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Tagged-particle motion in fluids is studied as a function of size and mass via variational

solutions of the repeated-ring and self-consistent repeated-ring equations. For a massive

particle, the transition from Boltzmann to Stokes-Einstein behavior is found as the particle
radius varies from small to large with respect to the mean free path. New and more compli-

cated effects are found for light particles. The theory appears to provide an explanation of
the results of the computer simulation of Alder and Alley on size and mass dependence.

I. INTRODUCTION

The nature of tagged-particle motion in fluids is
determined by the collision radius (a&) and mass
(I ~ ) of the tagged particle, and by the density p of
the bath. The mass enters as the ratio m~/m of
tagged-particle to bath-particle masses. The radius
may either appear as a i /a, a being the collision ra-
dius for two path particles, or mixed with the densi-

ty via the Knudsen number K„—=/(p)/a &, where I is
the mean free path.

If E„&~1 and the reduced density pa =p~ is
much less than unity, the motion is well described
by the Lorentz-Boltzmann equation. More interest-
ing and difficult problems may be generated in two
ways. First, a bath fluid of liquid density might be
considered; no satisfactory kinetic theory exists here
for any type of tagged particle. Less complicated is
the case where the bath is kept dilute, but the Knud-
sen number is made small and the Lorentz-
Boltzmann equation fails.

Even for this second situation, a good kinetic
description has long been unavailable. It is now
clear, however, that the repeated-ring approxima-
tion' (RRA) might provide that desired descrip-
tion. It correctly gives the Stokes-Einstein law
for the self-diffusion constant D in the "Brownian
limit" m~/m pal, when E„&&1,and it also ' ap-
pears to constitute the high-mass limit of the
Bogoliubov-Born-Green-Kirkwood- Yvon hierarchy.
An extended, "self-consistent" RRA (SCRRA) turns
out, without rigorous justification, to be remarkably
useful for light particles as well. We proposed and
studied, for dimension (d) of 1, 2, and 3, the
SCRRA for the Lorentz gas, where a point particle
moves in an array of fixed overlapping "d spheres"
of arbitrary density (a "real'* bath will act like the
fixed scatterers in the Lorentz gas if m

~ /m gg1 and
pla»&m~/m). The high-density regime is more
tractable here than in a true liquid due to the trivial

statistics of overlapping d-spheres. At a critical
density of scatterers, the tagged particle becomes
trapped in the Lorentz gas, and the self-diffusion
coefficient D must vanish. We found that the
SCRRA gave a good theory of the trapping phe-
nomena.

The empirical success of the SCRRA for the light
point particles of the Lorentz gas, coupled with its
solid justification for heavy, large Brownian parti-
cles in a dilute gas, suggests that it might provide a
good theory for the motion of a tagged particle of
arbitrary size and mass in a dilute gas. This specu-
lation forms the basis of the research to be reported
here. Our goals are twofold. First, even given a sit-
uation where the SCRRA is believed valid, the equa-
tion must be solved, which is a major task. In a re-
cent paper, we showed how the variational principle
of Cercignani ' developed for the calculation of
drag on objects in flowing gases, could, when com-
bined with a Bhatnagar-Gross-Krook" (BGK) ap-
proximation, be used to numerically solve the RRA.
We applied the method to the Lorentz gas for the
RRA and SCRRA, obtaining what appeared to be
solutions of great accuracy. So, our first objective is
to set up the variational method to solve both the
RRA and the SCRRA for a tagged particle in a real
gas.

Second, we want to obtain a qualitative and a
quantitative understanding of the size and mass
dependence of D, in a dilute gas, for all m

&
and a~.

In the Brownian case, we obtain D as a function of
E„ for the full range of E„,from K„&&1to E„~g1;
D varies smoothly from its Lorentz-Boltzmann to
its Stokes-Einstein value. Our calculation is closely
related to various empirical and theoretical attempts
to find the drag on fixed objects for all E„, insofar
as D and the drag are interrelated by Einstein's law
for a massive particle. Nonetheless, it is the first
direct calculation of D(E„)of which we are aware.

Far less is known, either experimentally or from
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coIQputcf simulation, about thc Inotion of light pal-
ticles in dilute gases. Here we find much more
striking and unusual behavior than the smooth tran-
sition from low-density to continuum behavior for a
Brownian particle. %C have only been able to com-

pare our results with the limited data of Alder
et a/. ,

' which are taken at a gas density where the
RRA is unjustified; the theory is qualitatively in
agfccmcnt. Fufthcf simulation studlcs ln this afc8
would be valuable. In addition to the SCRRA, our
calculations cIQploy 8 BGK appfoxlmRtlon, thc v8-

lidity of which may be questioned. This is discussed
8t scvcfal points ln tlM following scctlons.

II. REPEATED-RING EQUATIONS AND
LIMITING SOLUTIONS

For most values of the key parameters, the
SCRRA reduces to the RRA. Thus we introduce
the RRA first, turning to the full SCRRA only

when we need it later on. Lct us write the I.aplacc-
tfansfofmed velocity correlation of the tagged parti-
cle C(z) in the form

=fdv)v)'4(v)~z) ~

where the angular brackets denote a canonical-
ensemble average. The diffusion constant D is given
IQ thfcc dimensions by

D= —,'C(0) .

%C Qow write the RRA equations for 4(v&,z) in
tlM foITD

[z —pAD(v, )]4(1)

Pfd—

rid�

"2T(12)@12)=vyo(u ) (3a}

[z+ v~ V~+ v2 V2 —phd(v2) —pAD(v~) —T(12)]()(12}=T(12}C(1}$0(u2) .

