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Elliptical billiard-ball echo model
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The billiard-ball echo model is expanded to include the effects of using sub-Doppler-
linewidth lasers in photon-echo experiments. The simple heuristic model which emerges ex-
plains such echo phenomena in gases as the echo time width and the degradation of echo in-
tensity with angling of the excitation pulses. %e derive simple results in the small-pulse-
area limit and give formal expressions for excitation pulses of arbitrary area.

INTRODUCTION

In a recent paper' an unorthodox method was
presented for analyzing optical coherent transient
phenomena in gaseous media. Called the billiard-
ball echo model it began by localizing the gaseous
atoms with atomic wave packets. When these wave
packets were irradiated by a series of light pulses
they split into separate parts corresponding to each
of the atomic states generated. Each resulting wave
packet recoiled according to whether it absorbed or
emitted a photon while being formed. Whenever
overlap occurred between two daughter wave pack-
ets of the same parent, coherent radiation would en-
sue and the various photon-echo phenomena were
readily explained and visualized.

This billard-ball echo model was developed to ob-
tain a simple analytical tool which mould work
equally well for the two-pulse photon echo and
multiple-pulse —multiple-level echoes. It was spe-
cialized to short-pulse excitations which uniformly
excited all atoms independent of their velocity thus
giving rise to spherical wave packets which werc
called billiard balls. Long-pulse excitation leads to a
more complicated shape which me analyze herein.
As demonstrated in the original paper for ihe spher-
ical wave packet and similarly here for the more
general case, wave-packet spreading can be neglect-
ed. In the body of this paper we therefore deal only
with the unspread wave packets, which makes the
presentation much cleaner and easier to follow.
Long-pulse excitations do not change the essential
features of the billiard-ball echo theory. Even
though the shape of the excited-state wave packets is
no longer spherical, the recoil or billiard-ball
analysis remains the same. Only questions of radiat-
ed field amplitude need be addressed as they depend
on the shape of the colliding wave packets.

The short-pulse analysis has certain features

which me can carry over to the more general case.
It is convenient to think of the excitation pulse as
arriving at an instant in time, with the wave func-
tion and wave packet being instantly transformed.
%e must, of course, require that me obtain the
correct final state and me may not use these wave
functions while the excitation pulse is being applied.
As me are primarily interested in echo phenomena
this restriction is of no consequence.

%'AVE-PACKET GENERATION

%e irradiate a gaseous sample with an electric
field pulse of area 6, wave vector k, central fre-
quency u, and envelope E(t —k r/ek). Let co be at
exact resonance with an atom which is initially sta-
tionary. If fiQ is the energy separation of the atom's
ground (

~
1)) and excited (

~
2)) states c0 must be

where m is the atomic mass and the second term is
the recoil energy.

The envelope E has a duration which is nonzcro
but finite. The pulse therefore does not excite all
atoms uniformly but rather to an extent depending
on each atom's Doppler shift from exact resonance.
For an atom with momentum Aq this shift is
flak q/m.

In analyzing thc effect of an excitation pulse on
our gas we work in a scheme which replaces the ac-
tual pulse with an equivalent instantaneous pulse.
This short pulse is defined by its effect on the atom-
ic wave functions which after passage of the actual
excitation pulse must be identical to what the actual
excitation pulse would have produced. Taking this
pulse to arrive at r =0 at time t =0 we describe its
effect on an "atom" initially localized at the origin
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by writing the wave packets just before and after the
passage of the pulse,

i
+(r =0 )&=f dqA(q) i q& i

1& g)

~

q(r =0+)&=f dq&(q)[cos(8/2)
~ q& ~1&

+i sin(8/2)e'~
~ q+ k &

~

2 &] .
(3)

~ q & is a center-of-mass momentum eigenstate. In
this instantaneous treatment 8 and P assume their
final values immediately instead of evolving during
the time the pulse is actually present. The wave
packets are constructed from momentum states with
a Maxwellian distribution:

)
1 —q '/qo

(nqo) / (4)

The parameters 8 and P specify the excited state
associated with the momentum component A'q. As
this can depend only on the associated Doppler shift
we write

{()=Wqk»

~here qk is the component of q along k,

q =qgl+qkk

cos[8(qk ) /2]
A, (q)= A(q)

cos(6)/2)

and l is a generalized unit vector perpendicular to k.
For qk ——0, 8=8 and {()=0.

