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Analytical solutions for infrared-laser-driven diffusion in polyatomic gas mixtures
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We use an effective bimodal velocity distribution in a five-level model to analytically ex-

amine the problem of laser-driven gas transport in mixtures of an absorbing gas and a
buffer gas. Analytic expressions are given for the steady-state active-gas density distribution

in a closed tube for a uniform excitation profile. The model also predicts that laser-induced

transport may occur without a buffer gas if collisions favoring simultaneous vibrational

deactivation and velocity change occur. Profiles are given for CH3F:He mixtures when a

CO2 laser is used to excite the Q, z 2, vs band absorption.

INTRODUCTION

In 1979, Gel'mukhanov and Shalagin reported on
the effect of light-induced diffusion (LID} in gases.
In a later paper that year the use of the method for
estimating transport coefficients was discussed. In
1980 a more rigorous theory for the LID effect for
an ideal two-level system was presented. This work
was based on the solution of the coupled set of
density-matrix and kinetic equations. Although this
work clearly explains the effect, it could not be
readily applied to polyatomic systems where several
degrees of freedom and many quantum states are in-
volved.

The experimental efforts in LID were first per-
formed by Ansigin and Atutov. These experiments
were the first deliberate measurements, while LID
effects may have been observed and unexplained by
others previously. The work in Ref. 4 was per-
formed under flowing conditions and utilized sodi-
um vapor as the absorber and helium as the buffer
gas. Although these were not closed-tube experi-
ments, a two-level model calculation was given for
the profile which might exist in such an experiment.
The calculations indicated that at modest dye-laser
intensities all the sodium could be confined to a
length less than 1 mm. This experimental result led
to questions concerning the use of this method as a
gas separation scheme for polyatomics which absorb
in the infrared.

The first such experiment was performed on SF6
in H2 and He mixtures. These experiments were
performed using the C02 laser 9P(20) excitation of
the SF6 and measured by spectrophotorneter and
mass-spectroscopy methods at the end of the cell.
Subsequent to this work another experiment was
performed in order to more specifically address the
questions of gas separation. These experiments were
performed on ' CH3F CH3F mixtures.

The most recent publication dealing with the LID
effect in polyatomics is the first to discuss the signi-
ficantly more complicated theoretical questions
which arise in complicated molecules absorbing in-

frared radiation. This paper presents a reasonably
complete set of coupled rate equations but fails to
compare results of mass-spectroscopy experiments
to the theory. The equations given in Ref. 8 can
only be treated numerically and serve little purpose
for identifying the importance of the various rates in
the LID effect. %ithout any analytic results it is
difficult to understand the LID effect in polyatom-
ics.

In this paper, we have modeled the interaction of
a complicated polyatomic with the radiation field.
In addition to an analytic solution for the gas profile
in a closed cell, we predict a new effect in LID. The
model predicts that LID may occur even if the
excited- and ground-state transport cross sections
are equal, if collisions favoring simultaneous vibra-
tional deactivation and velocity direction change
occur.

KINETIC MODEL

The essence of the LID phenomenon is the fol-
lowing. Let the frequency v of a plane mono-
chromatic wave slightly differ from the frequency vo

of the transition of the molecule. Then because of
the Doppler effect the velocity distribution in the
ground and excited states becomes asymmetrical.
Depending on the ratio of homogeneous to inhomo-
geneous widths, the asymmetry can vary in its
shape. The most important effect of this asymmetry
is that the average velocity in each state is no longer
equal to zero. Hence, in each of the states involved
there is directed movement which can be character-
ized by Aows.

At this point it is interesting to note that the size
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of an atom is different depending on the state of ex-
citation. This is a hard-sphere picture describing the
state dependence of the transport coefficients.
When the absorbing atoms or molecules are mixed
with another gas, the presence of the second gas pro-
duces friction with the flows of the absorbing
species. Ho~ever, the friction forces for excited and
nonexcited atoms are different due to the difference
in transport coefficients. Thus a net force emerges
with which the second buffer gas acts on the absorb-
ing atoms and causes them to have directed motion.

