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Monte Carlo simulations have been carried out to investigate the deposition of particles
on surfaces and fibers under conditions where the deposition is diffusion controlled. Depo-
sits prepared under diffusion-controlled conditions have a completely different morphology
from deposits prepared under conditions where diffusion is not important. For the case of
deposition on thin fibers we find that the radius of gyration of the deposit is related to the
number of particles in the deposit (X) by Rg -N (5=0.665+0.030) in the limit of large X
and long fibers. Consequently, deposits formed on fibers under diffusion-contro11ed condi-
tions have fractal characteristics similar to those associated with clusters formed under

diffusion-controlled conditions. Similar, but less quantitative, results are presented for sur-

face deposits. For two-dimensional deposits grown on a one-dimensional "surface" under
diffusion-controlled conditions, the root-mean-square thickness (T ) of the deposit is related
to the number of particles by T-S' (E~ oo). The exponent e has the value 1.30+0.075.
Similar results were obtained in three-dimensional simulations of diffusion-controlled depo-
sition on a surface (T-X; with a=1.70+0.2). All of the results reported in this paper
were obtained using two- and three-dimensional lattice models. Our results suggest that the
structural characteristics of systems grown by diffusion-controlled processes are determined

mainly by the dimensionality of the space in which the growth is occurring and are insensi-

tive to geometric variables such as "surface" curvature.

INTRODUCTION

The deposition of small particles on fibers and
surfaces are phenomena with important applications
in the purification of air and water' and in the
preparation of systems with specific surface proper-
ties. The addition of particles or atoms to surfaces
under conditions ~here surface reorganization can
occur is a problem which has been extensively stud-
ied via computer simulations by Gilmer and others.
In this paper we are concerned with the deposition
of particles on fibers and plane surfaces under con-
ditions where reorganization processes do not occur
and the rate of deposition is controlled by diffusion-
al processes.

Our work in this area was stimulated by a recent
paper by Kitten and Sander" in which the results of
computer simulations of diffusion-limited growth of
two-dimensional clusters on a "seed" particle were
described and by results from our own work on
diffusion-controlled cluster formation in two-
dimensional through six-dimensional space. These
simulations show that clusters formed on a seed par-
ticle under diffusion-controlled conditions have an
associated fractal or Hausdorff -Besicovitch dimen-
sionality (D) which is related to the "normal" Eu-
clidean dimensionality (d) by the approximate rela-

tionship D =5d /6. Clusters grown under
diffusion-limited conditions have a very open struc-
ture and low average density which decreases with
increasing cluster size. Despite the very open struc-
ture of the cluster, growth occurs almost entirely in
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FIG. 1. Two perpendicular projections and cross sec-

tions perpendicular and parallel to the axis of a fiber on
which a large number (10067) of particles have been ad-
ded by a diffusion-controlled process.
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FIG. 2. Dependence of lnRg on 1nN for a typical fiber
deposit. Rg is the radius of gyration about the fiber axis
and X is the number of particles in the deposit.
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the outer regions of the cluster and clusters grown
under diffusion-controlled conditions have a com-
pletely different morphology from clusters grown
under conditions where Brownian motion of the par-
ticles is not important.

In this paper we show that diffusion-limited depo-
sition on fibers and surfaces also results in open den-
dritic structures with a "fractal" nature. It is hoped
that the results of our computer simulations will
stimulate further theoretical and experimental work
on diffusion-controlled growth processes.

SIMULATION RESULTS

Deposition on fibers

In our simulation of growth on fibers we start
with a row of occupied lattice sites to represent the
fiber. A "particle" is introduced at a lattice site
chosen at random in the neighborhood of the fiber
and allowed to "diffuse" by a series of jumps to
nearest-neighbor lattice sites. The particle eventual-

ly either reaches a site adjacent to the fiber and is
added to the fiber as part of the deposit or moves to
a position a long way ( &2.0 times the maximum
distance from the fiber to any particle in the deposit)

from the fiber. If this occurs, the particle is "killed"
and a new particle is started closer to the fiber and
its deposit. After the first particle has been added to
the fiber, a second particle is introduced and it also
is eventually added to the deposit, added to the fiber,
or killed. The procedure is repeated many times un-

til a sufficiently large deposit has been grown on the
fiber. In these simulations periodic boundary condi-
tions are used in the direction of the fiber axis.