I

ticles i and j, which equals a when i and j are both

gas particles Rnd equals 8 ] fof 8 taggcd-
particle —gas-particle collision. & is the unit vector
joining the center of particle i to particle j, mj is the
mass of particle i Rnd 18 given by m ] foI' / = 1 Rnd t?t

fof l&1, Rnd hajj is the reduced mass of the colliding
particles which is denoted by p if (i,j) contains the

tagged particle and is equal to m/2 otherwise. Fi-
nally, An(v~} is the Lorentz-Boltzmann operator
given by

AD(v&)= fdr2dv2T(12)gu(u2), (6a)

Rnd A,g( v2) Is thc Boltzmann opcfatoI', given by

&s(v2)= fdr3dv3T(23)(1+P»)$0(u, ),

HcI'c, fof shorthand, wc have written 4'(vl, z) as
4(1) Rnd 8(12) represents 8(r]2, v], v2, z). In this
equation v] Rnd I') Rfc thc vcloclty Rnd position vec-
tors of thc tagged paftlclc, v2 Rnd f2 tlM velocity
Rnd position vcctol 8 of 8 gcncfic gas molecule,
dcnotcd Rs paftlclc 2, Rnd I ]2——f]—I'2. Thc func-
tions Po(u~) and Pu(u2) are the Maxwellian velocity
distribution functions of particles I and 2, respec-
tively The .binary-colhsion operators T(ij) and
T(ij) describing elastic, specular hard-sphere col-
lisions, are given by"

T(ij)=aJ f „d&
~

v J & ~5(r" a &)[b(ij) —1]"—
v,".o yO

T(ij)=aJ f „d&
~ v;J &~ [5(r;J. a; &}b(ij)—

5(r;, +aJa)—],

where v; =v; —v, and the operator b(s,j) trans-
forms the postcollision velorities v; and vJ into thc
prccollision velocities v,' and v J, where

v ' = v —(2p" /m )0(o"v")

V J = vJ +{kg~ /PtlJ )&(O'' V j) ) .

Q thcsc definitions~ Qij 18 thc colllslon fadlus of par

where P23 interchanges the vclorities v2 and v3. &e
note also that 8{12) is zero for

~
r&2

~
ga&. For a

full account of the derivation of these equations Rnd
the collision sequences that are taken into account,
wc fcfcf to Rcf. 2.

For a small particle (a~/I &&1), Eq. (3a) reduces
to the Lorentz-Boltzmann equation, given by

lz —p){D(vi)]+(1}=vi(('o(ui } . (7)

This gives rise to a velocity correlation function
(VCF) that decays away approximately exponential-
ly In time, pI'ovldcd PB I /fPl 18 Qot too small. At zclo
frequency, we may write 4(1) in the form

& (1)=v&c(u', )Po(u&) .
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The diffusion constant DL~ may be written in the
form

DLB ——(kg T/m i )/va, (9)

where T is the absolute temperature, kq is
Boltzmann's constant, and va the Lorentz-
Boltzmann friction coefficient, given by

8pQ i ], /2vn —— (2mp, ksT) f(m, /m) . (10)
3m)

The function f(m, /m) is approximately unity ex-
cept for small values of m ~/m and is tabulated for

[

many values of m ~/m by Lindenfeld. '

For a large and massive Brownian particle
(a] /I »1 and m ] /m »1, but with pla ] && m t /m)
we may obtain the VCF by finding the hydrodynarn-
ic solution of Eqs. (3a) and (3b). As this has been
discussed in much detail elsewhere the treatment
given here will be very brief, following along the
lines of the first section of Ref. 3(b). Firstly, we
rewrite 8(12) as 8'(l2) 8(12), where 8'(l2) =0,

I r»l &ai ~d ~(12}=1
I ri2l &&1 alld 8(12) is

now continuous. Equation (3b) may then be written
in the form

W(12)[z+ vi. V i+ v2 V2 —pcs(v2) —pAD(vi)]8(12}=0

with boundary conditions at
l

r i2 l
=a, given by

8(12)+4(l)gp(u2)=b(12)[8(12)+4(1)$ (u )] .

Equation (11b) may now be used to rewrite Eq. (3a) in the form

z@(1) pf d—r2dv2f d&5(r» —ai&)(v, 2 &)8(12)=v p (u )

If we now take the scalar product with v& and integrated v], we obtain

zC (z) p fd v,—d v 2d r 2d & 5( r, 2
—a i & )( v i2 & ) v i.8(12)=3ks 2 /i22 i .

(11a)

As we are dealing with a massive particle, we expect
that

l v,
l

is small compared with
l

v2 l, and that 8
can be expanded,

8(12)=pp(1) 8' '(ri2, v2)

+pp(1) v i 8' "(r i2, v2)+ (13b)

with 8 ' ' and 8"' of the same order in m /m ~. Sub-
stitution of this equation into Eq. (13a), followed by
integration over v&, gives, due to the independence
of v& and v2, a result for C(z), of order m/m&,
containing both 8' ' and 8"'. This would suggest
that in order to obtain the high-mass limit of C(z),
both the high-mass limit of 8 and the first correc-
tion are required. Fortunately, this is not the case,
because multiplication of Eq. (11b) by vi v2 and in-

[

I

tegrating fd v,dv2, allows us to rewrite Eq. (13) in
the form

zC(z) —p f1v id v,d r2d & 5( r, 2
—a, & )

3k~ T
X(v2 0) 0. 8(12)=

m]
(14)

to lowest order in (m /m ] )'~, where clearly 8(12) is
also only required to lowest order in (m/m])'~.
This discussion illustrates some of the pitfalls lurk-
ing in the RRA; Eqs. (13) and (14) are both correct,
but use of the high-mass 8 in Eq. (13) gives the
wrong hydrodynamic limit.