Reexpressing
~
Wr =0+)& in terms of effective

distribution functions A i(q) and A2(q), we write

~'p(r =0+)&=cos f dq—& (q) I q& I
1&

2

+i sin —f dqAq(q)
~ q+k& ~

2&,
2

1 -q]nq
~$,2(q) =

g2 a],2(qk }
(~qo}'"

e, qqq2 cos[8(qk )/2]
ui(qk) =

cos(e/2)
(l2)

—&k/2&o
u2(qk ) =

(mqo)

sin[8(q )/2]
sin(8/2)

(13)

The coherently radiated field with amplitude ER
at frequency ~ and wave vector kR generated by a
dipole distribution P oscillating at co is calculated
from

—ik~ R

Es ——ek„ f dr Pe
R

where we have assumed the spatial extent of the
source is small compared to 8, the distance from the
source to where the field is measured. Pe is defined
by (R)&P) X R=ePR, e being a unit vector. If the
volume of the source is large and the dipole distri-
bution is characterized by a k vector k, then ER is
dominated by kR ——k. %e accordingly restrict our-
selves to this condition just as in Ref. l. The radia-
tive moment Pe' "' ' is to be calculated throughout
the sample volume but as shown in Ref. 1 it suffices
to consider a single wave packet initially centered at
r=O in performing this calculation as all wave
packets contribute in identical manner. In order to
calculate the integrated radiative moment we must
construct spatial wave packets by forming

(r
~
q&= e'7''

(2~)'"
and then follow these wave packets in time. Vhth
time the wave packets spread out and the excited
state recoils with velocity fik/m. Just as in Ref. 1

we can neglect spreading since it has no effect on
the radiative moment. %e can then write the spatial
wave packet at time t in the form

Wr)=cos —F~(r)
~

1&
6{
2

+i sin(B/2)e ""' " ' 'Fz r — t
~
2&,

m

sin[f9(qk )/21;y(q )

sin(6/2)

Since q =q~+qk the A's factor further and we can
write

F~z(r)= f dqA~2(q)e'~
(2n )'

Using Eq. (14) and retaining only those terms that
contribute to the macroscopically radiated field we
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finally have

-k' -i1 RE =e e ' " ' "N cos —sin —I'R g 2 2
21

X I dr Ft(PFq r — t
Rk

where we have taken R along k and have written
Pz, for the expectation value ~21F

I
1) of the dipole

moment operator. The number of atoms N appears
as a factor since each wave packet contributes in
identical fashion. This form of ER is identical to
that obtained in Ref. 1.

Since F1 and I'2 are the wave-packet amplitudes
we find the radiated field to be proportional to the
overlap of the ground- and excited-state wave pack-
ets. These wave packets separate at the recoil veloci-
ty Rk/m, which is a function of the atomic mass
and transition frequency only. The shape of the
wave packets therefore determines the time evolu-
tion of Ea. Ea can be calculated from Eq. (18) only
after the excitation has passed but for calculating
photon-echo amplitudes this poses no problem. For
free decay calculations we are restricted to short-
pulse excitations.

their centers. A measure of their size is the radius r
at which the wave-packet intensity is down by a fac-
tor of 1/e,

1
r1/, ———.

qo

This is just the de Broglie or thermal wavelength. A
measure of the time ~D for which the ground- and
excited-state wave packets maintain appreciable
overlap is obtained by setting this wave-packet ra-
dius qq equal to the magnitude of the recoil veloci-
ty flak/rn multiplied by the separation time wa.
Thus

7
m qo

But this may be rearranged to read

(24)

which is the requirement that the Doppler velocity
times ~D must be an optical wavelength. Thus the
billiard-ball echo model leads directly to what would
have been obtained by using the standard Doppler
dephasing arguments.

WAVE-PACKET SHAPE (SHORT PULSE) WAVE-PACKET SHAPE (LONG PULSE)

Before proceeding to calculate the echo signal let
us examine the shape of the atomic wave packets.
This is important in as much as the echo signal am-
plitude and duration are sensitive to wave-packet
shape. First we consider the short-pulse limit where
the action of an excitation pulse is independent of
atomic velocity. In this case 8(qk) and P(qk) are in-
dependent of qk with

%e now consider long-pulse excitation where
Ai(q) and A2(q) are not identical and differ from
A (q). However, as shown in Eq. (11), they continue
to share the feature of an identical dependence on
qz. This carries over to the wave-packet amplitudes
which are the Fourier transforms of A1(q) and
A2(q). It follows that

qO —q022 ~~/2
F, ,(r)= e f, ,(r„),

and

The effective distribution functions A1( q ) and
A2(q) are then both given by A(q) and so the
wave-packet amplitudes F~(r) and F2(r) are equal.
Using Eqs. (17) and (4) we obtain

F1(r)=F2(r)

pd~ q «qo iq ~ r

(2 )3/2 ( 2)3/4 J
' 3/2

qo —q02 r /2
8

where

1 'qa'afi,2(rk) = „, dekui, 2(ek)e
(2m)'

As with q& and qk, r j and rk are the com-
ponents of r along j and k.

