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of spherical particles

Kohji Ohbayashi, Tomoharu Kohno, and Hiroyasu Utiyama
Faculty of Integrated Arts and SciencesH, iroshima Unioersity, Higashisenda ma-chi, Hiroshima 730, Japan

(Received 24 November 1982)

The non-Markovian Brownian motion was studied by photon correlation spectroscopy on

spherical particles suspended in viscous Auid. The non-Markovian property has been ex-

pected to give rise to a long-time tail proportional to t ~ in the velocity correlation func-

tion and, correspondingly, a term of the form piquet'~' in the argument of the exponential

function of the photon correlation spectroscopy. Measurements were done on polystyrene

latex spheres of 0.804-pm diameter suspended in pure water. Results of the experimental

determination of the coefficient p iq2 at three different temperatures were 0.397+0.035 s

at 32.8'C, 0.326+0.029 s '~ at 28.0'C, and 0.267+0.027 s '~ at 23.5 C, the coiTespo d-

ing theoretical values being 0.409, 0.346, and 0.293 s '~, respectively. Thus there is good

agreement between the experimental values and the theoretical predictions.

I. INTRODUCTION

Alder and %'ainright first found a long-time tail
of the velocity correlation function in their cornput-
er simulation of the molecular dynamics and
demonstrated that the tail was related to the slowly
var ying velocity field around the particle con-
cerned. ' Many theoretical studies have been done
on the problem since then. For example, it was
soon shown that the memory effect of the Brownian
motion can be explained by the kinetic theory and
hydrodynamics, if we use a general expression of the
drag force acting on the spherical particle. ' If the
Stokes formula is simply used for the drag force, the
Brownian motion will become Markovian, Gaussian,
and linear. Such a Brownian motion may be regard-
ed as ideal. Interestingly, the typical Brownian
motion is expected to be non-Markovian according
to the modified theory. This is a realistic simple ex-

ample of the non-ideal Brownian motion. The
theoretical method to treat such non-Markovian,
Gaussian, and linear Brownian motions is well estab-

lished, but the experimental tests on a real system
were not sufficient to form a clear conclusion.

The diffusion coefficient calculated with the
modified theory is exactly equal to the conventiona1
Einstein-Stokes formula. Therefore, a direct mea-
surement of the time dependence of the correlation
function is necessary to test the validity of the Inodi-
fied theory. A few works have been done with this
purpose. The existence of the long-time tail was
verified qualitatively by neutron scattering on sim-
ple Auids. The presence of the memory term in
the drag force was demonstrated by the observation

of a decay in the particle motion after acceleration
by a shock wave. ' The velocity correlation function
in the natural Brownian motion was directly ob-
served by Fedele and Kim and the long-time tail was
sho~n much larger than that predicted from
theory. " Feasibility of a long-time tail observation
with the photon correlation method was proposed by
Harris. ' The density correlation function observ-
able by the photon correlation method may, in fact,
be simply related to the velocity correlation func-
tion. The measurements by Boon et al. showed the
existence of the long-time tail in the photon correla-
tion function. ' Recently, a very accurate and
quantitative determination of the long-time tail has
been made by Paul and Pussey. '5 They obtained a
definitely smaller value for the long-time tail than
that predicted theoretically [about (74+3)%]. Thus
the long-time tail was observed by all the experi-
ments so far published, but its magnitude did not
agree with the theoretical prediction. It was not
clear whether this discrepancy was due to experi-
mental artifacts or to the neglect of some important
terms in the theory.

In this paper, we report a photon correlation
study of the Brownian motion of spherical particles
in water. The long-time tail we observed was only a
few percent smaller than the theoretical prcdiction.
The temperature dependence of the long-time tail
also agreed with theory.