The hydrodynamic form of 8(12), for small
(m /m

& ), is given by

8 ( 12) pp(ui }pp(U2)l n (ri2)+(pm)' [v2 )i+8(u2)( v2 pv2 r——,uz5p )V2r] @,( i2)

+ ( i ) [( 2 pmu 2
—

2 ) ++ ( u 2 ) v 2 pV 2 p]Ta( r 12) ]

where P= (ks T) ', the greek subscripts denote
Cartesian components, and the functions A (u2) and
8(uq) are the same as those used by Van Beijeren
and Dorfman and are closely related to the thermal
conductivity A, and shear viscosity q of the gas,
respectively. The functions n, U, and T are found
by substitution of Eq. (15) into Eqs. (11a) and (11b), D =kg T/4mqa], (16a)

I

which leads via Eq. (14) to the hydrodynamic forms
for C(z) and 4(1), including the slip Stokes-Einstein
law for D. As the zero-frequency (z=0) results are
needed in the subsequent sections, we now give a list
of them:
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4(1)=oui ) vi(m t /4m'}ai ),
n(r) =(1/4mp)r/r (16c)

U ~(r)=(m/P)' (I/ger})(5 p+r r~)/r,

and

4(1)=go(u& )V&C(uf )(3/2m'pu
& )

m( r ) = —(3/4mp}r /r

(18b)

(18c)

{16d)

T(r) =0 .

Here, as elsewhere, the caret denotes a unit vector.
The final limiting case that we consider is the

Lorentz gas (m1/m, a]/a ~~1) when the bath densi-

ty is very large. This problem has previously been
considered in a microcanonical ensemble, but the
extension to a canonical ensemble is straightforward.
In this limit, 8(12) is given by

8 (12)=$ {ou, )P {ou)2[1 —C(u, )v, a V& ~]m (r~2),

where C(u, ) is given by Eqs. (7) and (g).
The hydrodynamic results are nom given for zero

frequency,

Equations (18} do not show percolation, for mhich
the SCRRA is required.

We shall now proceed to set up the variational
principle, so that we may obtain approximate solu-
tions for the VCF away from those limiting cases.
%'e shaB use the results given in this section to guide
us and to help check our approximations.

III. BGK APPROXIMATION,
INTEGRAL EQUATION,

AND THE VARIATIONAL PRINCIPLE

In order to make further progress, it is necessary
to make simplifying approximations to the
Lorentz-Boltzmann and Boltzmann operators that
appear in the RRA. Following Cercignani ' et al.
and many other workers, we employ a single-
relaxation-time approximation, the simplest BGK
approximation. Thus we write

pA D(v]}f(v]) vD f{vi)——4o(ui) Jdv &f(v '&) (19a)

and

ping(v2)g(v~)= vs g(v—2} po(u2—) Jdv zg(v 2)[1+(pm) 'v2 v 2+ ', ( ,
'

pm—uq ——'
, )( ,

' pm—u2'———', )]

Here f(v~ } and g( v2) are arbitrary functions of the
velocity. These approximations make no difference
to the limiting zero-frequency results discussed pre-
viously, provided we identify the function C(U1)
with va

' and provided we choose vz so that the gas
retains the correct Boltzmann value for its shear
viscosity. To an excellent approximation (first
Sonine polynomial approximation} vz is given

14, 15

' 1/2
16a p

vg =
5 pm

As is well known, Eq. (19b) combined with Eq. (20)
yields an incorrect value of the thermal
conductivity —it comes out a factor of —,

'
times the

true value. It is our belief, though, that at zero fre-
quency errors such as these in the BGK approxima-
tions are not so important, except when calculating
corrections to Dqq for very small values of a1/l.
We defer further discussion of this to a later section.

We now further follow the procedure of Cercig-
nani et al. ' and, using Eqs. (19a) and (19b), we con-

Po(u2)m(v„r„)= Jdv, 8(12),

Po(u] )n(v &, r&2)= jdv28(12), (21b)

and

(()o{u, )U~y(V, , r„)={Pm)' 'Jdv, v, 8/ 1)2,

{21c)

vert Eqs. (1 la} and (lib) into an integral equation
for 8(12). The only differences between this prob-
lem and that considered by Cercignani lie in the
differing boundary conditions (specular reflection as
opposed to diffuse reflection) and in the fact that
here both the tagged particle and the gas molecules
are moving. In the limit m1/m~0, the problem
reduces to the RRA approximation for the Lorentz
gas, described in some detail previously. As in these
other problems, for our purposes the whole function
(9(12) is not required —only certain moments of
8(12) are needed. We therefore define the following
functions:
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$0(u, }T(V„ri2) = ( —', )' 'fd v, ( —,
'

Pmu2 ——', ) 8(12) .
(21c)

Clearly, these functions are not completely indepen-

dent. Thus they must satisfy the following equa-

tions:

fdv2$0(u2)m(v2, r)= fdvip0(ui)n(v, , r), (22a)

(pm)'~ fdv2$0(u2}v2 mp(vi, r)

=fd v i/0( Vi ) U p( v „r), (22b)

( i )'"fd v2$0(u2)( 2Pmuz —2)m(v2 r)

= fdv, g0(u, )T(v, , r) . (22c)

The resulting equation for 8(12), obtained from
Eq. (11a) by integrating along the characteristic lines
and then using the boundary condition, Eq. (11b),
may be written in the form

8 (12}= X(—ri2 r0—)[$0(u2)4 (v„z) $0—(u2)4 (v„z)]
$0(ui )$0(u2)+ dr I( r i2 —r }[v22m+( v2, 2) +vz Il+( v i, r )+pm vs v 2 pVp ( v i, r )