The laser-induced diffusion effect in a closed sys-
tem can be said to reach equilibrium when the flow
due to Fickian diffusion exactly balances the laser-
induced flow. Since the system is closed, the total
pressure along the cell will be constant while the
partial pressures of the active gas and the buffer gas
will be functions of position. Calling the flux due to
the LID effect Jq, and the density of the active gas
pq, we have the equilibrium condition

Dq~ is the mutual diffusion coefficient of the gas
mixture, This equation is the starting point for our
theory for polyatomic LID. The rate-equation
model developed here will be used to determine Jq.

%e derive the general form for Jq based on a
model of a mass moving through a dissipative medi-
um (buffer gas) driven by a constant force (thermal
translational bath). This is based on viewing dissi-
pation as any process that changes the direction of
an active-gas molecule. The equation of motion for
such a system is given by

ms+ p xF .

The solution of this equation yields a limiting velo-
city

In order to avoid the problems associated with a
velocity distribution function, wc have developed a
model which utilizes a bimodal velocity distribution
function in conjunction with a three-level rate-
equation approximation for the optical-pumping
process. The use of a single speed and only two
directions is reasonable since cross sections for elas-
tic processes are nearly velocity independent. With
this approximation the effect of only having two ve-

locities can be corrected for by use of an effective in-

teracting population. In addition, since velocity
averaged relaxation rates obtained from other exper-
iments are utilized for the vibrational and rotational
processes, these parameters are insensitive to the
form of the velocity distribution function.

The level scheme which results is shown with the
associated rates in Fig. 1(a). The + and —sub-

scripts refer to molecular velocities copropagating
and counterpropagating with the laser field. The
levels and rates used in the model are defined as fol-
lows:

~
0), rotational state of the ground vibrational

level connected by the pump transition;
~

1), rota-
tional state of the excited vibrational level connected
by the pump transition;

~

2), level representing the
remainder of the population of the rotational mani-
fold of the excited vibrational state; 8'„, velocity
equilibration rate; 8'„, rotational equilibration rate;
q, rate of vibrational relaxation from all remaining

p is a function of buffer-gas density, mass, and col-
lision cross section with the active molecule in the
particular quantum state of interest. %e are, there-
fore, interested in the limiting velocity for active
molccules in the ground vibrational state and those
in the excited vibrational state connected by the
pump laser.

The macroscopic flow Jz will be a result of velo-

city distributions summed over the relevant quan-
tum states of the polyatomic system. The derivation
of Jz will be given in terms of thc molecular veloci-
ty group selected by the laser, V, and the ratio
Ps/P, =P. P, and Ps are the friction constants for
the excited vibrational state and the ground state,
respectively. The derivation of an estimate for P is
given in the Appendix.

v

(a)

rw, ew, r

)2)

lo ) w„ lo+&

)F

lo&

FIG. 1. (a) Five-level model with bimodal velocity dis-
tribution. (b) Two-model approximation to the five-level
scheme utilized to generate the rate equations.
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A
7l=

2 +Bpq+Cp
(Pg +Ps )d

A is a constant proportional to the mutual diffusion
coefficient of the mixture, d is the cell diameter, and
8 and C are homogeneous and heterogeneous deac-
tivation rate constants, respectively.

The rate W„which represents the loss of a veloci-

ty asyrnrnetry is estimated using kinetic theory solu-
tions for the problem of a nonequilibrium gas mix-
ture. The result is clearly dependent on density as
well as the mass ratios of the active and buffer gas
since momentum transfer is the relevant variable.
The rate utilized is based on the derivation in Ref. 9
and is given by

—,(2~kT)'
mb

' 3/2
1/2

mb

1/2

where o is the ground-state hard-sphere collision
cross section, T is the average temperature, and m,
and mb are the masses of the active and buffer
gases, respectively.

Finally, we conclude the discussion of the relevant
rates with the form of Wz. In order to analytically

levels in the excited vibrational state; I, rate of vi-
brational relaxation without velocity change from
the upper rotational state connecting the pump tran-
sition; I, rate of simultaneous vibrational relaxation
and velocity exchange from the upper rotational
state connecting the pump transition; W&, rate of
pumping.