II. THEORY

The conventional theoretical model describes the
dynamics of a spherical Brownian particle suspend-
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term describes the effect of the accelerated Auid
Aow around the particle, which eventually affects
the particle motion after a travel in the Auid. This
term has a meInory effect and the stochastic process
described with this equation is thus non-Markovian.
Historically, as Mazur and Bedeaux mentioned, '

the left-hand side was derived in 1903 by Bous-
sinesq, who extended Stokes's work. Einstein men-
tioned that his theory was an approximation due to
the neglect of the inertia term. "

The velocity correlation function derived from the
simple Langevin equation, Eq. (1), is

(u(0)u(t))=(u )P(t)=(u )exp( t/r)—, (3)

where (u ) =kttT/m and r=m/P. This is a single
exponential function. The derivation of the velocity
correlation function from the modified equation,
Eq. (2), has been discussed by many authors. ' '

Here, we use the expression derived by Kubo

FIG. 1. Normalized velocity correlation function

P(t)=( (u0) {ut))/(u2) plotted as function of the re-

duced time t/~ for different values of o. Curve a, o =0;
b, o =0.477; c, cr=1.70; d, o =3. Broken lines are the
long-time tails (cr/2a'/ )(t/v) '/ for the corresponding

values of o.

ed in viscous Auid by the simple Langevin equa-
tion

mu (t )+pu (t)=f(t),
where u (t') ls the velocity of the particle at time t, m

the particle mass, and f (t) is the random force. The
frictional coefficient p is given by the Stokes equa-
tion p=6ma r), where g and a are the viscosity of the
fluid and the radius of the particle, respectively.
This equation is based on the idea of Einstein. '

The equation has been shown to be an approxima-
tion due to neglect of the effect of the Auid Aow

around the particle which is generated by the ac-
celerated motion of the particle. The hydrodynamic
drag force on a spherical particle moving in an arbi-
trary manner can be derived using the Navier-Stokes
equation. ' Then, the appropriate Langevin equa-
tion becomes '

mu(t)+ pu(t)+ —,rra 3u(t)

+6a (mr)p)'~ J,&2
dt'=f(t) . (2)

6(E )

Here, p is the density of the fluid. The third term
on the left-hand side is the inertia term. The fourth

(u(0)u(t) )

2) 1 " m'exp( z't/r) &—
(~2 1 )2+ 2 2

where (u') =ktt T/m', r=m" /P, with m*
=m+ 3 gapa, and o =[9p/(2po+p}]'~2, with po be-

ing the density of the particle. This equation can be
related to the expression derived by %'idom.

Equation (4) shows that the dependence of the
velocity correlation function on the reduced time
(t/~) is determined solely by the dimensionless
parameter o. For usual Brownian particles, such as
a polymer in water, the density of the particle is
nearly equal to the density of Auid; for example,

po ——1.03 g/crn for polystyrene latex spheres, and
o.=1.70. Two other realistic limiting cases are a
heavy particle such as gold (po ——19.28 g/cm and
o =0.477) and a light "particle" such as a bubble in
Auid (po ——0 and o =3). The results of the numerical
calculation of the velocity correlation function for
these three cases are shown in Fig. 1. In the limit of
o~ 0, Eq. (4) tends to Eq. (3), which is shown with
the dotted line in Fig. 1. The lighter the Brownian
particle and hence the larger the value of o, the
larger the deviation from the single exponential. In
all the cases of o.~0, the velocity correlation func-
tion approaches

(u(0)u(t))~ (u )(tr/2'' )(tlat)

in the time region much longer than ~. This is the
long-time tail. The long-time tail was first observed
by Alder and %ainright in their computer "experi-
IIlcnt of molecular dynaIIlics. ' Their numerical
calculation revealed that the appearance of the
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validity of the modified Langevin equation.
In this work, the photon correlation method was

used to observe the Brownian motion of polystyrene
latex spheres suspended in water. The method cal-
culates the autocorrelation function of the scattered
light intensity I,(t). Under ideal experimental con-
ditions, we can observe the photon correlation func-
tion g' '(t)=(I, (0)I,(t))/(I, ), which is related to
the velocity correlation function by

g' '(t) =1+exp[ Bg(—t)],
where 8=2Dk, v and

P(r)=r '
J p(r')(r r')d—r'. (8)

The scattering vector k, is related to the scattering
angle 0 as

k, =(4mn /A, )sin(0/2),
10

10 10
tlat

10 10

FIG. 2. Plots of f(t) in the photon correlation function
g' '(t)=1+exp[ Bg(t)], w—here B=2Dk, t. Lower hor-
izontal axis represents the reduced time tl~. Right-
hand-side vertical axis and the upper horizontal axis
represent, respectively, the value of BP(t) and the actual
time calculated for the light scattering from polystyrene
latex spheres with a diameter of 0.804 pm suspended in

water at 25'C. Curve a, calculated with the Einstein-

Stokes-type velocity correlation function; b, calculated
with the Kubo-Widom-type velocity correlation function;

c, long-time approximation P(t)=tie 2o(t/rrr)'— f(r) r/r 2o(r/re)'" —. (9)

