
PHYSICAL REVIEW A VOLUME 27, NUMBER 5

Spontaneous radiative coupling of atomic energy levels
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Density-matrix equations of motion derived from Heisenberg picture source-field quan-
turn electrodynamics contain damping constants and frequency shifts which are not associ-
ated with a single radiative transition but which instead couple two separate transitions to-
gether. In the absence of degeneracies in the atomic levels, these coupling terms are normal-

ly neglected when the rotating-wave approximation is invoked. These terms cannot be

neglected when there are degeneracies or near degeneracies. In this paper, we interpret the

generalized frequency shifts, show how they can be renormalized and included in shifts of
atomic energy levels and altered damping constants, and discuss their experimental signifi-

cance.

I. INTRODUCTION

The linewidths and frequency shifts associated
with spontaneous radiative transitions can be de-
rived from quantum electrodynamics using two very
different physical models. Historically, the deriva-
tions were carried out in the Schrodinger picture'
where one naturally attributes spontaneous emission
to the interaction of the atom with the fluctuating
vacuum field. Welton showed explicitly that the
Lamb shift could indeed be explained in this way.
More recently, Heisenberg-picture source-field treat-
ments of these effects have been carried out. These
treatments naturally lead one to regard spontaneous
emission and the Lamb shift as the effect of radia-
tion reaction. Each atomic transition moment gen-
erates a quasimonochromatic field which acts back
on the atom and changes its dynamics.

The two alternative descriptions have been shown
to be equivalent for two-level atoms. When the
Heisenberg-picture calculations were extended to
multilevel systems, the equivalence of the two ap-
proaches was no longer so obvious. The field given
off by a particular transition moment acts back on
every transition in the atom, not just on the transi-
tion which generates it. If there are no degeneracies
or near degeneracies in the atom, then these cross
terms are rapidly oscillating and can be dropped in a
sort of rotating-wave approximation. This is what
has been done in all previous multilevel treatments.

Real atoms do have degeneracies and near degen-
eracies, so the problem of these cross terms involv-

ing two transitions cannot generally be ignored so
easily. These cross terms in fact lead to generalized
Einstein A coefficients and radiative frequency
shifts not associated with one particular transition.
The generalized damping constants were originally

derived by Landau in his classic paper introducing
the density-matrix approach to quantum mechanics,
and have been investigated more thoroughly in a re-
cent paper describing interference effects due to
their presence. The interpretation of the generalized
frequency shifts, however, has been particularly dif-
ficult since they could not be renormalized in the
usual way, nor could they be eliminated from the
dynamics by including them in the transition fre-
quencies. Further, corresponding generalized terms
have not appeared in conventional, second-order,
nondegenerate perturbative Lamb-shift calculations.

In this paper we will show that analogous terms
do occur in perturbation theory if near degeneracies
are handled properly, that the generalized frequency
shifts can be renormalized, and that these terms may
lead to modified line shapes and line strengths as
well as to shifted transition frequencies in nearly de-
generate systems.

As is well known, the linear divergence which ap-
pears in a normal Lamb shift calculation is said to
be due to including the electron's divergent self-
energy twice. This self-energy appears once in the
electron's observed mass and once in its vacuum-
field interaction energy. The generalized
frequency-shift terms cannot be renormalized by
merely subtracting this extra self-energy from the
calculated energy correction. Instead, the subtrac-
tion must occur right at the beginning of the calcu-
lation. Therefore in Sec. II we write down a total
Harniltonian which includes the energy of interac-
tion between the electron and its own field only
once. Density-matrix equations of motion derived
from Heisenberg-picture source-field quantum elec-
trodynamics using this renormalized Hamiltonian
then contain generalized frequency-shift terms
which are automatically renormalized. Since these
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generalized terms are important only in systems
with near degeneracies, we specialize the equations
to describe just such a system.

The generalized frequency-shift terms in the re-

sulting density-matrix equations of motion do not
merely shift the atomic levels, they also mix them.
The atom is not simply described then in terms of
the usual bare atomic levels, but by a new set of
states dressed by the vacuum field. We determine
these proper dressed states of the atom-vacuum sys-
tem to second order in Sec. III and describe how all
of the generalized frequency-shift terms may be el-

iminated from the equations of motion of the
dressed-state density matrix. All of the frequency
shifts are absorbed into the dressed-state energies
and generalized damping constants. Finally, in Sec.
IV we discuss the experimental implications of these
generalized radiative frequency-shift terms.

