, t, A') Zo[ J ] l
-,

where

Zo[ J ]= f & q exp f dt ——(q")'+iJ„(t)q" 5{q(0))5( q(P)) .

The value of this Gaussian path integral is well known; in fact, since
' M/2 ' M/2

n—M/2 il217'6;
1

2%6

it is the same one (apart from the factor q
'

) as in Ref. 2, formula (27), for H] ———(i/2m)p&, as it can be
seen reintroducing the N p integration. Its value is

' M/2

Zo[ J ]= P
exp ——,

' f dtdr'J„(r)b, (t, r')J„(t') (23)

where A(t, t '}=h(t ', t) was defined in (18}. We de-
fine now K(q)=E(y+q) —I{ (y), which is of the
form K= g„,A'"K„with K„(q)=K„(y+q)
—K„(y), E„given by (15). Then one obtains from
(21)

I '= exp[ W]Zo[0]I',
P

W= g r" )T„=f dt g A"K„( y ),
n&1 n&1

I'= exp f dt K{q(t), q(t))

and that this is necessary for the action of

exp f dtK

on Zo[J] to be well defined as we shall see. Using
the identity

1 8 - 1 8F — Z{ J )l- =Z — F(q )
la gJ a g-q

we write I' as

&Zo[ I ll-r o, Zo[J]=Zo[J]iZo[0]

At this point we should remark that the original
midpoint discretization in (10) implies that the in-

tegral in the exponential in (21) is to be interpreted
as"

f dt K(q(t), q(t))
P

lim f dt K[ , (q(t+e)+—q(t e)),q(t)]—,
0+

P
exp f dt K( q, q)

1I'= Zo
iraq

I'=1+ g fi"I„'.

Each term in the development of

exp f dtK

will be of the form

+ 0

Since K is a power series in R, (25}shows that

(27)

f ddt; ddt, 'q '(t, )
. . q"'(t, )q '{t', ) .

q "(tk)f„„,, (t, ,t,')

and the action of Zo on (28) tells us that we must do
there all two point contractions

jqr (t)q"](t')=5„+(t,t')=, , (2»)

jq"(r)q" ](t')=5 g(t, t')=-
r

[ q"(t)q'](t ') =5„+(t,t ') =
t

(291)
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82
D(r, t ')=,A(r, r ')

at at'l, 1
5(t —t ') ——

Pl
(30b)

[q"(&)q"j(t ') and [q"(r)q "j(t ') at t=r ', the former
is defined since h(t, t ') has no discontinuity at t =t '

and takes the value —(1/mP)r(t —P); but this is not
the case for the latter since S(t+e, t)&S(t,t+e),
@~+0. But (26) tells us that

%e have drawn in (29}a graphical representation of
each contraction in order to represent in the usual

way by Feynman graphs each term in the expansion
of (27). We note that due to the form of E (linear in

j) the contraction (denoted by curlie braces}

j q"(r)q "j(r ') will always occur at r&t ' and conse-

quently there is no problem with the 5(t —t') in
(30b). However, one will have in the expansion

[q"(r)q"j(r)= —, [ j q"(r)q" j(r +e)

which is
+ j q"(t)q" j(r —e)]

I q"(r)q" j(r)=5„„(p-2r) .""2mP

Finally, one then has

P{X
~

XO,P)=PwKa(X
~

Xo'P) exp( IV)I
' M/2

Fwva( X
I Xo,P)=

2mrlP

P
exp — bX"dX"+ f dr ~"A ( x (r))—V( x (r))

2r{P rp

f dt dt 'F»( x (r))F„(x (t '))b(t, t ')
2P2 Q

All the singular dependence on fi is in (32) since I'
is a power series in A' containing all the corrections
to the semiclassical %'KB approximation. Formula
(27) shows that I' is of the form I'= exp(8'),
IV=+„&A'"W„, with IV given by (27) but keeping

only the connected graphs. The first correction
term 8'& is

m, =zo-
g-+ o

dtlt i( q, q ) i-
q

q=0

i ~I' f drr{r 13)r)„F»( x(—r)) . (33)
2mP

For 8'2 one obtains, when 6 X=0, the result

8'2(h X=0)

[pB„V(XO)B„V(XO) —2B„B„V(xo)]

1 P F„„(Xp)F„„(XO).
48 I (34)

%e remark that, apart from the phase factor dLX"A&
in (32) giving the well-known transformation prop-
erty of the kernel under a gauge transformation, the
rest of (32) and the corrections are gauge invariant
as they should be since they are all expressed in
terms of F„„.

I

development of (27), then one can see that
y&-O(P), y&-O(P ), 6-0(P), S-O(P ),
D -O(P '), and consequently one can count
q-O(P'~ ), q-O(P '~ ); moreover, x (r)~XO
+t hX, and each integration over dt gives a factor
P. As a consequence of all this one can easily check
(using x "=~"/P) that each W„ is a finite polyno-
mial in P with power P', 1& n (the same for 8'„).
Thus we have obtained at the same time the high-
temperature expansion.