The presence of the second term on the right-hand
side of Eq. (9) is the memory effect related with the
non-Markovian property of the Brownian motion.

where n is the refractive index of the sample and A,

is the wavelength of the incident radiation. For the
case of o =1.70, the result of the calculation of g(t)
with the use of the Kubo-Widom-type velocity
correlation function, Eq. (4), is shown in Fig. 2.
Also shown in this figure is l((t) for a=0, which
corresponds to the Einstein-Stokes-type velocity
correlation function, Eq. (3). The difference be-
tween the two functions is large near t/~=1. The
broken curve in Fig. 2 represents the approximation
of P(t) in the long-time region, which is written as

long-time tail could be explained in terms of the
slowly developing viscous flow around a particle.
The Brownian motion of the spherical particle
described by the modified Langevin equation, Eq.
(2), is a typical example showing such a long-time
tail and is also a quite good system for the experi-
mental test of the memory effect associated with
non-Markovian nature of the stochastic process. Al-
though the time dependence of the velocity correla-
tion function changes largely depending on the value
of cr, the diffusion coefficient D calculated from the
velocity correlation function using the Green-Kubo
formula is independent of cr. Substitution of Eq.
(4) in the formula yields

D= J (u(0)u(t))dt=k~T/6nag . (6)

This is just the relation derived by Einstein. ' A
direct dynamic measurement of the correlation func-
tion is, therefore, needed to test experimentally the

III. EXPERIMENT

A. Apparatus

The experimental apparatus is schematically
represented in Fig. 3. The light source was an Ar-
ion laser operated at A, =5145 A. The output power
was usually controlled to 260 mW. The laser beam
was focused with a lens of focal length f=55 cm.
The diameter of the beam at the output of the laser
was DI ——1.5 mm. The sample was set at the focal
point of the lens and the approximate effective ra-
dius of the beam at the scattering volume was es-
timated as cr~=2Af/rrDI —0. 12 mm. The light scat-
tered at right angles was made to pass through two
identical apertures. The aperture was square shaped
with d =0.45&(0.45 mrn . The separation of the
two apertures was L =62 cm, which was long
enough to satisfy the coherence condition
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FIG. 3. Schematic illustration of the experimental apparatus. Two arrangements of the light scattering cell are shown

in the inset. For details see the text.

d /L, g k/no, where no is the refractive index of air.
The actual scattering angle was determined to be
8=90.0+0.2 degrees from direct measurement of
the arrangement of the optical assembly. The scat-
tered light was divided with a half mirror and
simultaneously detected with two separate pho-
tomultipliers, PM 1 and PM 2. The cross correla-
tion between two signals from the two photomulti-
pliers was measured. This procedure was used by
Burnstyn et al. to eliminate correlation of the after-
pulses from the photomultiplier. A glass plate was
used to refIect a part of the incident laser beam and
to monitor the fluctuation of the laser light with a
photodiode. The output of the photodiode was con-
nected to a compensator, which is an electrical cir-
cuit to perform the division of the pulse density to
compensate for a small intensity fluctuation of the
laser light. The details of the circuit will be reported
elsewhere. The compensator also included a
derandomizer which made the incident signal pulses
synchronous to the clock pulses of the correlator.

The correlator was the clipping type with one-bit
(binary digit) shift registers as the delaying com-
ponent. The circuit constructions were similar to
that reported before3 but a few modifications were
made. One is the addition of a circuit to determine
the background of the correlation function. The
main part of the correlator calculates the correlation
function at 208 channels. The circuit was designed
to delay the signal by 25600 channds after the 208
channels and then to calculate the correlation func-
tion at an additional 16 channels for the determina-
tion of the background. The output of the correla-
tor was connected to a NOVA3 minicomputer to

analyze the data.
The temperature control was also a very impor-

tant demand in this experiment. The temperature of
the outer can of the sample holder assembly was
controlled to +0.1'C with the circulation of
temperature-controlled water. The sample holder
within the ean was also temperature controlled with
an electrical circuit. The circuit could control the
temperature to +0.005'C for one scan of about
three hours. The measurements were repeated for
about ten days and the temperature control for the
total period was better than +0.02'C.

