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Effects of interfacial transport on the equilibrium fluctuations in fluid layers
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Complete hydrodynamic theory of the dynamics of equilibrium fluctuations in one-

component fluid layers confined by rigid solid boundaries is presented. The dynamic struc-

ture factor for such a fluid layer is shown to have both diagonal and off-diagonal elements

which depend on the layer height L and on the transport of energy and tangential momen-

tum across the fluid-solid interfaces. The effects of interfacial energy transport have been

analyzed in the limits of maximum or vanishing tangential momentum transport ("stick" or
"slip" boundary conditions on the velocity field). In the presence of interfacial transport,

two new propagating modes have been found for each distinct interface. In the limit of
maximum energy and/or tangential momentum transport, the new modes differ from the

bulk sound modes only by an increased attenuation coefficient. Additional dissipation is in

part due to shear created by the boundaries, and in part, since the sound is not isothermal,

to heat conduction between the fluid and solid. In the dynamic structure factor, the new

modes appear as additional peaks in the vicinity of the Brillouin peaks of the unbounded

fluid; for wave vectors typical of light scattering experiments these peaks are found to be

significant for L —100 pm. Since the positions and line shapes of these peaks are very sens-

itive to interfacial transport, their study may provide a useful experimental probe of trans-

port across the fluid-solid interfaces.

I. INTRODUCTION

The dynamic properties of fluids confined by
solid boundaries may be significantly affected by the
transport of mass, momentum, and energy across
the fluid-solid interfaces. ' In the hydrodynamic re-

gime, such interfacial transport is traditionally
modeled by empirical boundary conditions on the
hydrodynamic variables such as temperature and
velocity. For example, for rigid interfaces, the ab-

sence of interfacial mass transport leads to a boun-

dary condition of continuity of the component of
velocity normal to interfaces. If there is no tangen-
tial momentum transport, the fluid "slips" along the
interface and the tangential components of stress
must vanish. If, however, the tangential momentum
transport is maximum, the fluid "sticks" to the in-
terface across which the tangential components of
velocity must be continuous. In addition, it is usual-

ly assumed that the heat and entropy fluxes are con-
tinuous across the interfaces, resulting in the boun-
dary conditions of continuity of temperature and
heat flux.

These boundary conditions are well established
experimentally; however, their experimental deter-

mination is typically based on time-independent
macroscopic flow properties. ' There has been no
sensitive experimental study of interfacial transport
over a wide frequency range. In addition, there exist
no complete theories, either molecular or
phenomenological (based on ideas of nonequilibrium
thermodynamics}, of the very complex problem of
transport across the fluid-solid interfaces. In s re-
cent paper, ' we presented some results on effects of
interfacial transport on the dynamics of the equili-
brium Auid Auctuations and suggested that the ex-
periments which determine the dynamics of Auid
fluctuations (light and neutron scattering, sound at-
tenuation and dispersion) may prove to be useful
probes of interfacial transport over a wide frequency
range.

In this paper, we present the complete hydro-
dynamic theory of Auctuations in one-component
fluid layers confined by rigid solid walls. Since in
equilibrium the fluid fluctuations obey the linearized
hydrodynamic equations, it is necessary to solve
them subject to the appropriate boundary conditions
at the solid walls. For simplicity, we assume the
fluid layer to be of infinite extent in the xy plane
and of height I.. Thus, interfacial transport affects
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the Auctuations only through thc boundary condi-
tions at z =+L/2. Since we are interested in time-
dependent autocorrelation functions of hydro-
dynamic variables, we have an initial boundary
value problem which can be solved most easily by
introducing the Laplace transform in time (this
leads to dependence on the variable s =i~) and the
Fourier transform in the xy plane (this leads to
dependence on the component of wave vector paral-
lel to the interfaces k~~). Thus, the problem is re-
duced to a one-dimensional one, which depends only
on variable z. This problem can be solved exactly
for any boundary conditions; the exact solutions for
hydrodynamic variables are given in Sec. II.

The quantity of experimental interest is the

dynamic structure factor, which is the Fourier
transform of the time-dependent density autocorre-
lation function. The exact expression for the
dynamic structure factor for any boundary condi-
tions is given in Sec. III. It is found that, in con-
trast to the spectrum of Auctuations in unbounded
Auid, the dynamic structure factor in a fluid layer
has nonvanishing off-diagonal elements. These
correlations between modes with different values of
kz are due to the boundary conditions: in general,
the Fourier modes are not the normal modes of the
system.

The interfacial transport and boundary' conditions
are discussed in Sec. IV, while Secs. V and VI coIl-
tain thc results for the dynamic structure factor in
the cases of stick and slip boundary conditions on
thc velocity field. It is shown that for most empiri-
cal boundary conditions (nonvanishing interfacial
transport of either energy or tangential momentum)
there exist in fluid layers two new modes for each
distinct interface. These modes propagate parallel
to the interfaces and their dispersion relation de-

pends only on k~~. In the extreme limits of infinite
or vanishing thermal conductivity of the solid boun-
daries, these modes differ from the bulk sound
modes only by increased attenuation coefficients.
The physical interpretation of this additional dissi-
pation is simple: The walls may (for stick boundary
conditions on the velocity field) create additional
shear in the fluid and may (if they are not insulat-
ing) act as a heat sink. Therefore, the additional
term in the attenuation coefficient depends on the
shear viscosity of the Auid and the thermal conduc-
tivity of both thc fluid and solid walls. Hence, it is
not surprising that in the case of slip boundary con-
ditions and thermally insulating walls, these new in-
terfacial modes disappear. For intermediate values
of the thermal conductivity of the walls, the effec-
tive speed of the interfacial modes may have a non-
analytic dependence on k~ ~.

In the dynamic structure factor, the interfacial

modes appear as additional peaks in the vicinity of
the Brillouin peaks of the infinite Auid. Their am-

plitudes are discussed in detail in Secs. V and VI.
For wave vectors typical of light scattering experi-
ments, they are found to become significant only for
small values of L, on the order of —100 pm.
Nevertheless, since the positions and line shapes of
these peaks are very sensitive to interfacial trans-

port, their study may provide a useful experimental
probe of transport across the Auid-solid interfaces.
The results are summarized in Sec. VII.