II. SOURCE-FIELD QUANTUM
ELECTRODYNAMICS

A great deal of effort has gone into accurate cal-
culations of the Lamb shift, including both relativis-
tic and nonrelativistic contributions through fourth
order. Erickson and Yennie have developed a par-
ticularly powerful technique for these calculations.
We will not use this formalism, however, because we
are interested in the qualitative effects of radiative
corrections on the very closely spaced Rydberg
atomic energy levels and not in extremely accurate
measurements of hydrogenic energy-level shifts.
Also, we have set out to explain the generalized radi-
ative frequency-shift terms which arise quite natur-
ally in second order in the Heisenberg-picture
density-matrix formalism, but which do not appear
conveniently in second order in conventional nonde-
generate perturbation theories. Analogous terms are

I

H„=Pi — —f den p'= fiCp'—2e 1

3A'm c
(2)

in the regions where it can be treated nonrelativisti-
cally. The operator p is just the electron's momen-
tum.

If we use this renormalized Hamiltonian [Eq. (I)]
in the Heisenberg equations of motion and carry
through a calculation exactly analogous to Milonni's
calculation, we obtain the density-matrix equations
of motion

relegated to fourth order in these theories. We
therefore use the Heisenberg-picture density-matrix
formalism and quantum electrodynamics to reveal
the generalized terms we have described and the pro-
cedure for renormalizing them.

As indicated in the Introduction, the renormaliza-
tion must begin with the initial Hamiltonian. We
devise a Hamiltonian which contains the electron's
self-energy only once by explicitly subtracting it out
of the interaction energy and adding it to the bare-
atom energy. Symbolically, this renormalization
procedure can be written as

H =(H, +H„)+Hf +(V —H„)
=Hp+Hf +( V —H )

The various terms in the Hamiltonian are as follows:
H„ the Hamiltonian for an electron which does not
interact with the transverse electromagnetic field;
H„, the self-energy of the electron interacting with
the transverse field; Hf, the Hamiltonian for the
free field; and V, the interaction Hamiltonian. The
Hamiltonian for the atom in which the electron has
the observed mass is Hp ——H, +H„. The self-energy
is given to second order by Rayleigh-Schrodinger
perturbation theory as'

Pji = g g Yjmmn +i g l~jmmn CP jm Pmn l Pni g g Yminm g (~immn CPnm Pmi l Pjn
n m&n m n m&n m

+ P l jnmiPnm + g YmijnPnm i ~ l+njim ~mijn &Pnm i~jiPji (3)
m, n
m)i

m, n
n)j

m, n

where we used the definitions

28
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(4c)

Sabcd =Sabcd+ CPab Pcd ~ (4b)

2e 1 dao
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2 3 Pab Pcdcd
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All of the radiative frequency shifts Sabcd are only

I

logarithmically divergent, as is the usual renormal-
ized result in a nonrelativistic treatment. The terms
of the form g Sk k are just the usual renormal-

ized Lamb shifts of the atomic levels
~

k ), while all
of the other S terms are the so-called "generalized"
frequency shifts under scrutiny in this paper. Simi-
larly, the expression g k Ykmmk is the usual

phenomenological radiative decay constant for the
state

~

k ), while all the other Y terms we refer to as
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generalized damping constants.
Equation (3) is quite general. If the usual pro-

cedure is followed, a rotating-wave approximation is
applied allowing all of the generalized shifts and
damping constants to be ignored, unless there are
degeneracies or near degeneracies which must be ac-
counted for. In that case, the generalized terms can-
not be ignored. In order to examine that case, we
will specialize to the simple atomic system illustrat-
ed in Fig. 1. The atom is assumed to have a mani-
fold of degenerate or nearly degenerate ground states

~ g ), and another nearly degenerate set of excited
states

~

e). We will assume that there are no other
transitions in the atom with frequencies near to the
transition frequency co,g connecting the manifolds

~

e ) and
~ g ). The various states in

~

e ) are as-
sumed to be coupled by electric dipole transitions to
the states in

~ g ). Transitions within each manifold
will be assumed negligible.