B. Sample

The polystyrene latex particles used as the sample
were obtained from Dow Chemical Co. The catalog
radius and the deviation are a=0.402 pm and
o.,=0.0024 pm„respectively. Dilute suspensions
for the light scattering experiment were prepared
from a stock suspension (10% solid) as follows. ' A
small amount of latex was diluted with freshly
prepared deionized and double-distilled water in a
glass centrifuge bottle of 40cm capacity to reduce
the concentration to 7.0X10 g/em . The dilute
latex was then centrifuged at about 350 g for 25 min
to remove larger aggregates. Further dilution was
made to the concentration 3.6g 10 g/cm by add-
ing double-distilled water. For this concentration,
the mean distance between the particles was about
50 times as long as the particle diameter and the ef-
fect of the interaction between the particles is ex-
pected to be negligibly small. The sample cell used
for the scattering was a cuboid of 10&& 10 mm base
and 50-mm height.
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C. Procedure

For the sample investigated in this experiment, a
numerical estimation gives 8=4.032 X 10 and
v=6.246X10 s at 25'C. The actual time scale
and the value of Bg(t) estimated are shown in Fig.
2. As already explained, the difference between the
two correlation functions, Eq. (3) and Eq. (4), is very
large in the time region t=-~—10~. In this time
region, Bg(t) is very small compared with unity, be-

ing of the order of 10 —10 . For g' '(t) of Eq.
(7), which is measured in the present experiment, the
corresponding accuracy should be better than 10
However, this accuracy is too high to be attained ex-
perimentally. In the time region longer than 3 ps,
the value of Bg(t) is expected to become larger than
10 . Then we can work with an accuracy of the
order of 10, which is feasible. Also, in the time
region longer than 6 ps, we can use the long-time
approximation, Eq. (9), as shown in Fig. 2 with a
broken line. This fact makes the least-squares data
analysis very easy. From the above consideration,
we chose the delay time per channel of the correla-
tor as 6 ps. Having 208 channels in total, this mea-
surement covered the time region 6 ps —1.2 ms.

Since the experiment should be done with high ac-
curacy, we need to take into consideration all the
possible experimental factors that might cause de-

formation of the correlation function. As such
causes, we mention (i) output power fluctuation of

the laser, (ii) back reflection of the laser beam at the
cell wall, (iii) after-pulsing of the photomultiplier,
(iv) electronic distortion if any, (v) polydispersity of
the polystyrene latex sphere, (vi) fluctuation of the
sample temperature, (vii) vertical sedimentation
motion of the particles in the gravitational field,
(viii) number fluctuation of the particles within the
scattering volume due to diffusion and sedimenta-
tion, (ix) multiple scattering, and (x) convective Aow
in the sample cell, if it exists.

As already explained, an electric circuit was used
to compensate for the laser power Auctuation. The
performance of the circuit was tested by observing
the correlation function of the laser light reAected
from the surface of a glass plate placed at the posi-
tion of the sample cell. No correlation effect was
observed within the accuracy of 10 . To avoid the
back-reAection problem, we worked with the scatter-
ing only at right angles. In this case, the reflected
beam also scatters light at right angles. The after-
pulsing effect was eliminated by using two pho-
tomultipliers as shown in Fig. 3. We observed the
correlation of the light emitted from an incandes-
cent bulb powered with batteries. The correlation
function was constant within the accuracy of
1X10, which shows that the after-pulsing effect
and the electronic distortion were absent. The ef-
fects from (v) to (viii) may be estimated by calcula-
tion. If we consider those effects, the correlation
function of the scattered light may be written as

(I,(0)I,(t)) =y (N) +y (N) Aexp Bt/r+2oB(—t/rrr)' + g C;(t) +y tN)tF~(t) . (10)

Here C;(t)'s are the correction terms given by

C ) (t) =5B(o., /a)'(t/~),

C2(t) =8~(0, /a )~(t/&)2/2,

C3(t) = B(oz/T) [—i —(T/r))(dr)/dT)]