II. DYNAMICS OF FLUCTUATIONS
IN A FLUID LAYER

Consider a Auid layer of infinite extent in the xy
plane and of height L in the z direction. The
dynamics of a one-component Auid is given by the
time dependence of the velocity field u and two in-

dependent thermodynamic variables, which can be
conveniently chosen as the mass density p and tem-

perature T. ' Using the assumption of local
thermal equilibrium, the other thermodynamic vari-

ables, such as pressure p or entropy density s, are
determined uniquely in terms of p and T. In equili-
brium (u)=0, (p)=po, and (T)='ro, where the
brackets denote equilibrium average. The dynamics
of equilibrium fluctuations u, 5p, and 5T in the
Auid can be found from the solutions of the linear-
ized hydrodynamic equations '

85p
+po(V u)=0, (2.1)

Bt

—(I,—~)V(V' u)=0, (2.2}

where c is the adiabatic speed of sound, y=C&/C„,
o. is the thermal expansion coefficient, ~ is the
thermal diffusivity, v and g are the shear and bulk
kinematic viscosities, and I „=—g+ —,v is the longitu-

dinal viscosity.
The equilibrium dynamic correlation functions of

fluctuations (5A;(r, t)M&(r ',0)), where 5A; is any

of the variables 5p, 5T, and u, can be obtained from

Eqs. (2.1)—(2.3) in either of two ways. In one ap-

proach, the Auctuating stress tensor and heat flux,
whose correlations are assumed to be known, are ad-

ded to Eqs. (2.2) and (2.3), respectively. In the oth-

er approach, the set of Eqs. (2.1)—(2.3) is considered
an initial value problem, and the dynamic correla-
tion functions are found in terms of the static (equal
time) correlation functions (M;(r, o)5A&( r ', 0) ) (see

Ref. 4). In this paper, the second approach is adopt-
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cd since thc corrclatlon functions of thc fluctuating
stress tensor and heat flux are not easy to determine
in the presence of fluid-solid interfaces, while the
static correlation fuQctlons ln such systems can be
studied, at least in principle, both experimentally (by
light or neutron scattering) and theoretically (by
molecular dynamics).

Thc lllltlal value pl'oblclll 1Il a flllld of lnflllltc ex-
tent in the xy plane can be solved most easily by tak-
ing the Fourier transform of Eqs. (2.1)—{2.3) in the
xp' plane, and talong thc I aplacc transform of thcsc
equations in time. Then a fluctuating hydrodynam-
ic variable 5A; is transformed to

A;(k((,z;s)= z f dt f dx f dy exp[ —st I'(k-, x+kyy)]58;(r, t), (2A)

4fQg
&p+pa +P =5p(k

~
~,z;0)=5p(z), — (2.5)

(y-1)$T—'yK —k
[~

T+ ' +(()
ck 6fZ

=5T(k)(,z;0)=5T(z),

SQg+ +(2PO —1I) 2
+'Vk t)Qg

QPO {tIZ dZ QZ

(2.6)

T»s «uccs Eqs. (2.1)—(2.3) to a system of ordinary
diffcrcntlal equations ln variable z:

8Q~ 8Qy+
Bx Bp

(2.9)

Equations (2.5)—(2.8) are to be solved subject to the
appropriate boundary conditions on the variables T,
II„and p at z =+ ,L. Thes—e boundary conditions
and their influence on the dynamics of cquibbrium
fluctuations in Quid layers are discussed in detail in
the following sections. Here, a general solution of
Eqs. (2.5)—(2.8), valid fof ally boundary co11dltlofls,
Is constructed.

Using Eq. {2.5), p can be ehminated from Eqs.
(2.6)—(2.8). I.et F(z) be a vector such that

—(I', —v) =II'(k~(,z;0)=—ug(z), Q.7)

+(I y
—v)k)) =({)(k((,z;0)=P(z), (2.8)

8Z

Then, it is straightforward to show that Eqs.
(2.6)—(2.8) afc eqlllvalcllt to

—~F+ f (2.11)
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6T(z)
1

fK

f(z) =
c d6 p(z) ys

2
Qz(z)

pp(c +syI „) «c +syI „

(2.13)

(2.14)

c kll——P(z) — 5p(z)
v pppvs

where 5T(z), 5p(z), u, (z), and P(z) are the initial values of fluctuations for a given value of k~ ~.

The general solution of Eq. (2.11) is

F(z)=e—~C+ f dz'e —' ''f(z') .
Z0

Thus, it is necessary to find the eigenvalues and eigenvectors of the matrix M. There are three pairs of eigen-

values, denoted here by +A.;, such that

(kll-x. )
/

where

(2.15)

(2.16a)

(2.16b)
s

X
V

Let A denote the matrix of eigenvectors of M and let
A ' be its inverse; both A and A ' are given expli-
citly in Appendix A. Then

I

considerably by noting that, in equilibrium, the stat-
ic correlation functions {5pu, ) =(5p(('i) =(5p5T)
=0. Hence, without any loss in generality one may
set

D(z) =A 'e —'A (2.17)
5T(z) =u, (z) ={()(z)=0;

x, 3
——— [c +s(I „+ys)+[(c +sI „+st) —4sir(c +syI'„)]' ],

2K(c +syl „)

is the diagonal matrix with elements exp(+A, ;z), and
from Eq. (2.14)

F(z)=A D(z) c+f dz'A D(z —z')A ' f(z') .
0

(2.18)

Equation (2.18) is the general solution of Eqs.
(2.6)—(2.8), with the vector c to be determined from
the boundary conditions. Using Eq. (2.18) the
dynamic correlation function between any two fluc-
tuating variables can be determined in terms of the
appropriate static correlation functions. Since the
quantity of experimental interest is the dynamic
structure factor, the remainder of this paper is de-
voted to explicit calculations of the frequency-
dependent density autocorrelation function for dif-
ferent choices of interfacial energy and tangential
momentum transport.

III. DENSITY AUTOCORRELATION
FUNCTION IN A FLUID LAYER

The calculation of the dynamic density autocorre-
lation function {p(k~~,z;s)5p(z)) can be simplified

T=A i [ci l( i (z) +C38i(z) ]

+Az[cstk(z)+C483(z)]+ Tz(z),

u, = —c i Pi 8i(z) —c3Sigi(z) —c3P383(z)

—c4S3$3(z)+csS3$3(z)

(3.1)

+c6I',8,(z)+u~(z), (3.2)

{('i=k
~) [c i/i(z)+c38i(z)+c31pz(z)+c483(z)]

cs 83(z)—c6l( 3(z) + ((iz (z)

where, for i =1,2, 3,

cosh(A, ;z)

cosh(iL;L /2)
;(z)—:

sinh(A, ;z)

sinh(A, ;L/2) '

(3.3)

this simplifies the vector of initial values f, which
now has only two nonvanishing components.