I vi21

+ (2vp/3)( —,
'

pmu2 ——,
' )T (vi, r)]

BIO(U i )4O(U2)X( r &q
—ro)

I vi2 I

+~~n~(v'i, r ')+~~gv 2 p. Up (v ~, r ')

where

+ ( —, )'~ vs( —,pmu2 ——,)T,(v 'i r ')] (23a)

x(r)=exp[ —(z+vp+v22}
I
r

I /I vi2 I ] . (23b)

The point ro is found as follows. In the coordinate frame where the center of particle 1 is taken as the origin,
ro is that value of r ~2, either at the surface of particle 1 or else at infinity, from which particle 2 must leave, so
that traveling with constant velocity —v ~2 it eventually reaches the point r &2, The c subscript on the first in-
tegral means that the integral should be done over the straight line joining the points r i2 and ro. The e sub-

script on the second integral means the path of integration is over the straight line from ro on the surface of
particle 1 to infinity in the same direction as —v ']z, where v &2

—v
&

—v z, the primed velocities having been
defined in Eqs. (5a} and (5b).

Substitution of Eq. (23a) into Eqs. (21a}—(21d) yields four coupled integral equations for the moments of
8(12). %e write these equations schematically in the form

f;= g(Ajfj) S;, — (24)

where f; represents the moments, A;1 is an integral operator, and S; is a source, involving the function 4(1).
Thus with Eqs. (3a), (23a), and (24) we have five coupled equations for the five unknown functions, i.e., 4(1)
and the four moments. Unfortunately, unlike the Lorentz gas in a microcanonical ensemble, the functional
form of 4(1) is unknown.

In order to make further progress, we set up two variational principles. Firstly, we may formally solve Eq.
(3b) for 8(12) and substitute the result in Eq. (3a). The resulting equation for 4(1) may be written

[z —pin(vi) —R(vi)]4(1)=vi/0(ui), (25a)

where

R(V )4i(1)=pfdr2dv2T(12)e(12) . (25b)
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%e now introduce the functional J, defined by

(@(I)}=(@(I)
I
[z —piD(v, )—II(v, )]4(l)—2vigo(ui) },

where the angular brackets here denote a scalar product, defined by

& f(vi)
I
g(vi)&= J dvi«vi) g(vi)4)0 (v»,

for arbitrary functions f ( v, ) and g( v i ). Clearly, if we set 4 (1)=4(1) in Eq. (26a), we have the result

&(@(I)}=—C(z) .

Furthermore, if we write

4 (1)=4 (1)+54 (1),
then substitution of this into Eq. (26a) and using the fact that both the operators AD( v i) and R( v i) are sym-
metric yields the result

J(a (I))= —C(z)+ (5C (I)
i [z —pa, ( v, ) —Z ( v, )]5e(I)) . (29)

Thus in order to obtain an approximate value for C(z), we guess a trial function 4(1) that contains a, number

of variable parameters. These are then varied until the functional J(4(1)) attains a stationary value. This sta-
tionary value is then equal to —C(z) with an error related to the square of that in the trial function.

The only term in J(4(1)) that will prove difficu1t to calculate is the term ( 4(1)
~

R (v, )4(1)). We now
show within the BGK approximations given by Eqs. (19a) and (19b}that this term is very closely related to the

functions f; and S;. I.et us introduce the function 8(12), which is given by Eq. (23a) if 4(1) is replaced by

4(1), and let us denote the moments of 8(12) by m, etc. It is then possible to show, using an obvious extension
of the methods used previously that

(4(I) ( R(vi)4(1) }=p fdvidv2dr2gu (ui)4 (1)T(12)@ (12}

PIvu[m, S ]+vs[n, S„]—Pvs[U, S„]+(2vii/3)[T,Sr] j . (30)

In these equations S; is a modified source term, obtained by replacing 4(1) with 4(1) in the original source
term S;. The square brackets denote a new scalar product, given by

[h(v;r},g(v, ;r)], I=dr fdv;$0(u;)h( —v;, r) g(v;, r) (31a)

and

[Ii(v;, r),g(v;, r}]=f dr fdv;Po(u;)h a( —v;, r)g ~(v;, r),

where V refers « the whole of space with
I

-.
I

& u „
and h and g are arbitrary functions.

In order to obtain the right-hand side (rhs} of Eq.
(30), let us introduce the new functional

K([f,');4(1)),defined by

K([f,' J;+')= g W;[f,',f,' A;;f J2+S;], —(32)

8'T ——2'�/3 .

If we set f '; =f;, we have

K([f;];4)=g JY;[f;,S;],

which is exactly what is required on the rhs of Eq.
(30). If we further write

~~ =&D

~n =&a

8'„=—pm',

(33a)

{33b)

f ' =fi+5f
then we obtain the result

K([f,');4)
=K([f;J;4)+g W;[5f;,5f; A,J5fj.], —

I,J

(35)
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where o; is a parameter to be varied. This choice is

the form of the exact 4(1} in all of the limiting
cases discussed in Sec. II. Furthermore, for a suffi-
ciently massive tagged particle of any size, we ex-
pect the exact 4(1) to be of the form given in Eq.
(40). Thus we believe Eq. (40) to be an excellent
choice for a trial function, becoming exact in several
limits. If we express C(z) in the form

(3k' T/m ) )
C(z) =

z+ v(z}

we obtain from Eqs. (38)—(40) the result

(41)

P17l iP
v(z)=vD — Stat[K{[f ~ I;v~Pp(v~))] . (42)