C4{t) = —v, t /o~,

where y is a suitably chosen efficiency of the scatter-
ing and detection, (N ) is the mean number of parti-
cles within the scattering volume, and A is a numeri-
cal factor related to the coherence, clipping, etc.
The parameters o„u~, and o-z-, are the mean devia-
tion of the particle radius, the effective laser beam
radius at the scattering volume, and the mean devia-
tion of the sample temperature, respectively. Except
for the correction terms C~(t)—C4{t), Eq. (10) is the

ordinary formula of the photon correlation func-
tion. The term y tN)F~(t) represents the num-
ber fluctuation. The corrections C&{t) and C2(t)
correct the polydispersity of the latex spheres. The
effect of the temperature variation during the mea-
surement is estimated by C3(t). This expression was
derived by the approximation that the probability
distribution of the temperature deviation b T from
the mean value is Gaussian,

p(AT) =(1/ 2crore)exp( b, T /2oz) . —

For the drift type of the temperature change, a dif-
ferent functional form is expected. However, the or-
der of magnitude of the effect is estimated with this
approximated form. The term C4(t) is the correc-
tion of the sedimentation during the measurement.
The numerical estimations of these terms for the
sample we used are —Bt/~= —6.46 X 10 t,
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TABLE I. Results of the least-squares-fit analysis of the observed photon correlation func-
tions with the functional form 3 'exp( —p ~ t+p ~q~t

' ). rmsd indicates the root-mean-square
deviation. Values in the parentheses are theoretically calculated values.

Temperature ('C) p| (s ')

760.58+0. 18
(784.26)

(s
—1/2)

0.397+0.015
(0.409)

3.972 &&
10-4

682.84+0.49
(697.35)

0.326+0.020
(0.346)

3.560' 10-4

23.5 610.49+0.43
(620.51)

0.267 +0.017
(0.293)

3.280' 10-'

2 8( / )' '=3.05 10 ' ' ', C, ( )=1.15
X10 it, C2(t)=7.42t2, C3(t)= —2.95g10 2t2, and
Cg(t) = —3.04 y 10 t . These estimations were
made for the temperature of 25 C, by substituting
the numerical values o~ ——0.02 K and oI ——0.012
cm. The term CI(t) is a very small correction to the
term Bt/v. In the time region we are concerned
about (6&10 —1.3&(10 s), the correction C2(t)
is at largest 0.7%%uo of the t '~ term. The corrections

C3(t) and C4(t) are much smaller than C2(t). Thus
we regard the t correction terms as negligible in the
data analysis.

It is very difficult to estimate quantitatively the
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FIG. 4. Deviation of the experimental values of the
normalized photon correlation function from the best-fit
function of the form exp( —p~t+p~q2t' ). No systematic
deviation is observed. Temperatures are (a), 32.8'C; (b),
28.0 C; (c), 23.5 C.

FIG. 5. Comparison of the best-fit value and the ex-
perimental value of the memory term p&&2t' in the pho-
ton correlation function, which appears related to the
non-Markovian nature of the Brownian motion. Tern-
peratures are (a), 32.8'C; (b), 28.0'C; (c), 23.5'C. For de-
tails see text.
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~, 23.5'C. All the experimental points at different temperatures lie on the curve calculated using the Kubo-Widom-type
velocity correlation function. Inset shows comparison of the experimentally determined values of p& and p~qz with the
theoretical calculations shown by the solid curves.

effect of multiple scattering. Therefore, in order to
reduce the multiple scattering and also the interac-
tion between particles, we diluted the sample density
at a sacrifice of the data-acquisition time. We also
tested the effect experimentally. For a particle hav-

ing a diameter larger than the wavelength of light,
the scattering is anisotropic, being stronger in the
forward direction than in the backward direction.
Then, if we observe the multiple scattering for the
two different cases shown in the inset of Fig. 3, the
multiple scattering will be much stronger in case a
than in case b. If the data is affected by the multi-
ple scattering, we will obtain different results for the
two different cases of observation. We could detect
no difference within the experimental accuracy.
Thus, the multiple-scattering effect was expected to
be small. The final data were taken with the b ar-
rangement.

If there is a large temperature gradient within the
sample, thermal convection might occur, and the
direction and the magnitude of the convective flow
would vary within the sample cell. Therefore, we
would obtain different results for different positions
of observation within the sample cell if the correla-
tion function were affected by the convective flow.
We could not detect any difference within the exper-
imental accuracy. The laser beam might cause the
local heating, but the data was found independent of
the laser power up to 300 mW.