Using expressions for A and A ' from Appendix
A, the solutions for the fluctuating hydrodynamic
variables are found to be
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R, =—tanh(A, ,L /2),

and, for i =1,2,

P;=—A,;R;,
S,.=A, /R, ,

P3 =R3/k3,

S3=—1/(A, 3R3) .

In addition,

(3.4)

T~(z)= —ApAiAz f dz'5p(z')[Aqx~ sinh[A|(z —z')] —A~xq sinh[Aq(z —z')]],
u (z) =ApA~Aq f dz'5P(z')[Aqx~ cosh[}t,~(z —z')] —A, xq cosh[Ate(z —z')]],

2

P~(z) = —Apk~~ dz'5p{z') [Azlqx~ sinh[A~(z —z')] —A~A~xq sinh[A~(z —z')]],
where

c2
Ao —=

2pg~kq(Aqx~ —A ~xq)(c +syl'„)

and, fori =1,2,

(y 1) x;
A. =—

s +yKx;

Therefore, from Eq. {2.5), the solution for density fluctuations is

syI"„
sp= —ppx, [e,g, (z)+cz8&(z}]—ppxz[c3gz(z)+c48z(z)]+ 5p(z)

c +syI „
z

+Appp dz'5p(z') [ApApx f sinh[A )(z —z'})—A )A )xp sinh[Ap(z —z'}]]

{3.5a)

(3.5c)

(3.6a)

(3.7)

where the coefficients c; d~eend on the boundary
conditions for the variables T, and u„and P.

Since the dynamic structure factor is the correla-
tion function of the Fourier modes of the density
Auctuations, it is convenient to represent their initial
values in a Fourier series

5P{z)= g 5p(n)e"""""; {3.8)

this representation is valid for all z in {—L/2, L/2).
Let p(n, s} denote the projection of P(k~~, z;s) on the
nth Fourier mode; i.e.,

e; —= —,Ap g 5p(n)Q;(n)

Then, it followers from Eq. (3.7) that

p(n, s)=S„(k,s)5p(n)

(3.10)

(3.11)

Also let

L/2
(3.9)

Where

+ g SL ( k, k', s)5p(n '), (3.12)
sL „,

s2+s(I, +yK)k +(1—1/y)c k +yKI „ks (k,s)=
s +s (I „+yK)k +$(c +yKpk )k2+Kc k4

SL ( k, k ',s) = —,A ppp[x )I) ( k )Z|( k, k ') —
x pIp( k )Zp ( k, k ')],

2( 1)
k —x2

A2A2X )R ]
Z)(k, k')=

~ I)(k')[X)—kjkg+i(kg+ki)P)] —P)Q)(n') —ikggp(n'),
1 —Ri

(3.13)
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A )A, ix282
Z2(k, k ') =

2 Ip(k )[A2 —
kg k J +i (kq+ k] )P2]+P2Q3(n')+ikj Q4(n ') .

1 —R2

It is clear from Eq. (3.12) that there exist dynamic
correlations between Fourier modes with different
values of kz, and the appropriate density correlation
functions are

(p(n, s)5p~(n') ) =S„(k,s)S (k, k ')

+ QSL(k, k ",s)S{k",k '),
k II

(3.17)

large (nonhydrodynamic) values of k; for k ' on the
order of intermolecular distances, the differences be-

tween the fluid molecule-molecule interaction and
molecule-solid interaction may become significant.
Therefore, for small values of k, we expect that the
dynamic structure factor is of the form

S(k, k ',a)) 1=—Re S„(k,s =iso)5k ~,
S(k ')

where the static correlation function is

S(k, k ') ={5p(n)5p(n') ) .

The dynamic structure factor

(3.18)

l
SL(k, k ',s =in)

NI

(3.24)

1S(k, k ', co) =—Re(P(n, s =ic0}5p~{n')) (3.19)

can, therefore, be determined from Eq. (3.17). In
the infinite fluid, the static correlation function is
diagonal; i.e.,

S(k,k')=S(k)5k k, (3.20)

so that in the limit I.~ oo

6)= l Kk

S{k,k', co) 1= —ReS„(k,s =iso)5& z, , (3.21)
S(k)

and the dynamic structure factor is diagonal. The
normal hydrodynamic modes of the Quid are deter-
mined from the poles of the dynamic structure fac-
tor; it is easy to see from Eq. (3.13} that there are
three poles in S„(k,c0}, with dispersion relation in
the limit of small k

this expression is evaluated in the remainder of the
paper. However, even if the static structure factor is
diagonal, the dynamic structure factor has off-
diagonal elements whose amplitude vanishes as
I.~ ao. %hile the assumption of diagonal structure
factor may affect the amplitudes, it does not change
the nature of the normal modes of the fluid layer
which are given by the poles of S„(k,s) and
SL(k, k', s). The analytic structure of SL is much
more complicated than that of S„and depends on
the boundary conditions through functions Q;. In
the following sections, it is shown that Q s may
have poles corresponding to interfacial propagating
modes which are distinct from the bulk sound
modes.

IV. DYNAMICS OF FLUCTUATIONS
IN SOLID BOUNDARIES

AND INTERFACIAL TRANSPORT

for diffusive heat mode, and

o) =+ck +iI k

for two propagating sound modes, where

I = —,[I „+(y—1}z]

(3.22b)

(3.23)

In the study of hydrodynamic properties of fluids
confined by solid boundaries, the acoustic excita-
tions of the solid are usually neglected; i.e., the
acoustic impedance of the interface is assumed to be
infinite. Kith this assumption, and in the absence
of interfacial mass transport, the normal component
of velocity vanishes at interfaces

is the attenuation coefficient for bulk sound modes.
Even though Eq. (3.17) is the exact density auto-

correlation function in a fluid layer, it cannot be
evaluated explicitly in this form, since the static
correlation functions in the presence of interfaces
are not known. Here, we assume that the static
structure factor is diagonal [satisifes Eq. (3.20)] even
for finite values of I.. %e expect that in fluid layers
away from any critical points, the off-diagonal
elements in S(k, k ') are negligible except for very

~, =0, z=+I./2. (4.1)

More interesting is the question of tangential
momentum transport. It is well established experi-
mentally that for fluid-solid interfaces in the limit
of vanishing frequency this transport is maximum,
leading to the so-called stick boundary conditions on
tangential components of velocity; i.e.,



27 EFFECTS OF INTERFACIAL TRANSPORT ON THE. . . 2591

/ =0, z =+L/2 . (4.2)

It has been argued that this effect is caused by the
surface roughness, which leads to the perfectly dif-
fuse scattering of the fluid molecules from the solid
walls. ' It would be very interesting to determine
(by careful experimentation with interfaces of dif-
ferent roughness, over a wide frequency range)
whether there exist conditions for which the tangen-
tial momentum transport is less than maximum re-
sulting in a finite slip at the interface. In the ab-
sence of tangential momentum transport, the
tangential stress is continuous across the interface;
i.e.,

dP
dz

=0, z =+L/2 . (4.3)

In this paper only the extreme limits of stick and
slip boundary conditions on the velocity field will be
considered.