Figure 1 shows the result of such a simulation in
which 10067 particles were added to a fiber 91 lat-
tice units long. The upper part of the figure shows
two projections of the deposit. The lower part of the
figure shows cross sections perpendicular to and
along the fiber axis. As in the case of diffusion-
controlled cluster growth, * new particles are added
mainly to the outer portions of the deposit and very
few particles are added to the inner regions during
the later stages of growth despite the very open
structure. In the case of diffusion-limited cluster
formation, ' the radius of gyration (R ) is related to
the number of particles (% by Rs-N (in the limit
N~ oo), where P=6/5d (d is the Euclidean dimen-
sionahty). For this reason we were motivated to cal-
culate the radius of gyration about the fiber axis as a
function of the number of particles added. Figure 2
shows a typical plot of lnRg vs ln¹ From five
deposits (average 11275 particles per deposit) we
find Rg -N, where 5=0.665+0.031. Additional
details are given in Table I.

Deposition on surfaces

Similar simulations have been carried out to in-

vestigate diffusion-controlled deposition of particles
on surfaces. The methods used are very similar to
those described very briefly above for deposition on
fibers and in more detail for diffusion-limited clus-
ter growth. The diffusing particles are killed if

TABLE I. Radius-of-gyration exponents (5) for diffusion-controlled deposition on fibers.
Exponents are obtained from the dependence of lnRg on in% over the range N~ gN &X~.
X,„ is the maximum number of particles in the deposit.

Number of
particles

(&max)

10 158
9629

11969
12 587
12035

S2 ——1.00%,„
0.693
0.669
0.683
0.632
0.649

S) ——0.25M,„
Xp ——1.00M,„

0.684
0.651
0.683
0.627
0.647

Xi ——0.10%,„
Xp ——1.00%,„

0.655
0.648
0.683
0.623
0.658

Average
11275 0.665+0.031 0.658+0.030 0.653X0.027
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FIG. 5. Density profile for two-dimensional deposits
grown to a thickness of 200 lattice units. This figure
shows the average profile for six deposits each grown
from a surface of 1000 lattice sites.

300 LATTICE UNITS

FIG. 3. Results of a two-dimensional simulation of
diffusion-controlled deposition on a surface (line). For the
purposes of this figure a deposit was grown from a line of
300 sites with a sticking probability of 1.0.

they reach a distance from the surface )3.0 times
the maximum distance from the surface to any point
in the deposit. Figure 3 shows the results of a two-
dimensional simulation in which particles are depo-
sited on a "surface" represented by a line of 300 nu-

cleation sites. In the simulations shown in Fig. 3, a
sticking probability of 1.0 was used if the particle
reached a nearest-neighbor site with respect to either
the surface or the growing deposit. As in simula-
tions of diffusion-controlled cluster formation, ' a
very open dendritic structure develops. Despite the
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FIG. 4. This figure shows the results of a two-
dimensional simulation of a deposit grown in the absence
of diffusion. Particles follow vertical trajectories until

they contact either the original surface or part of the
deposit.
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FIG. 6. Dependence of rms thickness (T ) on the num-

ber of particles (1V ) in two-dimensional deposits on a one-
dimensional surface. The straight line indicates a limiting

slope of about 1.27.

very open nature of the deposit, very few particles
are added to the lower levels of the deposit during
the latter stages of growth because most Brownian
trajectories intersect the upper regions of the depo-
sit. By contrast, Fig. 4 shows the results of a simu-
lation in which particles are "dropped" vertically
onto a surface and stick when they reach a nearest-
neighbor position with respect to either the surface
or the deposit. In this case the density of the deposit
drops rapidly to a relatively constant "plateau"
value as the distance from the surface increases and
then drops rapidly to zero as the maximum thick-
ness of the deposit is approached. Under diffusion-
limited conditions the density decreases more con-
tinuously with increasing distance from the surface
(Fig. 5).

Because of the results obtained from simulations
of diffusion-controlled cluster formation and deposi-
tion on fibers, the relationship between the root-
mean-square thickness (T) of the deposit and the
number of particles in the deposit (N) was exam-
ined. Deposits were grown from 1000 sites to a
maximum distance of 200 lattice units. These
parameters were chosen to ensure that the finite la-
teral size of the simulation and the periodic boun-
dary conditions would not significantly influence the
structure of the deposit. The simulations carried out
on smaller lattices were for the purpose of illustra-
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TABLE II. Values of the rms thickness exponent (e) obtained from deposits grown in two
dimensions from 1000 lattice sites by a diffusion-controlled process. Exponents are obtained
from the dependence of lnV on lnN over the ranges Ni & N ~N2. N,„ is the total number of
particles in the deposit of maximum thickness 200 lattice units.