The subtraction of the dc term y (N)~ and the
number fluctuation term y (N)F~(t) from the ob-
served correlation function (I,(0)I,(t)) was made
after direct measurements of these terms. The relax-
ation time of the second term in Eq. (10) is w/8,
which is 1.55)&10 s at 25'C. The relaxation time
~~ of the number fluctuation is determined either by
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sedimentation ~&-ol/U, or by diffusion ~„=o.I2/D.

The numerical values of those are estimated to be
o'I/O, 5.7/10 s and OI/a=2. 4y10 s, respec-

tively. Thus the sedimentation velocity U, deter-

rnines the number fluctuation rdaxation in this case.
As already explained, we measured the correlation
function at 16 channels after (208+ 25600) chan-

nels of delay. Because the delay time per channel
mas chosen to be 6 ps, the total delay time at those
channels was t~ ——1.55&10 ' s. Under this condi-

tion, the second term in Eq. (10) is negligibly small

because t~-100~/8. In addition, since
f~~4X 10 v~, the decay of thc nuInbcr fluctua-
tion correlation function can be neglected in this
time scale. Thus we can regard
(I,(0)I,(r))=y (N) +y (N)Fg(0). Subtracting
this value from the observed correlation function,
we can estimate the second term in Eq. (10).
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IV. RESULTS AND DISCUSSION tQQ 20Q

Measurements mere made at temperatures 32.8'C,
28.0'C, and 23.5'C, and the sample was newly
prepared for each temperature. The data accumula-
tion for one scan was continued until the number of
counts at the first channel of the correlator exceeded
about 10 counts. The scattered intensity was about
10 counts/s and it took longer than three hours for
one scan. Ten such scans mere repeated for each
temperature. Then the sum of the ten scans was
analyzed. The total number of counts at the first
channel was about 10 and the statistical accuracy at
this channel is expected to be 10 . The subtraction
of the background made the accuracy worse. With
the increase of the channel number the accuracy de-
creased further due to the decay of the correlation
function. However, the result of the data analysis
showed that the root-mean-square deviation was less
than 4&10, which mas sufficiently small for the
present purpose.

A least-squares-fit analysis was made to the func-
tional form A'exp( —pjt+pi&2t'~ ) to determine A',

p I, and p &&2 as adjustable parameters. Here

p~
——&/~ and p~~2

——2o8/{mv)'~. The results of
8/r and 2o8/(mr)'~ obtained are listed in Table I.
The theoretical estimations are given in the
parentheses. Although mc note a deviation of a few
percent of the experimental values from the theoreti-
cal estimations, the agreement is quite satisfactory.
The temperature dependence of the experimental
value is also consistent with theory. To show the
deviation of the data from the fitted function, the
data values were divided by the best-fit value of

and the deviations from the best-fitted
exp( —p~t+pi~2t' ) are plotted in Fig. 4. The
division by A' means the normalization of the func-

CHANNEl NUMBER

FIG. 7. Deviation of the experimental values of the
normalized photon correlation function from the best-fit
function of the form exp( —p~t). Systematic deviation is
evident. Temperatures are (a), 32.8 C; (b), 28.0'C; (c),
23.5 'C.

tion to unity at 1=0. The plotted points in Fig. 4
show no systematic deviation. The scatter of the
data is small enough to determine the magnitude of
the p)g2t'~ =2o8(I, /m~)'~ term. If me take the
logarithm of the normalized data values and add the
best-fit value of pit to them, the resultant values
correspond to pj~2t' . In Fig. 5, these values are
compared with the best-fit value of p&&2t' . The
deviation is small compared with the change of
p ) ~2)

'~ . The best-fit values of 8A and
2cr8/(nr)'~ are compared with the theoretical
values in the inset of Fig. 6 as a function of tem-
perature. The error shown in Table I is estimated
from the least-squares-fit analysis of the sum of the
data of ten scans. We also analyzed each of the ten
scans. The mean values agreed with the value
shown in Table I. However, the root-mean-square
deviations estimated from the best-fit values of the
ten individual scans were a little larger than those
listed in Table I. If we estimate the errors from the
scatter of the results for different scans, the experi-
mental values of 2~a/(~~)'" are 0.397+0.035
s '~ at 32.8'C, 0.326+0.029 s '~ at 28.0'C, and
0,267+0.027 s '~ at 23.5'C. The error bars shown
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TABLE II. Results of the least-squares-fit analysis of
the observed photon correlation functions with the func-
tional form A'exp( —p1t) ~ rmsd indicates the root-mean-
square deviations.