The transverse character of the wave packets is
therefore the same, with an extent of order qo '.
However, the wave packets become elongated along
k.

WAVE-PACKET SHAPE
(LONG PULSE, SMALL AREA):
ELLIPITICAL BILI.ARD BALLS

This is the result of Ref. 1: The wave packets are
spherical with a Gaussian amplitude falloff from

That the wave packets become elongated along k
may be seen by considering the small area limit
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where each atom is only excited in proportion to

8(qk)= P—f dtE(t)cos[(to co—
q )t], (27)

1

the Fourier component of the radiation field at the
atom s Doppler-shifted fcsonancc ffcqucncy,

m&
——m+4k. q/m . (28)

In the small-angle limit the angle P(qk) is zero. For
a Gaussian envelope,

E(t) E ~l/e (29)

the effect of increasing the time it takes for it to
scpafatc from thc gI'ound-state wave packet. This ls

precisely what mould be expected on the basis of R

Doppler dephasing aIgument. Long pulses have 8
narrow ffcqucncy spcctnlIIl Rnd can only cxcltc
those atoms whose Doppler-shifted resonances are

contained 1Q 8 coffcspondlngly naffow bandw1dth.

But such atoms take a longer time to dephase and

one obtains the same result as that derived above.

ANGLED-BEAM ECHO GENERATION

8( ) e —(qP Iq)g~)~ l2

'
], /2

900/qo

~e"p[—
2 (qo"i+qoerk)] ~ (33)

(34)

Thus thc gfoUnd-state wave packet ls spherical Rnd

unchanged while the excited-state wave packet, hav-

ing Rn amplitude contouf

g'()f g+g oofk =const, (35)

is CBipsoidal. Its length-to-width ratio L /8'is just

Setting cos[8(qk)/2]= I, sin[8(qk)/2]=8(qk)/2,
and P(qk) =0 leads to

3/2

F](r)= Vo

L

In the view of the billard-ball model, photon
echoes are generated when two or more excitation
pulses create wave packets which later collide.
Long-pulse cxc1tat1on gcnefally produces elongated
wave packets whose transverse extent is Unchanged

from what 1t would have bccn using short pulscs. If
in addition the excitation pulses are not parallel the
wave packets may not collide head on and complete
ovcf lap w10 Qot bc poss1blc. Thc unchanged tfans-
vcfsc wave-packet cxtcnt howcvcf means that thc
sensitivity to excitation pulse angling is also un-

changed. Th1s can bc Used to Rdvantagc Rs Rn

unambiguous method for determining the character
of an atomic velocity distribution.

Cons1dc1 thc case whc1c two cxcltatlon pulscs
have frelnency co but areas e~ and eq and k vectors

k& and kq. Let the angle P between k& and k2 be
so small that it rnanifcsts itself only when observing
differences between k1 and k2. Except for some ob-
vious fclabc11ng wc pfocccd Rs before.

%C start with unexcited atoms. The effect of the
flifst pulse 1S to tfansfofm

0'(t)=Fi(r)
i
I)

81
Wt)=cos +~ ~(r)

~
I)

2

In thc short-pulse liInit qoo ——qo and L/8'=l.
Fof very long pulscs, however, qoo ~$1/8 Rnd this fa"
tio becomes

—i[mt —k
&

~ r )+l Sln 8
2

Ak)
XEi p r — t i2),

pn

The elongation of thc excited-state wave packet has
valid until the second pulse is applied at t =v. After
f =T' wc have
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8)
4'(t) =cos

2

e . e —'[ ( —) —k ]
cos Fi i &(r)

~

1)+i sin e ' Fi
2 2

fik2
(t —T) ~2)

~, e) i( k ]' )+i sin e
2

cos e '"" 'F, i i r — t
~
2)

2 m

e2, k, . -, haik, Rk2
+i sin e '

F& i i r — t+ (t T)
~

—1)
2 m m

(40)