We analyze in greater detail effects of tempera-
ture fluctuations in solid boundaries on the dynamic
structure factor of a fluid layer. The dynamics of
these fluctuations is governed by the heat conduc-
tion equation

$

Ar4Za~e, L/2&z & ~
A 4Za2e, —00 &z & —L/2

(4.6)

where

s
A4= kII +

K$

' 1/2

(4.7)

Assuming the continuity of the heat and entropy
fluxes across the interfaces, one has that at
z =+L/2

T= T.

dT dT,—~$ (4.8)

where 5T,(z) is the initial value of the temperature
fluctuation in the solid. Since (5p5T, ) vanishes in
equilibrium, 5T, (z) can be set to zero without loss in
generality. Then the solutions of Eq. (4.5) which
vanish as z~+ 00 are

a5T,
=K,V 5T, ,at

(4.4) This leads to the boundary condition on the fluid
temperature

where K$ =A,, /(p, C~, ) is the thermal diffusivity, and
subscript s refers to the solid. After taking the La-
place transform in time and the Fourier transform
in the xy plane, Eq. (4.4) becomes

dT
dz

+5T(kII,s)T=0, z =+L /2,

where

(4.9)

d T$2 s — 1
2

kII+ —T, = ——5T,(z),
dz2 K$ K$

(4.5)
p$ C~K$

5,(kII,s)= A4 e

ppCp K
(4.10)

V. DYNAMIC STRUCTURE FACTOR FOR STICK BOUNDARY CONDITIONS
ON THE VELOCITY FIELD

For stick boundary conditions, Eq. (4.2), together with boundary conditions on the normal velocity com-
ponent, Eq. (4.1), and on the temperature, Eq. (4.9), the coefficients c; are determined from the solution of

Gc+g=0,
where

(5.1)

—A )(Pi+5T)
A )(P)+5T)

P)
—Pi

k
II

k
II

A, (s, +5,)

A, (s, +5,)

—Si
—Si

k
II

k
II

—A, (P, +5T)
A, (P, +5T)

P2

—P2

k
II

k
II

S3 —P3

S3 P3

1 —1

—1 —1

A2(S2+5T ) 0

A2(S2+5T ) 0
—S2
—S2

k
II

k
II

(5.2)
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0

0

+5z Tp(L/2)
6fTp

s=L,n
Q

u (I./2) (S.3)

P~(& /2)

and the ~arious quantities entering in Eqs. (5.2) and (5.3) are defined in Eqs. (3.4)—(3.6). I'he solutions for the
e; s are given in Appendix B. After some tedious algebra, the L-dependent contribution to the dynamic density
autocorrelation function is found to be

2( —1)"+"c A2x) r](ky ky ) A]x2r2(kJ kJ )
SL, (k, k ',s) =

(A,x, —A, x, )(c'+syr„) k —xg
(5.4)

where V-=—S —k~iS, .2 (S.14)

I']x ) I') 8') kgkg 8'2
F =

(k')' —x, T( U) T( V)

P2x2 P2$'3 kqkg8'4
F =

(k')2 —x2 T( U) T( V)

P)x) [A2(P2+5r) A) U2]—
8'] ——

(k') —xi

A,P,x,(S,+k~~P, )

(k')2 —xq

x([A2(Sg+5z )—A( V2]
8'2 ——

(k')2 —xi

A )x2(5g+k ~~S3)

(k') —x2

A~P, x)(5r+k~~P3)
8'3 ——

(k') —xi

P,x, [A, (P, +6, ) A, U, ]
(k') —x2

~,x, (S,+k~~S, )
84 ——

(k')~ —x]

xi[A)(S)+5z )—A2V, ]
(k')2 —x2

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

Despite the complicated appearance, it is easy to
check from Eqs. (5.4)—(5.1Q) that the matrix

Sl ( k, k ',s) is symmetric.
The normal hydrodynamic modes of the fluid

layer are found from the poles of the dynamic struc-
ture factor; these modes do not include the diffusive
shear modes from which density Auctuations are
decoupled. The poles of S (k,s) are discussed in
Sec. III. Here we consider only the analytic struc-
ture of SL (k, k ',s).

K =x], K=k,k'. (5.15)

From Eq. (2.16a), the dispersion relation in the limit
of small K is

m=+cK+i I K, (5.16)

where I is the bulk sound attenuation coefficient
defined in Eq. (3.23). It follows from Eqs. (2.15)
and (5.15) that

.2n'N
A~

——i, N=nn'
L

and, therefore,

A. Bulk sound modes

The dispersion relation for these modes is deter-
mined from

T(U)=Ai U2(Pi+5'. ) —A2Ui(P2+5z ), (5.11)

T( V) =A i Vg(Si+5z )—A2 Vi (Sp+5r), (5.12)

U; =—P; —k)(P3, (5.13)

R ) ——tanh( ~ A, ]L)=0 .

Thus, I'] ——0 and S& ——00, so that the amplitudes of
these sound modes vanish unless kz ——kj. In the
limit of small k the contribution of SL to the diago-
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nal part of the dynamic structure factor cancels that
of S„;i.e., the ordinary Brillouin peaks disappear in
sufficiently thin Quid layers. In practice, the ampli-
tudes of the Brillouin peaks remain finite unless L is
small enough so that the condition

4 (klL) ~(12rk
'

k
'

(5.17)
c kq

is satisfied. Therefore, for typical Auid parameters
and k~~ -10 cm ', the Brillouin peaks disappear
froIn the dynamic structure factor for L gg0. 1 cm
for kj -k)), or for L gg10 cm for kj ggk~I.

8. Bulk heat modes

These waveguide sound modes appear because they
arc Iiot orthogonal to modes with k j =2&Pl /L,
chosen as the basis in representing the density Auc-
tuations in a Fourier series. Therefore, they are
present independently of values of kz and kj. The
amplitudes of these modes, however, vanish for suf-
ficiently small values of L, given by condition (5.17)
with kz replaced by k~. For larger values of L, the
amplitudes are finite and proportional to
(k ~

—k )
' and (k I

—k ) '. Hence, these
waveguide modes are most pronounced in the vicini-
ty of the infinite fluid Brillouin peaks.