3

Optimization of a has been easy due to the linearity
of S, and thus f', with 4; note that a no longer
enters K, so StatK may now be found in a straight-
forward manner. The true value of StatK([f,' I;
v]fp(Ut )) is attained when f,' =f;, where f; is the
solution of Eq. (24) with 4(1) replaced by v, Pp(u~)
in the source terms. We then may express Eq. (42)

where we have used the relation

W; [h;,A;J.gj ]= WJ [gJ.,AJ,.h;]

for arbitrary functions g; and h;. This forms our
second variational principle, very similar to that em-

ployed by Cercignani et a/. ' The main new feature
here is that all the results are to be regarded as func-

tionals of 4, which is yet to be determined.
In order to clarify the procedure that we intend to

employ, let us summarize the basic working equa-

tions. For trial functions 4(1), m'(vz, r), n '(v], r),
etc., we obtain the VCF from the equation

C(z)= —Stat[X{4 (1))], (38)

where

J(@(1))=(z+vD){@(1)
~
@(1))

—2{4(1)
~

v~gp(U]))
—p St at[ K([f,' I;4(1))] . (39)

Statf and StatK mean the stationary values of the
functionals J and EC, respectively. For further in-

sight, let us choose the trial function 4(1) to be of
the form

where S; is the modified source term. We may now

regard the first term in the curly brackets as being a
diffusive contribution towards v(z), the second term
as corresponding to a contribution from fluid densi-

ty fluctuations, the third as a contribution from the
fluid velocity field, and the fourth as arising from
temperature fluctuations in the fluid. In the
Lorentz-gas limit only the diffusive mode contri-
butes. On the other hand, in the Brownian particle
limit, when v(z) becomes equal to the drag coeffi-
cient, the diffusive mode is negligible, the number
density and temperature modes combined corre-
spond to the pressure contribution to the hydro-
dynamic drag, and the Boltzmann friction coeffi-
cient and the velocity mode combined correspond to
that part of the hydrodynamic drag directly caused
by the fluid's velocity field.

With the choice of trial function 4(1) as in Eq.
(40), Eq. (42) becomes the basic working equation
and is exact when m ~/m gal. In order to obtain a
breakdown of the various contributions to v(z) when
we do not know the exact form of the moments, we
choose trial functions f ;'and find their values such
that K becomes stationary. It is then easily shown
that the variational principle's approximate value
for v(z) is given by Eq. (43) when the exact moments

f; in the expressions are replaced by the optimized
values of the trial functions f~'.

In summary, then, Eqs. (38) and (39) are the main
results of this analysis. We expect them to yield a
VCF which has an error related to the squares of the
errors of the trial functions. Thus, in our opinion,
we expect that these variational methods constitute
numerically accurate and convenient ways of obtain-
ing solutions, given the BGK approximations, to the
RRA kinetic equations.

IV. NUMERICAL RESULTS AND DISCUSSION

Although the variational method allows us, in
principle, to calculate the time-dependent VCF from
the RRA, we shall simply concentrate upon the dif-
fusion constant here. We choose the trial function

4(1) to be given by Eq. (40). As for the trial func-
tions for the moments required in Eq. (39), we fol-
low Cercignani' and pick them to be proportional
to the hydrodynamic forms listed in Sec. II. Thus
we take

n '(vi, r)=bir/r

3
tvD[m, S ]+vs[n, S„]

—Pmvs[U, S„]
+(2vs/3)[T, Sr) j, (43) and

U '( v, , r ) =b, (5.~+r".r"~)/r,

T'(v~, r) =b3r"/r (44c)
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m'(v2, r)= n '(O, r)+pm v2 r U&N(O, r)

+ —,( —,
'
PIUS ——, )T' (0,r),

where bi, b2, and b3 m~a be varied. The choice

of the functional form of T'(vi, r) was motivated by
the fact that this would have been the form obtained
from the hydrodynamic solution in the Brownian
particle limit had not the boundary conditions
forced thc cocff1c1cnt, h'3 to bc zero. Aw'ay from this
limit, though, there is no reason to expect this term
to vanish. The choice of m ' ensures that the equali-
ties given in Eqs. (22a)—(23c) are satisfied.

As a check upon our working, we actually used
the variational principle to calculate the coeffirients
b I, b2, and b3 in these known limits. As expected,
they came out to be the same as listed previously.
Away from these limits, though, the integrals re-

quired to find these cocffirients were done numeri-

cally. The gas parameters used in most of the calcu-
lation were taken to roughly resemble argon at
standard temperature snd pressure. Thc figures
used werc

pl =500,

whcrc I 1s glvcn by

These equations show that a/I=0. 013, so that the

gas would, in reality, obey the BoltzInann equation
fairly accurately; these sre conditions where the
RRA should be valid for a massive particle.

For a very massive particle (mi/m=10' ), we

plot v/vn [where v=v(x=O)] against ai/l, that is,
K„. This is shown in Fig. 1. Using Eq. (43), we
have also shown on the figure the contributions
from the number density and temperature modes,
and from the negative of the velocity mode. The
"total" curve shows s monotonic decrease with in-

creasing size of particle. This result is qualitatively
similar to Cercignsni's results and to the empirical
interpolations for the drag on a sphere, though, as
discussed earlier, we are considering only a specular
reflecting sphere here. It is also clear from the fig-
ure that the contribution of the temperature mode to
the total is very small. If, however, one is interested
in the deviation of v/v~ from unity, then at very
small values of aI/I, the temperature mode does
make s significant percentage contribution to that
cxtrcInely small deviation. Now, as we discussed
earlier, the BGK approximation to the Boltzmann
operator, Eq. (19b), gives the gss an incorrect
thermal conductivity, and one would imagine that
the thermal conductivity would be more intimately
connected to the temperature mode than any other.