The rates defined above are all functions of
buffer-gas density with the exception of 8& (for the
Doppler-broadened limit only). The rate of rota-
tional equilibration is assumed to be composed of a
self-equilibration term, given by

mdiv

where hv is
the self-broadened linewidth, and a term proportion-
al to the buffer-gas density. Rates g, I, and I" can
have two types of pressure dependences in the usual
case since at low pressures wall collisions can play
an important role in vibrationally deactivating some
molecular species. In the LID problem, however,
we exclude the 1/p diffusion dominated relaxation
path for the states

~
1+) and

~

1 ) since once a
molecule changes direction toward the wall it is lost
from the flow equation. However, g must include
both relaxation by wall collision as we11 as by binary
collisions. The general form for g in terms of the
active-gas density pz and the buffer-gas density pz
is given by

treat the problem at hand we use an expression for
W~ which includes a mixed-broadening linewidth to
include Doppler, collisional, and Rabi effects. The
average linewidth is given by

(~v, )'=(~v& )'+(&vD)'+ &' .

hv~, hvD, and 0 are the homogeneous, Doppler-
broadened, and power-broadened linewidths, respec-
tively. The result is a Doppler linewidth function
which is modified by the substitution of hvT. Cal-
ling this function g(v), we have the following ex-
pression for W~(v):

W( )
Ic g(v)

877n hv t,p

I is the intensity of the pump laser, n is the index of
refraction, h is Planck's constant, t,p is the spon-
taneous lifetime of the pump transition, and c is the
speed of light.

The rate equations for the scheme shown in Fig.
1(a) result in a set of five linearly independent equa-
tions. This set was difficult to solve and resulted in
an overly complicated expression involving terms
having large powers of the rates which did not con-
tribute significantly to the result. In order to better
understand the effects of the various rates, we have
developed an equivalent scheme based on solving
two separate level models and combining the results.
Since W„~ W„ the molecules which were involved
in the ~1+)~ ~2) and ~1 )~ ~2) processes no
longer possess velocity information. This is
equivalent to the assumption that once a molecule
having a well defined velocity (

~
1+) or

~

1 ))
suffers a rotational state-changing collision, it sta-
tistically no longer carries any velocity information.
In the rate equations this is reflected by level

~

2)
having equal numbers of copropagating and coun-
terpropagating molecules.

Based on these assumptions, the scheme shown in
Fig. 1(a) may be decomposed into the combination
of schemes shown in Fig. 1(b). The left-hand side of
Fig. 1(b) describes the velocity asymmetry induced
in the molecules participating in the cycle and the
right-hand side is used to account for the storage ef-
fect of the lumped rotational manifold of the excited
vibrational state. Thus the two models can be
solved simultaneously with a conservation of parti-
cles equation relating them.

RATE EQUATIONS

The rate equations associated with the models
shown in Fig. 1(b) are given as follows:
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No+=wp(NI+ N-o+}+rNi++r'Ni-
—8'„(No —No ),

No ——IN) +I 'Ni++8'„(No+ —No ),
N,' = W, (N,' —N,')—rN,+ —I"N,'

—8'„(Ni+ —Ni ),
Ni ———I"Ni —I N] +8'„(N) —N) ) .

The number densities of the states have been denot-
ed by No+, No, N &+, and N &, respectively. In addi-
tion, the assumption that the velocity equilibration
rate 8'„ is independent of vibrational state has been
made.

The rate equations describing thc effect of rota-
tional equilibration and vibrational bottlenecking are
given as follows:

No= Wan(Ni —No)+r(Ni —fNO)+r(N2 —gNii),

N i
——Wp(NO N i ) —r(—N i fNO) W—„(Ni

—hN2 ), —

N2 ——8', (Ni —hN2) —I (N2 —gNO),

The quantities f, g, and h are relative populations
for the levds at equilibrium and are defined by

N2

N N
' N

These sets of rate equations must, in addition, satis-
I

fy the conservation of mass constraints, since we are
considering a closed system. This condition results
in equations which serve to constrain each system as
well as couple them together. These arc given by

N~++N, +No++N, =N',

N'+N2 ——N,
N+) +N )

——N),
No++No ——No .