The dispersion relation for these modes is deter-
mined from

N =EKE

In this case, it is

.2+%
A,2=1, X =nsPl

L

(5.19)

so that P2 ——0 and S2 ——00. As before, these modes
contribute only to the diagonal part of the dynamic
structure factor and for sufficiently small values of
L such that

() —1)~~r„—~~ k
, (k~L) —q ~ &&1;

C kq

this contribution cancels that from S„and the Ray-
leigh peak disappears.

C. %aveguide sound modes

In this case the dispersion relation is determined
from

E =x2, E=k,k'.
From Eq. (2.16a), the dlspefsion t'elation in the limit
of small E is

D. ~aveuide heat modes

The dispersion relation is determined from

I'p ——ao . (5.25)

E. Interfacial modes

Thus, it. is seen that for sufficiently small values

of L, the amplitudes of the ordinary sound and heat
modes vanish, and the total intensity of density fluc-
tuations is in the new interfacial modes whose

dispersion relation is given by the solutions of

T(U) =0

Again, there is an infinite number of poles of I'2
which in thc limit of small values of E(m) occur for

m=ixK (m) .

Thcsc diffusive heat. modes arc plcscnt. independent-

ly of values of kz and kz,' their amplitudes vanish
for sufficiently small values of L, given by condition
(5.20) with kj replaced by k . For larger values of
L, the amplitudes are finite, but since these modes
have zero shifts, they are superposed on the central
Rayleigh peak and are, therefore, unobservable.

Since

(5.21)
Ol

T(V)=0.
(5.27)

a) =+eE(m)+iI E (m), (5.23)

P) ——A, ) tanh( 2
A, )L)

4A, )

0 Af+(2m+1) m /L

there is an infinite number of poles of Pi, which in
the limit of small values of E(m) occur for

In general, the dispersion relation for these modes
depends on the component of wave vector parallel to
the boundaries kI~ and on the height of the Auid

layer L. %bile the transcendental equations (5.27)
can be solved numerically for any values of L, one
can find analytic results for the dispersion relation
in the limit of L sufficiently large so that

Re( —,A,;L)gal, i =1,2, 3 (5.28)
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P;=S;=A,;, i =1,2

P3 -S3- 1/A3,

U =V =A, .—k A3=U; .2

(5.29)

Then, T(U)=T(V) and the dispersion relation is
determined from

l

(5.30)

where 5T is given in Eq. (4.10). In the limit of small

k~~, the dispersion relation is

r0=+ck((+ '[I'+A{k())]k)(, (5.31)

ika ~a,1+
K c

(5.33)

Since A(k~~) is explicitly complex, both the shifts and the widths of the new peaks in the dynamic structure
factor depend on the ratio of thermal diffusivities of the solid and fluid. In the limit x, /~pal, so that

ski(/c ))1

. 1/2I"k
~ ~

poCp
c0=+ckii I+(y—1) +i I+I"—(y—1)

c psCps x's

' 1/2r'c poCp
k~~,

ps Cps Ks
(5.34)

and in the limit sc, /x'~00 (perfectly conducting
solid boundaries) the dispersion relation becomes

cu=+ck((+i(I +I")k(( . (5.35)

In the opposite limit of small thermal conductivity
of the boundaries, x, /x « 1,

(5.36)

Thus, the effect of finite thermal conductivity on
the position of the new peaks is most pronounced
for 1«~, /sc& oa. Then the effective speed of the
new modes depends on ~k~~. In the extreme limits

(s, fr~co or Ir, Is~0), these new modes differ
from the ordinary bulk sound modes only in that
their dispersion relation is independent of kz and k&,
and their attenuation is enhanced. The physical ori-
gin of the new modes is clear. Only the component
of the sound modes propagating parallel to the inter-
faces experiences additional shear created by the
sticky boundaries. This accounts for the appearance
of shear viscosity v in A(k~~). There can also be ad-
ditional dissipation due to heat conduction between
the fluid and solid walls if the sound is not iso-
thermal (y@1);hence, the appearance of a and K, in
A(k~~). Note that, for thermally insulating boun-
daries (~,/~~0), it is seen from Eq. (5.36) that the
enhancement of attenuation is due only to additional
shear and only v appears in A(k~

I
).

so

C:

ia»

O

3
tm
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)P l ( (

I
I

A:L = 100 pm
8: L = P.00 pm
C: l =400 pe

I

[
I

[

1

l

I

424 4.28 4.52 4.36
ao()08 sec &)

FIG. 1. Dynamic structure factor S(k, k, ~), for a
fluid layer with stick boundary conditions, near the Bril-
louin frequency for three values of the layer height L.
Fluid parameters are those of argon at 85 K:
v=2. 3X10 cm /sec, v=g=9X10 ' cm /sec, y=2. 2,
c =8.5&10 cm/sec. In addition, poC~ =p, C~, is assumed
and K /K = 10 . Components of the wave vector are

kll =5X 10 cm ', k j ——2m/l. . Brillouin peak of the infin-

ite fluid (dashed curve) is shown for comparison.
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The aew modes are interfacial modes with ampli-
tudes decreasing exponentially with the distance
from the interfaces. This can be easily checked by
taking the two solid boundaries to be of different
materials. In this case, even for sufficiently large
values of L, T(U)&T(V). The breaking of the re-
Aection symmetry lifts the degeneracy of the inter-
facial modes. For each distinct fluid-solid interface

there are two propagating interfacial modes with
dispersion relation given by Eq. (5.31) but with

A(kll) determined from Eq. (5.32) with the parame-
ters characteristic of the solid boundary.

For two identical solid boundaries, ia the limit of
L sufficiently large so that the condition (5.28) is sa-
tisfied, thc contributions to thc dynRImc stnlcturc
factor from the interfacial modes are

AS+-(k, lt ',co) 2( —1)"+" 1

S'(k'} y (k~~L) [(I'+R A)kI~] +( + k~)+I AkI()

" l/2

k(~ kgkq+i k~~ [(I'+ReA)k(~ —i(co+ck~~+ImAk(~)] +i-. 2A 2 ll

. 2Ak3 (k, )p
.2Ak3g+l

ll j +l
llC C

For infinite thermal conductivity of the solid A=I", snd if kz-k j ««2I"kll/e, Eq. (5.37) reduces to
. 1/2 .