One should notice that in (32) the last term in the
argument of the exponential is O(P) and should then
be included in the corrections, while the rest of (32)
gives the singular dependence in P. In Appendix 8
we explain briefly how to obtain the high-
temperature expansion as a direct application of the
methods we have developed in Ref. 2.

D. Classical partition function

The classical partition function can be obtained
putting 6X=0 in PwKp and integrating over d Xo
dividing by ¹!to take into account the indistin-
guishability of particles, i.e.,

Zci=(NI) ' f d XoPwKs{E X=0)

with
M/2

C. High-temperature expansion
~wKs(h X

2mgP
exp[ —PV{ Xo)] .

We notice that IV„ is always a polynomial in P.
In order to see this, it is enough to scale t~Pt in the

One easily checks then doing the d p integration
that
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Z, l
—— f d q d p exp[ P—Hd( q, p )],

¹!(2m%)
Z ] 2

Hb —— i— I'3+1)—AQ3
2m

(38b)

where

(p g )2+ P'( ~q )
2m

III. HARMONIC OSCILLATOR
IN CONSTANT MAGNETIC FIELD

(35)
Because the third degree of freedom is decoupled
from the first two the one-particle propagator is it-
self a product of two factors I', and P~, belonging to
Hamiltonian operators H,' and H~, respectively.
H,' is quadratic and has no ordering problems.
Therefore we can immediately write the associated
propagator in the form '

Consider the system of X three-dimensional har-
monic oscillators in a constant magnetic field. It
can be solved by making some simple considera-
tions. Because there is no interaction between the
particles the N-body Green's function is the product
of N one-body Green's functions and it is enough to
consider one of them. The one-particle Hamiltonian
is

H= g [P„+&„(p)]'+&(q)
2m

1
P, =

27Tl 'g

c»

ag, agt' exp ~c»

(39)

with M, » the classical action for the two-
dimensional system with Hamiltonian H,' and La-
grangian [here Q=(gl, gz)]

W,'( Q, Q )=i( —,mQ +tv I)crg3QI+ —,I))I.Q ) .

with, in the case of a magnetic field in the third
direction,

A„(q )=—aq, 5„I,
V( q ) = —,X( q, +q3+q3) . (37b)

+~ ~'QI+-, ~(QI+QI)
2m

(38a)

Applying the general method of Sec. II one obtains a
functional integral representation of the form {5)
with H'=H, '+H~

H,' = i —(P I +PI )+ PI QI
1, , V I)cr

2m

The extremal path for the boundary conditions
Q (P)=Q, Q(0) =Qo is given by

U( )
sinh[co(p —t))

Q
sinh(coP)

(41)

sill11�(
CO/ )

1vq~ 0 —I
exp

2 m
2

V I)cr I)A,+
m m

Computing the action and the Van Vleck deter-
minant, one then obtains

exp —— . [ cosh(cop)( Q'+Q o)—2( Q, U(P) Qo)]2III) sinh(co ) 2gslnh(co )

—2~ (Q2Q I
—QOZQOI )

2 7l

The propagator associated to Hb is simply
»/2

III COe 2 2exp — . [ cosh(coop)(Q3 +Q03 ) —2Q3Q03]2I) Slllll(co )

meso

2@I)sinh(Coop).

with a)o ——qA, /m.

{45}
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F:F„—„(a (u, r))
BA BA

Owing to the form of (A3) we see then that all the
successive derivatives will be expressed in terms of
I'&„. Proceeding in the same way one obtains

8"M
( 1)

8 Ba ~(„2) Ba
Bu" BQ

APPENDIX A

%e put a"(u, t )=x"(t)+uq "(t}and

M(u)= f dta" (u, t)A„(a(u, t))—: ,A(a)
P BQ

at'

T

BQ Bo'

i3u

an

((j ~ ~ - (j p )

(A1)

Then the quantity we want to develop in powers of A'

is

since o,'(0, t ) = x (t), Ba"/Bu =qI'(t), one then ob-
tains (12).

APPENDIX 8

M(e)= g —,
„~0 &I Bu"

8 Ba Ba Ba
Bu dr dr Bu

but the first term gives

(A2)

P ( q i Xc,.p, r ) =—( q i
exp( rpH )

i Xo—),
then P(t = 1 ) =P( q ~

Xo,p). One has

P( q )
Xo—~p~r)=W ~q~p P

Bt Qq
(B2)

The P expansion can be obtained as follows. Con-
sider

8 Ba
A

Ba Ba
r)t Bu Bu Bt

by partial integration and then

with

fi
BqB„— P(de„+Aq dq) PV(q) . —2' 2@i

(83)

where

Equation (82) is exactly of the form of Eq. (l) of
Ref. 2 with P playing the role of rl; and we can then
use without changes the results of Ref. 2.
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