The subscripts on F show the evolution of states to
the present state (indicated by the rightmost index
for each F). The second pulse forms F& 2

through stimulated emission of a photon. We illus-
trate the effect of the excitation pulses in Fig. 1. At
t =0 we show a single spherical wave packet indi-
cating an atom in its ground state. At t =0+ we
show the elongated excited-state wave packet created
by the first excitation pulse. This elongated wave
packet recoils with velocity Ak&/m. At t =~ the
wave packets have separated; the second excitation
pulse, directed along k2, arrives. Its immediate ef-
fect is shown at t =~+. At this point we draw only

I

the newly created wave packets corresponding to
F~ 2 ~

and F» 2. We omit the wave packets
corresponding to F~ 2 2 and F~ ~ ~ as they do
not contribute to the echo formation process.
Fi ~ 2 recoils along k2 while F& 2 ~

recoils
transversely along k& —k2. When overlap occurs at
t =2m it is incomplete, as indicated in Fig. 1. The
echo is correspondingly degraded and radiated along
2k2 —k&, the wave vector of the rephased polariza-
tion density. At t =3~ we show the wave packets
when they are again well separated.

We use Eq. (14) to calculate the echo amplitude,

—ik ~ R
E „.=ek"

R

—'(2k —k —k ).
NP2~ d r e ' ' cos sin sin

2 2 2

Ak2 A'k
) A'k2

XF) ) p r — (t —v) F) 2 ) r — t+ (t —~)
m m m

(41)

Assuming the sample is so small that exp[ i (2k' ——k, —k) r]=1 throughout, the echo will be radiated
along 2k2 —k &. In that direction the echo amplitude is

E~hp e cos sin sin k 1VP2 )
2 2 2 R

fik2
XfdrF", , 2r — (t T)Fi i i

—r-
m

For k along k i and P small

haik ) fik2
(t —~)

m m
(42)

ki —k, k~=kPl+ k, (43)

and the wave-packet amplitudes may be written as

F» 2 r—
+

Ak2 qo
(t —~) exp ——,qp f'J

m V it
fikP A'k

(t —T) fi i i rk — (t —T)
m m

(44)
2

A'k
i fikp qo i i haik p

Fi q &
r — t+ (t —T) = exp iqo ri+ (t T) fi i ] rk-

m m ir
' m m
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The wave-packet overlap is then
T

qp1rtkP
(t —v)2

Ak Ak
X f drkf1~1~2 Pk (t 1) f1~2~1 Pk

m m
(45)

The exponential term on the right-hand side of Eq.
(45) can be rewritten as

—(&/&eg)
(49)

e"pI —l(t —r)« tran I (46)

1 m 1
jeff= ~D

P qp111k P

For experiments in which v;ff is long compared to
the time during which appreciable overlap is main-
tained between the ground and excited state, the in-

tegral

Thus, independently of the area or length of the ex-
citation pulses, the echo amplitude falls off as a
Gaussian in ~. If we work entirely in the small area
limit with both pulses being Gaussian and having
width w~~, pg~~ then the ratios I./8' for F&
and F1 2 1 are r1g «22 and W2(71yz«D), respec-
tively, and

Xexp( —[(t —&r)&~3&1~.1 ~&)

A'k
G(t —2r)= f drkf1 1 2 rk — (t r)— THEORY

A'k
Xf1~2~1 rk r

m

in Eq. (45) is sharply peaked relative to the exponen-
tial factor and we can write

t=0

t= 0+

In this section we present a more general analysis
of the bilhard-ball echo problem. %'e show that the
effective distribution functions A &(q) and A2(q) fac-
tor according to Eq. (11) and we obtain an explicit
expression for the longitudinal distribution functions
a~(qk) and a2(qk). We demonstrate that small area
pulses excite atoms in proportion to the Fourier
component of the radiation field at the atom's
Doppler-shifted resonance frequency. We then con-
sider the multiple-pulse excitation problem. Finally
we justify our neglect of wave-packet spreading in
the preceding sections.

We begin by considering an atom in its ground
state and localized at the origin:

~q)= f d-g(-) -""q'"~"
~

) ~1) (51)

We apply an excitation pulse of the form

+-,—. +yyNW+'"""

~aEt ——cosa' t ——
C C

The appropriate Hamiltonian for this problem is

H =Ho+H), (53)

where

FIG. 1. Sequence of events leading to a photon echo
using angled sub-Doppler-linewidth excitation pulses.
Both pulses are assumed to be in the small-angle limit.
The solid-line contour denotes the ground state and the
dashed-line contour denotes the excited state.

qHo —— +H;„„,),
2m

(54)

H;„tq~g being the atom's internal electronic Hamil-
tonian, and
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rk
HI ———I'E t ——cos ro t ——

C C
(55)

& r 14&h,t„, is nonzero for these extended times giv-

ing

(the caret denotes quantities that are quantum-
mechanical operators).