~+(k g ~

~0) 2( 1p+&' I"k~~ k~~ (I +I")k~~+(co+ck~~)

[(I +I )kf~]'+(
—

k~~)

If, on the other hand, the solid boundaries are

thermally insulating, the contributions to the
dynamic structure factor from the interfacial modes
are exactly ss in Eq. (5.38) but with —,v replacing I".
Because of the presence of ar in the numerator of
Eq. (5.38), even in the extreme limits of perfectly
conducting or perfectly insulating solid boundaries,
the line shapes are not I.orentzian. The contribu-
tions to the dynamic structure factor become signifi-
cant for

Plk I 2
Il ll

krak q

Thus, as the separation of these peaks from the Bril-
louin peaks increases (k~ increases) their amplitudes
decrease. For kll typical of light scattering experi-
ments and transport coefficients characteristic of
dense fluids, the contributions of interfacial modes
become slgnlficsIit for L —100 pm. For such sIDR11

values of L, the amplitudes of the Rayleigh and
Brillouia peaks decrease and the waveguide modes
become important. In addition, Re( —,A, ]L) is
no longer large compared to unity and the above ap-
proximate cxprcsslons no longer valid.

The dependence of the dynamic structure factor
for a Quid layer on its height L and the ratio of
thermal diffusivities of fluid and solid is illustrated
in Figs. 1—3. The dynamic structure factor, shown
in the vicinity of the infinite fluid Brillouin peak
given for comparison, wss evaluated using the exact

I

expression for SL, (k, k', c0) from Eq. (5.4). Since
there is no new structure in the Rsyleigh peak (only
its amplitude changes ss R function of L) it will not
be considered any further. The fluid parameters are
those of argon st 85 K chosen because of relatively
large value of @=2.2 in order to illustrate the effects
of heat conduction between the Quid and solid. The
dependence of the diagonal part of the dynamic
structure factol on thc layer height L„ fol. k~ ——2~/L
and ~, /x =10, is shown in Fig. 1. It is seen that
as L decreases, the amplitude of the Brillouin peak,
centered at co =ok, decreases awhile the amplitudes of
the waveguide modes, centered at m=cK(m), in its
vicinity increase. In addition, a new interfacial
mode centered at ~=ck

l
appears. The dependence

of the diagonal part of the dynsInic structure factor
on kz ——2mn/L for n =0, 1,2 and on thc ratio of
thermal diffusivities of the Quid snd solid is shown
in Fig. 2. For kz ——0, the interfacial peak is super-
posed on the Brillouin peak and only the amplitude
Rnd linc shape of thc resulting single peak Rrc affect-
ed by the ratio of the thermal diffusivities. For
kj ——2m/L, L =100 pm, the interfacial peak is well
resolved only for solid boundaries of low thermal
conductivity. This is not surprising since the addi-
tional dissipation duc to heat conduction froID fluid
to solid of high thermal conductivity increases the
width snd decreases the amplitude of the interfacial
peaks. Note that the amplitude of the Brillouin
peak is reduced considerably', this also happens for
k j ——4'/L. In this case, the interfacial peak is well
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FIG. 3. Off-diagonal elements of the dynamic struc-

ture factor S(k, k ', m), for a fluid layer with stick boun-

dary conditions, near the Brillouin frequency for different

values of kz ——2mn/L and kz ——2mn'/L with L =100pm.
Curves are labeled (n, n'). Other parameters are as in Fig.
1, but the solid curves pertain to poor thermal diffusivity

of the solid (~, /~=10 '), while dashed curves to high
thermal diffusivity (x, /a. =10'). Scale is set by the Bril-
louin peak of the infinite fluid with k&

——k& ——0.

O
~ ~ -~+

4.24 4.28 4.52 4.56
~008 sec-')

FIG. 2. Dynamic structure factor S(k, k, co), for a
fluid layer with stick boundary conditions, near the Bril-
louin frequency for k~ ——0, 2m/L, and 4m/L, and L =100
jw,m. Other parameters are as in Fig. 1, but the solid

curves pertain to poor thermal diffusivity of the solid
(a', /x =10 ) while the dashed curves to high thermal dif-

fusivity (x, /~=10 ). Brillouin peak of the infinite fluid

(dot-dashed curve) is shown for comparison.

separated from the Brillouin peak, but, as was seen
from Eq. (5.37), its amplitude is much smaller than
that of the Brillouin peak in unbounded fluid. The
waveguide modes are also clearly seen in Fig. 2(c).

The diagonal elements of the dynamic structure
factor, shown in Figs. 1 and 2, are of direct experi-
mental interest. The off-diagonal elements, which
vanish in an unbounded Auid, are more difficult to
probe experimentally. They are shown in Fig. 3 for
different combinations of kz and kz. For the values
of the parameters chosen here and if
! kq —kj ! =2m/1. the amplitudes of various peaks

are typically reduced by a factor of 10 from the am-
plitude of an infinite fluid Brillouin peak. As the
separation between kj and kz increases, the ampli-
tudes decrease further. In addition, it should be not-
ed that in contrast to the diagonal elements of

S(k, k ',co), which are non-negative, the off-diagonal
elements can have any sign as is clearly seen in Fig.
3. As before, for thermaBy insulating solid boun-

daries, the interfacial peak is much better resolved
from the waveguide modes than for boundaries of
high thermal conductivity.

VI. DYNAMIC STRUCTURE FACTOR
FOR SLIP BOUNDARY CONDITIONS

ON THE VELOCITY FIELD

While the assumption of no tangential momentum
transport across the fluid-solid interface is not phys-
ically correct, it is often used for mathematical sim-
plicity, especially if the fluid is taken to be in-
compressible. In this section, we analyze the conse-
quences of this assumption on the dynamics of
equilibrium fluid fluctuations.

With boundary conditions given by Egs. (4.1),
(4.3), and (4.9), the coefficients c; are determined
from the solutions of
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—A](P)+5T)
~ i(P1+5T)

P)
—Pi

—k llP]

k llP]

A 1 (Si+5g )

A i(Si+5T )

—S)
—Si
k llS)

kllsl

—A2(P2+5, )

A2(P2+5, )

P2

—P2

k llP2

A2(S2+5T)

A2(S2+5T)
—S2
—S2

k llS2

k llS2

—P3

P3

—1/P3 1/S3

—1/P3 —1/S3

and, since dgzldz = —k~~uz,
T 2h =(O,gi, O,g2, 0, —k llg2)

with g~ and g2 defined in Eq. (5.3). The solutions for e; s are given in Appendix C.
The I.-dependent contribution to the dynamic structure factor for a fluid layer with slip boundary condition

2( 1 )
Pl +Pf ~ 2

S,(k, k', s}=
(A2x& —A~x2)(c +syI „)

A2x) Fi(kj, kq ) A )x2F2(kj, k j )

k —xi k —x22 2
(6.4)

Ai 8'1

T(P)
kjk~82

+ T(S)

kgkj 8'3

T(S)