N) ——0.50N
Np ——1.00N

1.362
1.196
1.366
1.221
1.202
1.265
1.287
1.272
1.307

N) ——0.75N,„
N2 ——1.00N

1.461
1.184
1.418
1.201
1.200
1.329
1.305
1.315
1.317

Ni ——0.90N,„
N2 ——1.00N~~

1.441
1.144
1.388
1.164
1.210
1.350
1.325
1.375
1.319

N i
——0.25N, „

Ng ——0.5N,„
1.175
1.167
1.155
1.270
1.216
1.241
1.248
1.169
1.183

Average
1.275+0.048 1.303+0.074 1.302+0.081 1.203+0.032

tion only (see Fig. 3, for example). Figure 6 shows
how the rms thickness of the deposit {T) depends on
the number of particles in the deposit (N ). Figure 6
indicates a limiting power-law relationship between
Tand N:

T-N' (N oo) .

Table II shows thc results obtained from nine depo-
sits grown to a maximum depth of 200 lattice units
from 1000 sites. The results given in this table indi-
cate that the rms thickness exponent (e) has an ap-
proximate value of 1.3. However, the large differ-
ence between the values for e obtained over the
ranges

0.25N,„~N (0.5N,„

T =AN (1+BN ) (3a)

or

e'=1.305+0.064 and 8 =1.478+0.52. If only the
first 50% of the particles added to the deposit are
used we find t.'=1.281+0.034 and 8 =1.271+0.15.
These results indicate that the limiting {N~oo)
value for the exponent e is approximately 1.3. If the
data from the nine simulations are averaged, the best
fit between our data and Eq. (2) gives the result

T =1.42+2.55' 10-4N'"'.

This expression gives a much better fit to our data
than the simple power-law expression T =AN' (Fig.
7). The more general expression

0 5Nms (N &Nmax

(N,„ is the total number of particles in the deposit)
indicates that the N~ ay limit may not have been
closely approached.

One of the major contributions to the uncertainty
in e is the ambiguity in the position of the surface
from which the particle coordinates should be mea-
sured. To overcome this uncertainty, we have fitted
our simulation results to the expression

where the parameter 8 expresses the uncertainty in
the location of the appropriate surface from which
the thickness should be measured. From the nine
two-dimensional deposits grown to a maximum
thickness of 200 lattice units, wc obtained the results

has also been fitted to the results of our two-
dimensional simulations. The best fit of this form
for the results averaged over all nine deposits is

1.84 x 10 +N
I a J a I

5 6 7 8
tn N

FIG. 7. Results of fitting the dependence of the rms
thickness (T) on the number of particles (N) by scaling
relationship of the form T =AN +8 and
T =AN~(1+BN ). Simulation results are the average
results for nine deposits on 1000 original 1d surface sites.



PAUL MEAKIN

500 LATTICE UNITS

FIG. 8. A two-dimensional surface deposit grown on
300 lattice sites with a sticking probability of 0.1.

given by T =1.84&10 X' (1.0+2188% "
)

(Fig. 7), where X is the number of particles deposit-
ed on 1000 original sites.

Overall, the results of this analysis can be ex-
pressed as a= 1.30. Our estimate for the uncertainty
of this value for e is about +0.075. Similar simula-
tions have been carried out with sticking probabili-
ties less than 1.0. Figure 8 shows a two-dimensional
surface deposit simulated using a sticking probabili-

ty of 0.1. As we have observed earlier in diffusion-
controlled cluster formation, a smaller sticking
probability leads to a denser deposit. The quantita-
tive properties of deposits grown with sticking prob-
abilities less than 1 have not yet been investigated.
However, we expect (by analogy with our results for
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FIG. 10. Cross section through a deposit of 32 321 par-
ticles grown on a surface of 50& 50 lattice units to a max-
imum depth of 50 lattice units. In this simulation the
particles were dropped vertically onto the surface.

clusters ) that the exponent e will be insensitive to
the sticking probability. Similar simulations of
diffusion-controlled growth on a two-dimensional
surface using a three-dimensional lattice model have
been carried out.

Figure 9 shows a cross section through a deposit
of about 15000 particles grown on a surface of
100&100 lattice units to a maximum depth of 60
lattice units under diffusion-controlled conditions.
For comparison, a similar cross section through a
deposit of 32 321 particles obtained by using a lattice
model in which particles are dropped vertically onto

FIG. 9. Cross section through a deposit of about
15 000 particles grown on a surface 100& 100 lattice units
to a maximum depth of 60 lattice units under diffusion-
controlled conditions.