Temperature ('C) lmsd(s
—1}

32.8
28.0
23.5

750.77+0.71
674.86+0.62
604.03+0.54

6.335x 10-4
5.499x 10-'
4.786x 10-'

in the inset of Fig. 6 are estimated in this manner.
If we take the logarithm of the normalized data

corresponding to exp[ Bt/r+—ZtJB(t/ttr)'t2j and
then divide by —p&~ ———8, we get the experimental
values corresponding to P(t) defined by Eq. (8). For
~, calculated values were used. A comparison of the
experimental values with the theoretical calculation
is given in Fig. 6. The solid curve is the calculated
function using the Kubo-Widom-type correlation
function and the broken line is that using the
Einstein-Stokes-type velocity correlation function.
In showing that the experimental values at different
temperatures lie on a single universal function, only
part of the data points are displayed in order to
eliminate overlap of the data points. It is clear that
the experimental points obtained at different tem-
peratures fit well to the single universal function
calculated using the Kubo-Widom-type velocity
correlation function for o.= 1.70.

We also analyzed the data with the functional
form A'exp( —p&t), which corresponds to the long-
time approximation of the Einstein-Stokes-type
correlation function. The results are shown in Table
II and Fig. 7. Figure 7 shows the deviations of the
normalized values from the best-fit values of
exp( —p &

t ). Systematic deviations can be clearly
seen. Corresponding to the increased deviations, an
increase of the root-mean-square deviations are ob-
served in Table II compared with the results shown
in Table I. Thus we can claim that a clear departure

of the experimental values from the Einstein-
Stokes-type correlation function was observed.

As shown in Eq. (10), a few effects cause the ap-
pearance of terms proportional to t . We showed by
calculation that these effects are expected to be
small. To check experimentally whether our data
are affected by the presence of a t term or not, we
analyzed data with the function of the form
3'exp( —p~t+p~~2t +p2t ). The results are listed
in Table III. We observe small variation of the
values of 8/~ and 2o8/(mb)'~ compared with
those listed in Table I. The contribution from the
term p2t seems to be too small to be consistently
determined from the present experiment. In fact,
the change of pz with the temperature is not sys-
tematic: it is negative at 32.8'C and 23.5'C, and
positive at 28.0'C. Although we cannot fully deny
the possibility of the small effect due to the t term
from the present experimental results only, we can
at least claim from the results shown in Table III
that the data are not largely affected by the presence
of t terms.

From the above discussion, we believe that the
values given in Table I and Fig. 6 are appropriately
estimated from the present experiment. As a quan-
titative result to be compared with the present re-
sult, we can only mention the work done by Paul
and Pussey. ' The value they got was (74+3)% of
the value predicted theoretically, but we do not find
such a large departure. All the mean values we ob-
tain are slightly smaller than the value predicted
theoretically. However, the deviations are less than
10%. The small systematic deviation may be ex-
plained either by a deviation of a few percent of the
physical parameters we used for the calculation
from the real values or by the presence of a small
uncontrolled experimental artifact that might cause
the deformation of the correlation function. The
temperature dependence of our data is consistent
with the theoretical prediction as shown in Fig. 6.
This fact is strong experimental support of the
correctness of Eq. (4) in describing the non-

TABLE III. Results of the least-squares-fit analysis of the observed photon correlation
functions with the functional form A'exp( —pit+@1/2t' +p2t'). rmsd indicates the root-
mean-square deviation.

Temperature ('C)

32.8
28.0
23.5

Pl (S ')

758.24+0. 17
683.02+0. 15
607.07+0. 12

P 1/'2 (S )

0.345 +0.012
0.330+0.011
0.190+0.010

p (s 2)

(—0.976+0.405) x 10
(0.69123.66}x 10

(—1.39 *0.33)x 10'

3.970X 10-"
3.599X 10-"
3.252 x 10-"
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Markovian Brownian motion of spherical particles
suspended in water.
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