Cl
cs r~

I I I I I

l3. 00 1.GQ 2. 00 3. 00 4. 00 5. 00 6. OO

a, /],
7. QO 8. 00

FIG. 1. Solid line is v/v~ vs a ~/I for "Brownian" par-
ticle mI/m=10' . Dashed lines give the negative of the
contribution to (v/vD) —1 of the velocity mode (small

dashes), and the contributions of the density (medium size
dashes) and temperature (large dashes) modes.

mpa Iv~v= vn+ (3.669—4. 165+0.612) (47a)
772 1

or
3

p?,pa Ivy
v=vg) + X0.116 .

P?2 1

Thc thlcc numbers in thc parcnthcscs of Eq. (47a)
are the contributions, reading from left to right, of
the number density, velocity, and temperature
modes, respectively. Clearly, there is an extensive
cancellation occurring to give the final result in Eq.
(47b), the magnitude of the sum being considerably
less than any of the individual contributions. Thus
as the BGK model employed here treats the tem-

Thus as the contribution of the temperature mode is
negligible for all except the smallest values of a 1/I,
we expect that this shortcoming of the BGK ap-
proximation is not too important. Vfhen the tem-

perature mode is important in determining v/v~ we
believe the BGK approximation to be inadequate.
As s general rule, we do not put much faith in the
numerical predictions of the varistional prinriple
when the temperature mode does turn out to be of
importance.

%e may analyze the predictions of the RRA and
BGK approximations more thoroughly at low
values of a 1 /I. As d1scusscd prcv1ously, for
m, /m p~ 1, Eq. (43) becomes exact. Furthermore,
when ai/I gg I, we have

f; =S;[1+0(a i /I )] . (46)

Thus within the BGK approximation and for high-
mass ratio, it is easy to exactly calculate the first-
order correction to vo in powers of aI/I. The nu-
merical results are
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perature mode incorrectly and also as Eq. (47a) sug-
gests that great cancellations are taking place, it
seems probable that a model operator with a very
large number of relaxation times will be required to
obtain an accurate first-order correction term. We
therefore conclude that for small a

&
/l our curves are

untrustworthy due largely to the inadequacy of our
BGK approximations, but that for larger ai/l the
insignificance of the temperature mode suggests the
curves are going to be more accurate. We note also
that we repeated the variational calculation, setting
T'(v~, r) to be zero. Except for very small a~/1, the
curve obtained was identical, to 1 part in 10, to that
shown in the figure.

As mentioned above, considerable effort has been
expended in obtaining the drag for a&/l=1, the
"transition regime"; one reason for studying the
drag is to find D. Almost all previous work, howev-

er, has been for objects with "stick," or "diffuse re-
flection" boundary calculations. Our results should
give a good characterization of the transition
behavior where slip, or specular reflection, is ap-
propriate.

In Figs. 2—4, we plot v/vD against particle size
for differing mass ratios at the same low gas density.
Again, the fact that in all these curves, changing the

trial function T'(v~, r) from the expression given in
Eq. (44c) to zero made less than 1% difference to
the final curve, suggests that again the BGK ap-
proximation is generally working well. In Fig. 2, we

compare the plots for mi/m =10io 10, and 2)&10,
respectively. Clearly, the curves die away faster the
lower the mass ratio is, but they all show a mono-
tonic decrease with increasing size of particle, except
for a tiny and probably spurious maximum at very
low a i/l due to the effects discussed above. In Fig.
3, where mi and m are equal, the plot exhibits a
marked initial increase, a maximum, and then a de-

cay. In Fig. 4, where mi/m =10 the maximum
is still more pronounced. We do not believe that
these maxima are spurious, for the effects of the
temperature mode are negligible. As m

~ /m be-
comes smaller, the position of the maximum moves
in slightly towards smaller a~/a, and its height in-
creases.

In order to get some insight into this kind of
behavior, let us consider the Lorentz-gas limit
m&/m~0 in this RRA approximation. From our
previous study, we know that on this limit v/vD is
a monotonically increasing function as a

&
increases.

The fact that for finite m &/m the curves eventually
start to decrease again after a certain value of a

&
/a

is evidently somehow associated with the motion of
the fluid molecules. The figures from the mode
analysis, Eq. (43), show that the initial rise is caused
by the first term on the rhs of Eq. (44d) for

C)

a

)—
+o

C3
I

C)
A
(3

C)
O

'b. 00 1.00 2. 00 3. 00 4. 00 5. 00 6. 00 7. 00 8. 00
a, /1

FIG. 2. Plot of v/vD vs a&/l for mass ratios of 10'
{solid line), 10 {large dashes), and 2 &( 10 {small dashes).

m '( vz, r )—a purely diffusive term. For larger parti-
cles, however, the negative contribution of the
second term on the rhs of Eq. (44d) outweighs the
first and causes the eventual decrease. As this
second term explicitly involves the motion of the
fluid particles, one is tempted to interpret the final,
total curve as initially representing the motion of the
tagged particle in a static lattice and the eventual de-
crease as being associated with the disruption of this
lattice due to fluid motion. Insofar as the velocity
mode of the fluid dominates at large a &, we may be
seeing a "mode-coupling" effect associated with
fluctuating convective diffusion, but we do not
currently have a detailed understanding of this
point.