FIG. 11~ A view from the top of the deposit where the
cross section is shown in Fig. 9. White areas are the origi-
nal surface not covered by the deposit at any depth.
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FIG. 12. Comparison of the density profiles of two
deposits in the limits of no diffusion and diffusion-
controlled deposition.

under diffusion-controlled conditions is considerably
sInaller than that for the deposit formed under con-
ditions where diffusion is not a significant process.

As in our other simulations, the relationship be-
tween rms thickness and the mass (number of parti-
cles) of the deposit was examined. Some of our re-
sults are shown in Fig. 13, As %~00 (X is the
number of particles in the deposit) the relationship
between the root-mean-square thickness T, and
the number of particles seems to be approaching a
power-law form

a surface is shown in Fig. 10. In this simulation the
original surface area was 50&50 lattice units and
the particle was incorporated into the deposit when
it reached a lattice site which was the nearest neigh-
bor to an occupied lattice site. In the three-
dimensional simulations periodic boundary condi-
tions are used in both directions parallel to the origi-
nal surface. A comparison of Figs. 9 and 10 demon-
strates that diffusion-limited deposition leads to a
completely different morphology than deposition
under conditions where diffusional motion is absent.
Figure 11 shows a view from the top of the deposit
whose cross section is shown in Fig. 9. Taken to-
gether, Figs. 9 and 11 (and many similar figures) in-
dicate that the three-dimensional deposits resemble R

"forest" of "trees" growing out of the surface. The
tallest trees have the largest growth rates. Smaller
trees quickly become inaccessible to the diffusing
particles RIld stop growing. Figurc 12 compares thc
density profiles obtained in the two simulations.
Other simulations gave qualitatively similar results.
When diffusion is absent, the density falls rapidly to
a constant value with increasing distance from the
original surface and then falls steeply again when
the maximum thickness of the deposit is ap-
proached. Under diffusion-controlled conditions,
the density decreases more or less continuously with
increasing distance from the original surface. In ad-
dition, thc RvciRgc density of thc deposit formed

For deposition in the absence of diffusion, e has a
value of approximately 1.0 (a slightly large value is
obtained as a result of finite-size effects). Under
diffusion-controlled conditions the value of the ex-
ponent e is substantially larger than 1.0. Table III
shows the values obtained for e from eight deposits
grown to a depth of 60 lattice units on 100+ 100
surfaces. The results shown in Table III indicate
that e is approximately 1.55. However, as in the
case of two-dimensional deposits, the large differ-
ence between the results obtained for
0.25M,„gX ~0.5%,„ indicates that the true lim-
iting value for e may be substantially larger. As in
the case of two-dimensional deposits, a major contri-
bution to the uncertainty in e arises from the uncer-
tainty in the effective position of the surface from
which the deposit coordinates should be Ineasured.
Consequently, a function of the form of Eq. (2) was
fitted to our results. From the eight three-
dimensional deposits we find e'=1.622+0.061 and
8=0.827+0.084. The best fit of this form to the
averaged data for all eight deposits is given by

T =4.27' 10-'X'~'+0.806 .

The dependence of the rms thickness (T} on the
number of particles in the deposit has also been fit-
ted to the more general form of Eq. (3a). Prom six
deposits grown to a depth of 60 lattice units from a
surface of 100)& 100 lattice sites, the results
e'=1.80+0.16 and a=1.45+0.10 were obtained.
The best fit to the averaged results of eight deposits
is given by

T =5 &7 g &0-'X""(10+1 27' 10'X-'43)

0.0 "

4.0 5.0 6.0 7.0 &.0 9.0 1Q.O

InN

FIG. 13. Relationship between root-mean-square
thickness and number of particles for diffusion-controlled
deposition and deposition via vertical trajectories without
diffusion.

(Fig. 14). Taken together, these results indicate that
T-N' (X—+w) with the exponent (e) having a
value of 1.70+0.20. Simulations have also been car-
ried out to investigate the effects of sticking proba-
bilities less than 1.0 on three-dimensional surface
deposits, As in the case of clusters grown under
diffusion-controlled conditions Rnd two-
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TABLE III. Values for the rms thickness exponent (e) obtained from three-dimensional
deposits grown to a maximum depth of 60 lattice units from a surface of 100&(100lattice sites

by a diffusion-controlled process. Exponents are obtained from the dependence of lnT (rms
thickness) on lnN (number of particles in deposit) over the range N l ~N & N2. N,„ is the to-
tal number of particles in the deposit.