Xi X2~i =Pi P25T
(k') —x i (k') —x2

x i [~2(S2+5T)—~ iSz] ~ ixz5T
8'2 ——

(k') —x) (k') —x2

x2[Ai(Si+5T) —A2Si] Apxi5T

(k') —x2 (k') —xi

(6.S)

(6.7)

(6.9)

l

first the case of finite values of x, /x", i.e., finite
values of 5T. Then the nature of the sound and heat
modes, with dispersion relations given in Eqs. (5.16),
(5.19), (5.23), and (5.26), as well as their amplitudes,
is the same as in the case of stick boundary condi-
tions on the velocity field. Therefore, the discussion
of these modes in Sec. V applies here. Thus, for suf-
ficiently small values of I. and k, the amplitudes of
the bulk sound and heat modes become negligible
and the total intensity of density Auctuations is in
the interfacial modes whose dispersion relation is
now given by the solutions of

T(P)=0

T(P)=A, P, (P, +5T) A,P, (P, +5T—),
T(S)=A iSi(Si+5z ) —A2Si(Si+5T) .

(6.10)

(6.11)

Again, 1t is easy to check that thc m8trix Sl ( k, k, s)
is symmetric.

As before, the normal hydrodynamic modes of
the Quid layer with slip boundary conditions on the
velocity field are found from the poles of the
dynamic structure factor. The poles of S„(k,s) are
independent of boundary conditions and are dis-
cussed in Sec. III. Therefore, only the analytic
structure of Sl (k, k ',s) is considered here. Its na-
ture depends strongly on the values of the ratio of
thermal diffusivities of the Quid and solid. Consider

T(S)=0.
Analytic expressions for the dispersion relation and
the amplitudes of interfacial modes can be obtained
in the 11rnit of I. Sufficiently laigc so that corld1tion
(5.28) is satisfied. Then T(P)=T(S) and the disper-
sion relation determined from

A [A2(A, ]+5T)=A2X](X2+5T) . (6.13)

Again, the dispersion relation for the interfacial
modes depends only on kll, and in the limit of small

kll is

ci=+ck(~+i [I +A, (k())]k(),

Pg CPs le

poCp K

1/2 ' [/2
~
&sk

II

C
(6.15)
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It is seen that in the case of slip boundary condi-
tions, the dispersion relation is the same as in the
case of stick boundary conditions, but with I"
evaluated for a vanishing shear viscosity. This is
not surprising, since for slip boundary conditions
there is no additional shear due to solid boundaries.
The attenuation is enhanced relative to the bulk
sound modes only because of additional dissipation
due to heat conduction between the fluid and solid.

In the limit of large L [condition (5.28) satisfied]
the contributions to the dynamic structure factor
from the interfacial modes are again given by Eq.
(5.37) but with A(k~~} replaced by A, (k~~). Thus,
these contributions become significant for

k k
a~iL, -(y—1)

K
II

2c g~k j

they vanish if the sound is nearly isothermal, y= l.
In general, for given fluid properties and thermal
conductivity of solid boundaries, the interfacial
modes are significant for lower values of L in the
case of slip boundary conditions.

The analytic expressions given above, are not
valid for thermally insulating solids; i.e., in the limit
~, /~~0 or 5+~0. In this case, the L-dependent
contribution to the dynamic structure factor is sim-

ply

2( —1)"+"c kiki A, x2Pq 3 ix iPi
Si ( k, k ',s)=

2 2 2 ~2 2 2 ~2 e

(A2xi —Aix2)(c +syl'„) }(i(k —x2)[(k') —x2] Ai(k —xi)[(k'} —xi]
{6.17)

Note, first of all, that the interfacial modes disappear since, due to lack of transport of either energy or tangen-
tial momentum across the interfaces, there are no additional mechanisms for dissipation. In addition, from
Eq. (6.17) the sound modes with dispersion relation given in Eq. (5.16) contribute to dynamic structure factor
in the limit of small k

bSi(k, k ',co)

S(k ')
re' ra'

(6.18)
4~7' (I k ) +(co—ck)' (I'k )'+(~+«)

Therefore, on adding the appropriate contributions froin S„(k,co) one finds that the intensity of the Brillouin
peaks is reduced by a factor of 2. Similarly, the intensity of the Rayleigh peak is reduced by two since, from
Eq. (6.17) the contribution of the heat mode with dispersion relation given in Eq. (5.19}is in the limit of small
k

d6'2(k, k ',~)

S(1 ') "'" 2~r («')+~' '

i.e., —2rh$2(k, k,m) is just the Rayleigh peak for an unbounded fluid. For thermally insulating solid boun-
daries, the amplitudes of the waveguide modes do not vanish even for small values of L; the fluid layer still
acts as a waveguide since u, vanishes at interfaces. For the sound modes with the dispersion relation given in
Eq. (5.23), Sr, contributes to both diagonal and off-diagonal elements of the dynamic structure factor

hS, (k, k ',co} ~ 4( —1)"+"kiki 1~2(in}
S(k') 0 ~yL (ki —k )[(ki) —k ] [I'K (m)] +[co—cK(m)]2

I'Ei(m)
+ [rZ'(m)]'+ [~+ca(~)]'

i''(m)
0 nyL2(ki —k }[(ki)~—k ] [aE (m)]i+ca~

It is easy to show that

J dcohS;(k, k', c0)+ J dao'; (k, k', co)=0

Similarly, for the heat modes with dispersion relation given in Eq. (S.26), SL contributes

Mq (k, k ',a))

S(k ')
(6.21)
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so that the sum rule

I CkoS(k, k ',co)=S(k)5 „5,5 (6.23
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FIG, 6. Off-diagonal elements of the dynamic struc-

ture factor S(k, k ',u), for a Auid layer with slip boun-

dary conditions, near the Brillouin frequency for different

values of kq ——2mn/I. and k~ ——2mn'/I. with 1.=100pm.
Curves are labeled (n, n'). Other parameters are as in Fig.
1, but the solid curves pertain to poor thermal diffusivity

of the solid (~, /x=10 ), while dashed curves pertain to
high thermal diffusivity (x, /x=103). Scale is set by the
Brillouin peak of the infinite fluid with k& ——k z

——0.

boundary conditions on the hydrodynamic variables;
i.e., they cannot be the normal modes of the system.
In the Fourier-series representation, this introduces
modes coupling even in a linearized theory.