The behavior of v/vD for light particles is intrigu-
ing, and we would like to compare our results with

computer simulation or experiment. Unfortunately,
the only relevant simulation of which we are aware,
that of Alder et al. ,

' probes fluid densities where
the bath cannot be expected to obey the Boltzmann
equation, and thus the RRA is of dubious value.
More importantly, when v/vD is very large, as can

2.4 ~

2.0-

16-

O) 1.2-

0.8

0.4-

0 2.0 4.0 6.0 8.0 IO.O 12.0 14.0 16.0
o, !o

FIG. 3. Plot of v/vD vs a &/a for unit mass ratio.
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40-

.'& 3.0-

0 4,0 8.0 l2 0 l6 0 20.0 24.0 28.0 32.0

FIG. 4. Plot of v/vD vs a [/a for mass ratio of 10 '.

be the case for light particles, the system is
Lorentz-gas-like, and we believe that the SCRRA
must be used. We consider these points in Sec. V.

We finish this section by considering possible er-
rors in our methods and possible improvements that
could be made. Given the RRA equations, the ap-
proximations are of two kinds. Firstly, there are the
BGK approximations. Secondly, there is the ques-
tion of how accurate the variational procedure is.
Taking the BGK question first, the systematic thing
to do ~ould be to improve the model by introducing
more than one relaxation time, set up the variational
principle for this new model, and investigate wheth-

er the final results change. As we argued earlier, it
is our belief that the single-relaxation-time model is

good for the diffusion constant provided that we are
not considering corrections to Dq at low a»/I, but

strictly speaking this requires more proof. Also, as
stressed by Lindenfeld, ' the BGK model for A,D(U» )

does not give an accurate time-dependent VCF when

m»fm &&1, and a»fh g&1, but so long as we are
only calculating diffusion constants, this may not be
an important correction. The BGK model used here
yields the correct low-density diffusion constant for
all m»/m.

The question of the accuracy of the variational
principles is harder to answer. One problem with
the principles here is that one requires only the sta-
tionary value of the functional, as opposed to a max-
imum or a minimum. Thus it has proved impossi-
ble, at least so far, to put bounds upon the error one
has made. In practice, though, we believe that this
deficiency is probably not too important. The limit-
ing, hydrodynamic solutions allow us to choose sen-
sible trial functions and, furthermore, Cercignani '
has shown how their variational approach gives ex-
tremely accurate results for a wide range of prob-
lems. He also showed, as we did for the Lorentz
gas, that using more flexible trial functions made
negligible difference to the final answer. In the
study presented here, we have not conducted this

check, except as to whether including a temperature
mode or not alters anything. Clearly, this would be
another possible way of improving the calculation.

In conclusion, we believe that the results present-
ed are accurate, but further work should be done to
check the validity of the BGK approximation and
whether the quality of the trial functions used was

high enough. To this extent, the results here must
be regarded as the first step towards a really good
solution. it is our belief, though, that in spite of the
deficiencies already discussed, that the method pro-

posed here is an attractive and powerful means of
obtaining accurate solutions to the RRA.

V. SELF-CONSISTENT RRA
AND NUMERICAL RESULTS

The normal RRA equations, when applied to the
Lorentz gas with overlapping scatterers, predicts
[Eqs. (18)] that the ratio D jDLa monotonically de-
creases with increasing number density of the
scatterers but does not show a critical density at
which the diffusion constant vanishes. Computer
simulation, however, shows that the critical density
does exist, at least in two dimensions. The work of
Gotze, Leutheusser, and Yip, ' and later our own,
shows that a greatly improved theory is obtained if
the Lorentz-Boltzmann operator in the ring or
repeated-ring operator is replaced by the true one-
particle operator, and the resulting equations solved
self-consistently. These theories do show critical
densities and show considerably improved agree-
ment with the computer simulation data compared
to either ordinary ring or repeated-ring theories. Be-
cause of this, we now propose a SCRRA along these
lines. When m» /m ~&1 the equations become iden-
tical to the non-self-consistent RRA. When m»-m
or m»/m gg1, we suspect that the self-consistent
theory will be a great improvement.

Let us write the true equation of motion of 4{1)
in the form

[z 8(v, )]4(1)—= v, (to(U~), {48)

where 8(v»), is the exact kinetic operator. Our
self-consistent approximation consists of replacing
A,D {v» ) in Eq. {3b) with 8{v» ). Thus the new ver-
sion of Eq. (3b) becomes

+

[z+ v&. V&+v2. V'2 —p8(vi) —pea(v2)

T(12)]8(12)=T(1—2) 4(1)$0(u2) . (49)

We now formally solve Eq. {49) for 8{12) and
substitute the result into Eq. {3a). Comparison of
this equation with Eq. {48)gives
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8(vi)=AD(Vi)+ Jdr2dvqT(12)[z+v& Vi+v2 V2 8—(v&) pi—gv2) T—(12)j 'T(12)gc(U2) .

This is our approximation for the operator 8(v«).
In order to discover what dynamical events are tak-
en into account by the approximation we can ex-
press 8(v «) as a power series in p. This is done by
expanding the inverse operator in Eq. (50) about the
free-streaming term and equating powers of the den-
sity. This procedure is discussed in the Lorentz-gas
limit in more detail in Ref. 7.

In order to obtain numerical solutions to the cou-
pled equations (48), (3a), and (49), we first make a
BGK approximation for 8( v «). Thus we write

p&(v~)f(v~)= —&(z) f(v~) —P (0v~) Jdv If(v'&)

(51)
f«arhitrary f(v~). Using this approximati~~ in
Eq. (48) yields thc cxprcssioI1 for C(z) given in Eq.
(41). Plausibility arguments for the accuracy of the
BGK approximation are presented in Ref. 11. Once
we have made this simplification, we may employ
exactly the same variational procedure as discussed
previously, summanzed in Eqs. (38) Rild (39), cxccpt
that va in the functional E should be replaced by
v(z). If we follow the previous sections and choose

the trial function 4(1) to be that given by Eq. (40),
then the working equation becomes identical to Eq.
(42), except that the K functional now involves v(z).