The Schrodinger equation that governs the time
development of 1%(t)& is

I~—'
I
q(t) & =(H, ++I) I

q {I}&. (56}
Bt

%e find it convenient to work in an interaction rep-
resentation defined by

I
c(t)&=e '1%(t)& .

The Schrodinger equation that governs the time
development of

I
ep{t) & is

(i/A)00
U=Texp —— dt e

—(i /R)80t
yHie (62)

We liow IIlakc coIlllcctloI1 with Eq (8) of thc text

by equating
I

ep & I, , with 1%'(t =0+ ) &,

UI e& I„,=cos —f dqa (q) I q&11&

+i sin —f d q AI(q)
I q+ k-„& 12& .

(63)

(58)

For times before and after the wave packet sees the
pulse, 14(t)& is time independent. We therefore
write

I @&after= U
I @&before ~

where
I
rP &h,t„, is given by Eqs. (51) and (57}as

I @&I to =f dq'4(q)
I q&11&

Equation (50) can be solved formally for U, giving

g
{ltfter (i /A)HptU=T exp —— dt e

fg before

—(i /A)Hpt
XH)e

%e define kq as the wave vector of a photon that
can promote an atom initially in its ground state and
having center-of-mass momentum q to its excited
state having center-of-mass momentum q+ k-.
%e will require the direction of k- to be the same

as the direction of the wave vector of the applied
laser pulse. Conservation of energy requires k
to satisfy the equation

goal
IIi(q+ k-)

c
I
k-

I
+ =0+

2m 2m

We now invert Eq. (63) to find AI{q) and AI(q),
giving

& q I
&11 U

I
q'&~t...

and

where T indicates that the time-ordered product is
to be used in the expansion of the exponential.
When applying U to

I
rp&h, t„, we can extend the

limits of the integral over time in U to + 00, since
Hi is assumed to be zero in the region where

I

& q+ k-
I

&2
I

U
I
+&~I-.

1 sin(e/2)
(66)

w&ting
I q &

=
I qs &

I ql & ~d
I q+"-, &

=
I rh+k, & I q, &, Eqs. (65) and (66) give

~I(q)= {82},„, ek 1 Uf due ' '
ei,cos(e/2) (~qadi)1~4

—q~/2q~0 —qt', ~/2q 02

A2(q)= . . qk+k 2 U dqk e qk 1
i sin(e j2) (77q02)3 4

Comparing Eqs. {67)and (68) with Eq. (11)of the text we find

k 0qk)= »/4 qk 1 U dqk e qk
( q2)i/4 cos(e/2)

(68)
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1 1 —
Pp /40

k)= 2 i/c gk +k~ 2 U dgk8
(iiqo) i sin(8/2)

These expressions are valid for pulses of arbitrary area.
We now find explicit expressions for a, (qk) and a~(qk) in the small-pulse-area limit. We proceed by expand-

ing U and retaining only terms to the first order in I&. This gives

U=1+ Ui, (71)

U, = —— d&e 'aie—00

In this approximation Eq. (69) gives

—&k/&0
ui(qs) i i/4 e 7

(n.qo }

where we have set cos(8/2)=1. Thus after the excitation pulse has passed, the ground-state wave packet is
spherical and unchanged from what it was before the pulse, as expected. Equation (70) for az(qk) becomes, in
the small-pulse-area limit,

az(q~)= qq+k- 2 I eke
+

H, e 'Jq d'ek" '
qq 15q 00

01

2(qk } 2 i/4 dgk dt p 0+
R8(rtq )'~ 00

fi(qk+k, )'

2m 2m

tag t —rk /C) —tm(t —rk /C)
&& qk+k- E t ——(e +e ) qkq C

We now express E(t —rk/c) in terms of its Fourier transform E(u),

E(u) =f dt E(t)e

This gives in Eq. (75}

2 & 2—qk /2qO2 00 00 — . Ck Qk
a~(qk}= ~ f dqke

' 'f dt f duE(u}expt ck-+A +u t
00 00 2m

j~t —S (OP+ 8 ~1'k /C j~t t (Ol —Q ~Pk /C,+8' e ) ~gk)

where we have used Eq. (64) to set

fi(qk+k- }
n+ ' =ck

2m q 2m

in the first exponential term of Eq. (75). Noting that
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I q3& =~'"(qi —q2 —q3)

we now write Eq. (77) as

2 & 2
-'4 /2qo A —Aa2(qk)=, f dqke

" ' dr du E(u)expi ck-+Pi +u r2'