We find that the dynamic structure factor de-

pends strongly on the energy and tangential momen-
tum transport across the fluid-solid interfaces. In
addition to a variety of wavcguidc modes %'hich ex-
ist in such fluid layers, we also find new interfacial
modes. These interfacial modes are essentially
sound modes propagating parallel to the interfaces;
there are two such modes for each distinct interface.
These modes exist for nonvanishing transport of ei-
ther energy or tangential momentum; i.e., they
disappear for slip boundary conditions on the veloci-
ty field and for thermally insulating (x, =0} rigid
solid boundaries.

In general, the dispersion relation for the interfa-
cial modes depends only on the component of the
wave vector parallel to the boundaries k~~ and the
height I. of the f1uid layer. Their amplitudes, how-
ever, depend also on kj and kz. We found simple
analytic expressions for the dispersion relation and
amplitudes of these modes in extreme limits of

tangential momentum transport (stick or slip boun-

dary conditions) and for intermediate energy trans-
port (0&x, /a & oo) for sufficiently large values of
L. In this case, the dispersion relation is indepen-
dent of L, and for x, =0 or 00 with stick boundary
conditions, or x, = 00 with slip boundary conditions,
the interfacial modes differ from the ordinary sound
modes only in that their attenuation is enhanced.
The additional dissipation may be due to the shear
created by "sticky" solid boundaries and to the heat
conduction between the Auid and solid when x,&0
and the sound is not isothermal (y&1). The former
effect introduces the dependence of the additional
attenuation on shear viscosity v, and the latter on
thermal diffusivity of the fluid x'. In the intermedi-
ate cases of energy transport across the Auid-solid
interface, the interfacial modes have a speed which
is no longer the adiabatic sound speed but may have
nonanalytic dependence on k~I. For sufficiently
large I., it has been shown that the amplitudes of the
interfacial modes are inversely proportional to the
layer height I.. The criteria for the values of I., for
which these modes provide a significant contribu-
tion to the dynamic structure factor, are also given.
It turns out that for typical Auid parameters and
wave vectors typical of light scattering experiments,
the interfacial modes become important for I. & 100
pm.

The dependence of the dynamic structure factor
on the transport of energy and tangential momen-
tum across the fluid-solid interfaces suggests that
the experimental study of the dynamics of equilibri-
um Auctuations may provide a useful probe of inter-
facial transport over a wide frequency range in the

hydrodynamic regime. Thus, interfacial transport
can be studied by light scattering which measures
directly the diagonal elements of the dynamic struc-
ture factor. Also, the measurements of sound prop-
agation and attenuation in such Auid layers can be
used to determine the dispersion relation for the in-
terfacial modes and thus infer the underlying inter-
facial transport.

The experimental study of the dynamics of equili-
brium Auid fluctuations would enable one to estab-
lish under what conditions the simple empirical
models of interfacial transport, considered in this
paper, are valid. Since the interfacial transport may
depend on the interface preparation, it should be
possible, for example, to study the effect of surface
roughness on the tangential momentum transport
across the Auid-solid interfaces, and thus to estab-
hsh whether this roughness is the physical cause of
stick boundary conditions on the velocity field.
Other effects which may inAuence the dispersion re-
lation and amplitudes of interfacial modes in fluid
layers include, for example, acoustic excitations in
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solid boundaries and heterogeneous catalysis at the
interfaces. The former effect will influence the nor-
mal momentum transport across such interfaces.
The latter effect, because of the changes of enthalpy

and, possibly, the number density of various fluid
components at the interfaces due to catalytic reac-
tions, may provide a new experimental tool for
studying the kinetics of such reactions.

The matrix of eigenvectors of the matrix M is

APPENDIX A

A) A]

A, ]A] —A, iA]

k] k]

k k
Il II

A, ]k ))
—A, )k ))

and its inverse matrix is

A2 A2 0

A,232 —A,232 0
—A2 A2 1

—A2 —A2 k3
2 2

k~( k~)
—A3

A,2k ))
—A,2k

~)

—A,3

0

—A3

X2 A,3

X2A,3
—X )A,3
—X]A,3

(xg —xl }k(~
(x) —x2)k ()

—x3A2b]
X3A,2b)

x3A, )b)
—x3k, )b]

0
0

A,g)(,3A Pb l

—A,2A, 3A Pb l

—A, lA3A lbl
A, l)13A lb l

A l)l,2(A P
—A l )k (~b l

A P2(A2 —A l )k ~~b l

—A,3A2

A, 3A l

(Al —A2}k(~
(A, —A, )k)}

—)L,3A 2

—A,3A2

A,3A l

A,3A l

(A lk2 —A2A l)
(A2A, ) —A )A2)

A2A2bl
—A,2A2b,
—A, )A )b]
X,a,b,

)l, lA2(A2 —A l )b,
A. ,A,2(A2 —A l )b,

where

1
bo=—

2A, 3(Alx2 —Apxl)

/K', + ]X2 A, 3 y~gb]=
SA.]A2X3 A, )A,2 g2+gyP„

APPENDIX 8

Coefficients c; in the case of stick boundary conditions are

~l = [Uzg l +A2(P—2+5T }(g2+P3g3}]/2T(U»

e2 = —[Vggl+A l (S2+5z )(g2+S3g3)]/2T( V),

c3 —[ Ulg l +A l (Pl +5T )(g2+P3g3)]/2T( U),

(84)~4 [Vlgl +Al(SI+5T)(gz+S3g3)]/»«
&s = [k(((Sl —Sz }gl+k

~(
[A l(Sl+5T }—A2(S2+5T )]g2+ [A lS2(Sl+5T }—A2Sl (S2+5T}]g3J /2T «,

e6 ——[k(((Pl —P )g 2+kl}([A (P l+5l) TA2(P2+5T)]g2+—[AlP2(Pl+5') —A2Pl(Pg+5T)]g3]/2T(U),
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where

T( U) =—A i Up(Pi +5T )—A p Ui (Pp+5g),

T( V) —=A i Vp(Si+5T) —Ap V](Pp+5y ),
U; =P; —ki~P3,

2

V;—=S;—k(iS3 .2

(B7)

(B8)

(B9)

(B10)

APPENDIX C

Coefficients c; in the case of slip boundary condi-
tions are

c4 ——[g&S&+gzA ~(S~+5z.)]/2T(S),

c5 ——0,
c,=O,

(C4)

(C5)

(C6)

c3 —[g,P, +gpA ) (P) +5z )]/2T(P) (C3)

c~ ———[g~Pq+g&A~(P~+5r )]/2T(P), (Cl)

cq ———[g~Sq+gqAq(Sq+5r )]/2T($), (C2)

where

T(P)—:A i P&(Pi +5T ) —A ~Pi (P~+5T ), (C7)

T(S)=A tSp(St +5r ) —ApSt(Sp+5T) . (C8)
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