Since level 2 is assumed to always possess a sym-
metric velocity distribution, the contribution to the
instantaneous local flow will be due to
No+, No, N&+, and N& . The steady-state expres-
sions for each level population as calculated using
both sets of rate equations are given as follows:

No+ ——Np, w„[W~ W„

+(I + r')( w~+ r+I"+2w„)],
N; =Np[ w, w„'+( w, w„+ w, r'+zw„')(r'+r)

+ w„(r+r')'+ w, w„(r —r')],
Ni+ NP, W„W——(I +I"+ W„),

Ni NP, W„Wp . ——
In the steady-state solutions above, the quantities g
and A, are rate dependent and given by

x=[4w, w„'+( w, r'+4w„'+3w, w„)(r'+r)'+ w, w„(r' —r)]-',

1— Wq W„+W, W, (f+g) + Wp W„g + I g

w, r(2+g)+(I+f+g)r'+ w, w, (l+2&)+wr()+a)(l+f+g)

The active-gas flux can now be calculated using
the steady-state population densities derived. The
bimodal expression for Jz is then given by

Jg =E (N] —N[ )+ {No —No }
1 + 1

P, Ps

Using the approximation P, -Ps =P, we have that

J„= [i'(N,+ N—, )+(N,+ N,—)] . —

center and v is the laser frequency, we have that

The direction of F/f3 is specified by the sign of Sv.
The direction of Jq is, however, specified by the sign
of both 5v and (P —I).

Using the expressions derived we can now give an
analytic result for the macroscopic active-gss flux:

The quantity F/P represents the "terminal" velocity
of sn active-gas molecule in the medium of the
buffer gas. This picture is only approximate and ap-
plies only in conditions where many collisions are
required to alter the velocity direction of an active
molecule. The expression F/P can then be replaced
by the velocity of molecules capable of interacting
with the radiation field. In terms of the pump de-
tuning 5v=vo —v~, where vo is the molecular linc

x [w„(r'+ r)(p —I)—r'(r' —r)]Np .

Pumping-induced flow vanishes if P= I and I"=I .
However, it should be pointed out that if I &I '

them

we predict a flow even when the transport properties
in the ground state and excited vibrational state are
identical.



N. M. LA%SANDY AND E.%.CUMMING

ACTIVE-GAS DENSITY PROFILE

The steady-state distribution of active gas in a
closed tube in the absence of convection will be de-
rived with some simplifying assumptions. The as-
sumptions involved are listed below.

(1) The rates involved in the model are constant
throughout the length of the cell.

(2) The only spatial variation present is due to the
active gas.

(3) There is no coupling between the pump inten-

sity profile and the LID steady-state profile of the
active gas.

Letting

c 5vP, R&
11= ' [W„(1"+ r)(y —I)—I"(I"—r)]

D~avofme

wc can immediately write down thc solution

p„(x)=p„exp( —llx) .0

pq is a normalization constant which can be related
to the initial uniform density po by

III.po
pa=

1 —exp( —IIL)

where I. is the length of the cell.

Assumptions (1) and (2) are justifiable under condi-
tions where ps »pz. Assumption (3) is justifiable
when the cell length is shorter than the reciprocal of
the absorption coefficient or when the pump intensi-

ty is always maintained above the saturation intensi-

ty.
The steady-state distribution occurs when the dif-

fusive flow balances the LID flow. This equality
was given in Eq. (1). It is important to note that the
value of the total density X, given in the expression
for Jz, is not the total active-gas density but only
the fraction participating in the optical-pumping cy-
cle. %e must therefore relate this quantity to the to-
tal active-gas density pq. Calling the fractional oc-
cupation of the ~03 state kg and the fraction of
molecules having the correct velocity to interact

with the pump laser e(vo, vi, I,I,), we have that

& =unfix«vo»I I.I.) ~

where I is the average laser intensity, vo is the
molecular line-center frequency, and vI is the laser
frequency. Calling G(v) the normalized Gaussian
line-shape function for Doppler broadening, we have
that

vo+hvo/2 Vf +A%0/2

e- f G(v)dv —f G(v)dv

The hole burnt is approximated as rectangular and
given by

hvo ——hvI, (1+I/I, )
'/

The balance equation can be simplified in one di-
mension and gives a simple differential equation for
pg(x):

CALCULATIONS FOR CH F He MIXTURES

In this section we give results for the LID effect
in CH3F:He mixtures. The CH3F:He system was
chosen for several reasons. CH3F is a well studied
molecule from both the kinetics point of view as
well as spectroscopically. The main reason for this
is its exceptional characteristics as an optically
pumped submillimeter laser gas. ' In addition, the
CH3F:He system is the only system for which an
excited-state elastic collision cross section has been
determined.