For this system the equations of motion for the
density-matrix elements p, ,(e' and e may represent
the same state) and p,g reduce to

Pe'e [3 e'e'+3 ee +l (oJe'e +Se'e' See )lPe e'

FIG. 1. Multilevel atom with a manifold of closely
spaced excited states

~

e ) coupled by electric dipole tran-
sitions to the manifold of ground states

~ g ). All the oth-
er atomic states are considered to be far from the

~
e ) and

~ g ) manifolds.

and

g (y ~ -+iS, ,-)p, -,
e "Qe'

—g (y„—iS„)p,, -
e"&e

P~ = [yee+l (oJe—g+See Sgg )]Peg

—g (y„+ „)p,g+ g ~pg .
eQe g wg

(Sa)

most phenomenological density-matrix equations,
but appear in a complete derivation. They have
consequences on the dynamics of a system with near
degeneracies and so cannot be ignored. In a previ-
ous paper we investigated the generalized damping
terms y„but left unexamined the generalized fre-
quency shifts Sjj .

III. ATOMIC DRESSING BY THE
VACUUM FIELD

(Sb)

To arrive at these simplified equations we have
dropped all terms in Eq. (Sa) oscillating at frequen-
cies much greater than co, „and all terms in (Sb) ex-
cept those oscillating at approximately co,g. These
terms are dropped in anticipation of making the
usual rotating-wave approximation at some later
time. We have also introduced the definitions

and

Yee'= g yelle' Yee'
l&e

(6a)

SJJ X J J JJ
I

(6b)

(The term Sjj with j =j' are just the usual renor-
malized Lamb shifts. )

In the equations of motion for p,g we see not only
the usual decay constant and Lamb shift, but addi-
tional terms coupling p,g to other density-matrix
elements p,g and p, g. These terms are absent in

The radiative coupling between transitions which
we found in Eqs. (Sa) and (Sb) makes solution diffi-
cult, and brings the radiative frequency shifts direct-
ly into the atomic dynamics. It is desirable to elim-
inate these terms from the equations so that only di-
pole moments and atomic lifetimes appear explicit-
ly. This simplification can be achieved by formulat-
ing the theory in terms of atomic states dressed by
the vacuum field rather than in terms of bare atomic
states.

We can find the proper dressed states by diagonal-
izing the Hamiltonian, Eq. (1), to second order in
the vacuum interaction energy V. The states we
wish to study are almost degenerate, i.e., they are
not degenerate but are strongly mixed in second or-
der. Such almost degenerate states are treated con-
veniently using Lennard-Jones —Brillouin —Wigner
(LBW) perturbation theory. "

We are interested in obtaining the dressed states
which will diagonalize the Hamiltonian in Eq. (1) to
second order in A, , where the perturbation is
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AV . A—, H„(H„ is second order in V). With the
reordering of the perturbation series in LBW theory,
the matrix elements of the perturbation which cou-
ple the nondegenerate states to each other are ig-
nored. A partial Hamiltonian matrix A useful for
analyzing the effects of the perturbation on the
closely-spaced excited states can be represented
schematically as

(7)

where W is the submatrix of A in the subspace of
the nearly degenerate excited states

~

e), 3P is the
submatrix which describes the coupling between the
set of nearly degenerate states and all the other
atomic states

~

I ), and & is the submatrix coupling
these other atomic states with themselves. The ap-
proximation which gives us our second-order LBW
theory results is to take & to be diagonal. A similar
matrix can be written for the closely-spaced ground
states ~g).

Now diagonalizing matrix (7) in the usual fashion
(keeping terms to second order in the vacuum in-
teraction energy V) determines the dressed states

IE)= QAE, Ie) (8)

and their energies fiBE through the resulting equa-
tions

roEAE~'=(ro, ~S, , )AE~'+ g S~'~As~ .
e+e'

(9)

We note here that if our manifold of nearly degen-
erate states ~e) were actually degenerate, Eq. (9)
would be exactly the equation one would obtain us-

ing conventional Rayleigh-Schrodinger degenerate-
state perturbation theory.

Equation (9) illustrates nicely the significance of
the generalized frequency shifts. The normal
Lamb-shift terms S„are merely frequency shifts,
while the generalized terms S, , couple the states

~

e') and
~

e ). If we think of a system of classical
harmonic oscillators each coupled to the others, we
see immediately that not only are the new normal
mode frequencies shifted from the old frequencies,
but the new normal modes themselves may be quite
different from the uncoupled modes, depending on
the strengths of the coupling. The atomic system
we are considering is affected analogously. The S, ,
coupling changes the eigenstates from the bare-atom
states

~

e ) to the vacuum-dressed states
~

E ) and at
the same time shifts the transition frequencies from
CO, , tO COE'E.