8 5 gk+k + +
c c

+e '"'5 qk+k- ——+——qkc c

Evaluating the integrals over t and then over u gives

2 & 2 2 & 2
-q& 2/2qo2 9k '7k A —A

eke E —ck~ —co —A +E —ck~ +Q) —'fl
2m 2P?l

5(qk —qk ) 5(qk —2mc /A'+qk )
+

Wk Wk

—qk ~/2qo2
Because of the e term in the integral the
second delta function's contribution is negligible
compared to that of the first. If we now make the
approxiInation that —1+qk/m = —1 then Eq. (79)
givCS

a2(qk }=, /4 e " '[E( ck- —r—o)

+E(—ck-+co)] .

I

for e(qk), Eq. (81) gives the simple result

@qk) -e„'ne,'
as(qk)= q ~/4

(mqp)
(82)

This justifies the use of Eq. (27) for the pulse area in
the small-pulse limit.

For a Gaussian-shaped excitation pulse in the
small-pulse-ares limit, as given in Eq. (29),

For the excitation guises under consideration

[E(—ck +co)
[ )) [E(—ck- —co}

)
so that this

q q

reduces to

a~(qk)= 2, e ~' 'E(re ck-) . (8l)—
83(mq )'/

Relabeling ck- as eq, the frequency of the Fourier

component of the radiation field at the atom's
Doppler-shifted resonance, and then using Eq. (27)

[eek/(m/kr&/ )]—2/2

—qI »qoo
a2(qk )

Q //4
(mqp)

where qpp is defined in Eq. (34). %'e summarize by
saying that for a Gaussian pulse in the small-pulse-
area limit the interaction picture wave function of
an atom after the pulse has passed is given by

Equation (85) can now be generalized to multiple-pulse excitations. Consider an atom with an interaction
picture wave function given initially by Eq. (60). After interacting with a series of X Gaussian-shaped laser
guises, all in the small-pulse-area limit, all having the same time width r, /, and having wave vectors
k~, k2, . . . , kz, the center-of-mass part of the wave function that has interacted with all the pulses will be
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given by

—[iik . q /(mlr )) /2
(86)

where e; =+ 1 or —1 if a photon has been absorbed or emitted, respectively.
Finally, we show that wave-packet spreading can be neglected when calculating the coherently radiated elec-

tric field. The general form for the wave function of an atom that has seen a coherent excitation pulse is

Iq'(r)&=cos f dq~((q)e ' ' ' "Iq&Il&
2

The spatial form of
I
%(r)& is

6
cos

f d~g (~) itt( q—/2m)t i q ~ r
I

l &(2~)'"
esin-

~ 2,.0t —th)( q+ k~)~/2m]t t( q+ k») r

(2n )

The coherently radiated electric field is proportional to the matrix element'

(0(r)
I

Pe' " ' '
I
q(r) & .

(88)

If we call this matrix element J and retain only those terms that will remain after averaging over a macroscopic
sample we are left with

iR[( q '+ k~, )~/2m]t, &t
—i( q '+ k~, ) r

f d ~g (
~

)e i 8 q /2—m )te i q
~ r

Since
I

& —l(
I /gp « l we can write

i' a" d ' '~/~ » i'( q /2m)t —i q
'

[ r —($k/~)t]

fd~g (~) —iti( q /2m)t i q . r

where ~=Q+Rk /2m. The integral over r gives
the delta function (2tr)35( '(q —q '). When we do

the q or q' integral, the term e'@q / " which
represents wave-packet spreading of the excited state

~ P P

cancels the term e '+ ", which represents
wave-packet spreading of the ground state. The
wave-packet spreading terms can therefore be
dropped in Eq. (91) giving

iept P d~ I d~ ~g+(~ ~) i q
'

[ r —(Ak /m)tr g q 2 q 8

x f dqA)(q)e'q'' (92)

Joe'"'f dr F2 r — r F((R.

Therefore, the initial unspread wave packets can be
used throughout when calculating the coherently ra-
diated electric field; only the recoil of the wave
packets due to absorbing or emitting a photon need
be taken into account.
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