The CH3F molecule is a symmetric top with a
stroilg coincidence wltll tile 9P(20) line of the CO2
laser. %e present in Table I the relevant data we
utilized to investigate our analytical LID results.

The rate-equation solutions were computed for
CH3F:He mixtures containing 0.1 torr of CH3F.
Curves are shown in Fig. 2 for two pressures of He.
The calculations are performed for a C02 laser
pump locked at the 9P(20) line center and produc-
ing a uniform intensity of 50 %'/cm . The results
are plotted relative to the initial uniform density of
CH3F. The results indicate a confinement region on
the order of 20 cm for the 5-tort He mixture. These

0.2 0.4 0.6
DISTANCE ALONG TLlBE (m3

0.8 I.0

x [W„(I"+ I )(((t—1)—I"(I"—I')]

x w,p„(x) .

FIG. 2. Spatial variation of CH3F density for laser-
induced GO2 diffusion in He. CH3F pressure is 0.10 torr
and COq-laser intensity is 50 %/cm2.
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TABLE I. Relevant data used in investigation of our analytical results.

Reference

I~Is
a~a
$V,

fY„
I

44 MHz
40 A2

0.9963
5
387 cm /sec
2X 10' cm-' torr-'(He)
1.3)& 10 sec ' torr '(He)

600Pc»+1.6&103 sec 'torr '(He)
3

11
12
calculated with 12
calculated
calculated from 12
13
9
14

results cannot be compared to the experiments men-
tioned in the introduction as a profile has never been
measured.

APPENDIX

We give a simple method for determining the ra-
tio of ground-state to excited-vibrational-state elastic
collision cross sections using spectroscopic data and
virial coefficients. Since we have an experimentally
determined value for o, (CH3F:He), we can use this
as a given constant. We are interested in determin-
ing /=os jar,

We may define a collision cross section in terms
of collision radii for the active gas Rz and the
buffer gas R& by

gg, ——w(Rq~*'+R g )

The ratio of cross sections P may be written as

m.(Rg —M +Rg)

where Rq ——Rq +M.
The ratio of the average molecular radius of the

active molecule in the ground and electronic state
may be estimated spectroscopically. Recalling that
the rotational constants of polyatomics are functions
of vibrational quantum number and the type of
mode excited, we may use this to estimate 5R.

The rotational constant 8 for a given mode is in-
versely proportional to the molecular moment of in-
ertia. The moment of inertia is then related by the
square of the average point-mass distribution. Thus
the inverse ratio of rotational constants can serve to
estimate R& /R~g.

The result can be used to determine M:

Using this expression, we may express P in terms of
Rg and e~ as follows:

8
O gg

The remaining parameter is the value of Rq. This
can be determined for simple systems such as He
from the van der Waals constant b for pure buffer-
gas mixtures. The expression relating these two
quantities is

b = (Rs)3 .
3

The values for 8 and 8' for CH3F U =1, v3 mode
excitation were extracted from high-resolution spec-
troscopy studies. ' The value of R~ ——2.5 A for He
was deduced from pressure-volume data for pure He
mixtures. ' The excited v3 mode elastic collision
cross section cr, was taken from the ultrahigh-
resolution pure rotational collisional narrowing ex-
periments in Ref. 12. These values result in

P =0.9963.

CONCLUSIONS

We have developed an analytically solvable, rate-
equation model for the process of laser-induced dif-
fusion in polyatomic gases. The model utilizes an
effective bidirectional velocity distribution with a ki-
netic model. The profile of active gas is derived for
closed tubes. The model also predicts an interesting
new effect in I.ID. The results indicate that I.ID
may occur even when the collision cross sections in
the two states connected by optical pumping are the
same if collisions allowing simultaneous velocity
direction change and vibrational relaxation are
present.

Calculations have been performed for uniform in-
tensity pumping of CH3F:He mixtures by a line-
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center 9P(20) C02 laser. These calculations are per-
formed using a novel spectroscopic method for
determining the excited- and ground-state collision
cross sections. The results indicate that confine-
ments on the order of centimeters can take place
under strong excitation. These values are reasonable
as compared to calculations performed on idealized
two-level systems such as sodium, considering the

level dilution factor present when a polyatomic mol-
ecule possessing a rotation-vibration structure is uti-
lized.
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