In order to obtain nuInerical results, therefore, we
took the same trial functions as given in Eqs.
(44a)—(44c) and then solved the modified Eq. (42)
for v by iteration. The results of this procedure, for
v/va with m«/m=1, are shown plotted in Fig. 5.
The ordinary RRA results are in Fig. 3. Clearly, the
self-consistent theory shifts thc peak to smaller
values of a«and makes it higher. This increase of
peak height is not unexpected, because in the
Lorentz-gas limit the self-consistent theory predicts
v/va to rise much faster than predicted by the
RRA. Thus as we believe the initial rise in the
curves reAects a Lorcntz-gas-like behavior, it is no
surprise that the curve from the self-consistent
theory goes up faster initially and thus reaches a
higher value before motion of the surrounding fluid
brings it down again. Because the self-consistent
theory is superior to the non-self-consistent theory
in the Lorentz-gas limit, we suspect that the self-
consistent theory would also probably be a more ac-
curate theory for lighter tagged particles.

The main qualitative conclusion to be drawn from
the calculations presented in the figures is that the
variation of D/DL@ with a«/a is a very sensitive
function of the size and Inass ratios, increasing or

decreasing, sharply or mildly, depending on cir-
cumstances. Insofar as, to our knowledge, almost
nothing is known in this area for non-Brownian par-
ticles, we are eager to compare the theory to real or
computer experiments. The only relevant "experi-
ments" which we have been able to locate are those
of Alder et al. ' These are, unfortunately, carried
out at too high a bath density for the SCRRA to be
trusted. The lowest bath density that they studied,
equal to —,

'
times the close-packed density, gives a

value for a/I of 5.9. Clearly, this ratio is far too
high for the Boltzmann equation to give an accurate
description of the bath, and therefore the accuracy
of the SCRRA at this density is suspect. Neverthe-
less, we are unaware of any other data, and one
might hope that the theory will at least reproduce
the correct trends. %C present the results in Table I,
whcrc r«and I' aic thc ladii of the tagged particle
and fluid particle, respectively. The simulation re-
sults are given in the form D/DE, where DF is the
Enskog diffusion constant which differs from D~ by
a factor of the radial distribution function at con-
tact. For the bath density considered this factor is
by no means negligible, being approximately equal
to 2 for equal radii. Alder et al. show, however,
that it is only a weak function of the ratio r «/r, and
as we are only looking for trends, not quantitative
agreement, we do not think it inconsistent to com-
pare the simulation value of D/DF with our calcu-
lated values of D/DLg,

Thc general results of the simulation are that for
equal masses, D/DE increases, whereas when the
tagged particle is much hghter than the bath parti-
cle, D/DF decreases as r«/r increases. Both the
RRA and the SCRRA reproduce this trend though
the SCRRA seems somewhat more quantitatively

30.

20 ~

2.0 4 0 60 80 I0 0 (2.0 140 16.0

0t /0

FIG. S. Plot of v/va vs a «/a for umt mass ratio in the
self-consistent theory.
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TABL.E I. Mass- and size-ratio dependence of D as calculated from theory and the

molecular-dynamics (MD) simulation of Alder and Alley (Ref. 12) for a bath density of —,
'

times the close-packed density. Numbers in parentheses are Alder and ABey's estimates of
vrhat should be added to D/DF to correct for "long-time tails. "

0.25
0.5
0.75
1.0

(D/Dz)MD

1.09(0.04)
1.14(0.08)
1.15(0.12)
1.16(0.17)

(D/DLB)RaA

1.23
1.34
1.50
1.64

(D /DLB )SCRRA

1.21
1.31
1.41
1.53

0.25
0.5
0.75
1.0

1.04(0.02)
0.95(0.04)
0.86(0.05)
0.75(0.07)

0.90
0.87
0.84
0.81

0.25
0.5
0.75
1.0

1.00(0.00)
0.77(0.02)
0.56(0.02)
0.37(0.02)

0.86
0.79
0.70
0.60

0.25
0.5
0.75
1.0

1.03(0.00)
0.75(0.00)
0.38(0.00)
0.19(0.00)

0.87
0.79
0.69
0.59

0.85
0.73
0.52
0.13

accurate. At this density the plot of v/va looks
more like the curves shown in Fig. 3, showing a
maximum before decreasing once again. Thus the
theory would predict that if the simulation were to
be carried out at a low-mass ratio with larger values
of r&/r, then the value of D/DE would start to rise
up again for large tagged particles. So, even though
we are pushing the theory beyond the regime where
we believe it, it is in fact reproducing the results of
the simulation; we are not aware of any similarly
successful theory. It seems worth pointing out that
purely hydrodynamic theories have' been surpris-
ingly successful in describing the motion of a tagged
member of a pure liquid; the reason for this remains
a mystery. Nevertheless, our finding that, foi
m =m 1, the plot of v/va vs ri /r looks "Brownian"
is consistent with the wide utility of hydrodynamic
theories, since they are most plausible for Brownian
particles.

In summary, we have shown how to treat the
transition from high to low Knudsen number in dif-
fusion of a massive particle. This has bccn done be-
fore for the drag, but not for D directly, and thus
our theory automatically incorporates Einstein's
law. More interestingly, we have determined the
size-ratio dependence of D/DLq, a function of mass
ratio, which, so far as we know, is completely new.
%c would very much like to find other real experi-
ments or simulations on which to test the theory.
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