Nl ——0.50N, „
N, =1.00N,„

1.529
1.495
1.621
1.513
1.523
1.421
1.565
1.494

N l ——0.75N,„
N2 ——1.OON, „

1.612
1.417
1.551
1.509
1.636
1.561
1.727
1.505

Xl ——0.90N,„
Np ——1.00N,„

1.547
1.364
1.452
1.489
1.615
1.545
1.905
1.437

Ni ——0.25N, „
N, =0.50N, „

1.208
1.258
1.232
1.341
1,179
1 ~ 182
1.157
1.312

Average
1.520+0.048 1.565+0.079 1.544+0.138 1.234+0.055

dimensional surface deposits (see above), a low stick-
ing probability leads to denser deposits.

DISCUSSION

The Monte Carlo simulations in this paper illus-
trate that deposits grown under diffusion-limited
conditions have a completely different morphology
from deposits grown under conditions where dif-
fusion (before deposition) is not important. In the
case of deposition on a long fiber, this aspect of
diffusion-controlled deposition can be expressed in
terms of a power-law relationship between the ra-
dius of gyration (R) of the deposit and the number
of particles (N) with a nonclassical exponent, i.e.,
Rg -N (5=0.665+0.030) in the limit N~ oo. In
this respect diffusion-controlled deposition on fibers
is similar to diffusion-controlled cluster forma-
tion. '

Our results for diffusion-controlled deposition on

4.27 x 10 +

0 — IMULA

rj /7 g fQ ~ NL+~ [/ Q y f p7 g )Q~ N '»j
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3 4 5 6 7 8 8
ln N

FIG. 14. Results of fitting the dependence of the rms
thickness (T ) on the number of particles (N ) by relation-

ship of the form T-AN~+B and T =AN~(1+BN ).
These simulation results are the average of eight deposits
on a 100X100 surface grown to a depth of 60 lattice
units.

surfaces in two and three dimensions lead to similar
conclusions. However, in this case the uncertainties
in the value of the exponent are larger, particularly
in the case of three-dimensional deposits. %e are
planning to carry out additional simulations to ob-
tain more accurate values for the rms thickness ex-
ponent in 3d deposits and to explore other properties
of deposits grown under diffusion-controlled condi-
tions. In the case of two-dimensional surface depo-
sits, the dependence of T on N was fitted by
T =AN, T =AN +B, and T =AN'(1+BN
All three ways of analyzing these results gave simi-
lar results for the exponent e. For the three-
dimensional surface deposits, the more general ex-
pression T =AN'(1+BN ) gave a substantially
larger estimate for the exponent e than the two
simpler expressions.

For clusters grown in two-dimensional space us-

ing the %'itten-Sander" model analysis of the
density-density correlation function and the depen-
dence of the radius of gyration on the number of
particles indicates that the average density at a dis-
tance r from the center of the cluster [p(r) j should
depend on r according to p(r) -r for distances (r)
both larger than several lattice units and smaller
than the overall dimensions of the cluster. Numeri-
cal simulations similar to those described in this pa-
per ' show that a has the value of 0.30+0.06.
Similarly, for the surface deposits grown using the
two-dimensional lattice model discussed in this pa-
per, the relationship T-N (X~~ ) implies a densi-

ty profile of the form p(r)-r ', where r is the dis-
tance from the surface. This relationship is expect-
ed to be valid for intermediate values of r with devi-
ations near the upper and lower interfaces. The nu-
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merical estimate for the exponent t. obtained in this
paper implies that a, has the value 0.23+0.05.

For three-dimensional clusters we have found that
p(r)-r (a=0.50+0.06) from the dependence of
the radius of gyration on the number of particles in
the cluster. The dependence of the rms thickness
on the number of particles in the three-dimensional
surface deposits (T-N'; a=1.70+0.2) implies a
density profile of the form p(r)-r ' with the ex-
ponent (a, ) having the value of 0.41+0.07. Similar-

ly, for the (three-dimensional) fiber deposits the
dependence of the radius of gyration on the number
of particles (Rg-N; 5=0.665+0.030) implies a
density profile of the form p(r)-r, where r is
the distance from the fiber. Our corresponding nu-
merical estimate for af is 0.50+0.07. While the
density profile exponents are somewhat smaller for

surface deposits than for deposits on single particles
or fibers, our results suggest that the structural
characteristics of systems formed by diffusion-
controlled processes are determined mainly by the
dimensionality of the space in which the growth
process is occurring and are insensitive to features
such as surface curvature. Within the accuracy of
our simulations the density profile exponents are
equal for clusters, fiber deposits, and surface depo-
sits.
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