Solving Eq. (9) gives us the dressed-state energies

SEE and the dressed states themselves. An identical

calculation using the manifold of ground states
~ g )

in place of the excited states
~
e) results in equa-

tions analogous to Eqs. (8) and (9), with e,e' re-
placed by g,g' and E,E' replaced by G, G'.

To connect the Schrodinger-picture calculation of
this section with the Heisenberg-picture formalism
of Sec. II, we first expand an arbitrary Schrodinger-
picture wave function in the basis of bare atom
states

~

I ) as

~

g(r)) = go&(r)
~
I)

I

and then make the identity

(10)

PE'E ( YE'E'+ 3 EE + E'E )PE'E

YE'E"PE"E g YEE "PE'E"
E"~E' E"~E

(12a)

and

PEG ( YEE + ~ roEG )PEG g YEE'PE'G
E'~E

(12b)

where the new generalized damping constants are

YEE'= g Yee AEeAEe''
Ie, e

(13)

Note that all the frequency-shift terms have van-
ished. They appeared originally simply because we
used the wrong states to describe the interaction.
Using the proper vacuum-dressed states, we see that

PJ'I=ai I

These are the density-matrix elements which satisfy
Eq. (2).

We can remove all explicit reference to the gen-
eralized frequency-shift terms from the density-
rnatrix equations of motion (5) if we use the new
dressed states found above [Eq. (8)]. This then im-
plies that the effects of those terms are fully ab-
sorbed in the new states themselves, as previously
discussed. To accomplish this, a procedure similar
to the one Fano' used to describe the effects of two
discrete states embedded in an ionization continuum
could be used. (Our discrete state manifolds ~g)
and

~

e ) are embedded in the spontaneous emission
continuum. ) This entails reexpanding the wave
function

~
P(t)) [Eq. (10)] in the basis of vacuum-

dressed states
~

L ) with expansion coefficients GL (t)
and then obtaining equations of motion for the
density-matrix elements pJI ——a&a I. Equations (5),
(8), (9), (10), and the orthonormality of the dressed
states lead finally to the dressed-state density-matrix
equations of motion



D. A. CARDIMONA AND C. R. STROUD, JR.

not only are the energy levels shifted (BIJ&a~;J ) by
the generalized frequency-shift terms, but the decay
constants are affected as well {yEE&y„), thereby
changing the dynamics of the atomic system. In the
next section we will examine the importance of these
effects.

IV. EXPERIMENTAL IMPLICATIONS

if we order the dressed states ~E) and the bare
states

~

e ) so that
~
E)~

~

e ) in the absence of the
vacuum field. By way of illustration, let us consider
an excited-state manifold having two states,

~
l)

and ~2). Then the new diagonal damping rates
(good to first order in S, , /~, , ) are given by Eq.
(13) as

S21
711 711 (712+F21)

21
(15a)

%e now have a complete physical interpretation
for the generalized radiative frequency shifts. The
vacuum field not only shifts atomic levels, but in the
case of nearly degenerate transition frequencies, it
also mixes the atomic states. The frequency shifts
can be attributed to given transitions and thus to
given levels only when the system is described in
terms of the proper dressed levels. In Eqs. (12) we
have written out the density-matrix equations of
motion in terms of these dressed states. The
frequency-shift terms do not appear in these equa-
tions because they have been included in the
dressed-state transition frequencies and altered gen-
eralized decay constants. The vacuum field is real
and always present so these transition frequencies
and damping constants are the experimentally
relevant quantities entering Auorescent line
strengths, linewidths, branching ratios, etc.

%hen Eq. {9) is solved for the dressed-state mix-
ing amplitudes AE, to first order in the ratio
~e'e /e'e's we find

S, ,
Agg~ ~

Q)~~~

Auorescent lines will be stronger than expected and
one will be weaker.

The quantity of interest which will determine the
observability of these changes in fluorescent-line in-
tensities is the ratio 5', , /co, , The occurrence of a
near degeneracy is not sufficient to guarantee that
this ratio is large. Angular momentum selection
rules enter the evaluation of S, , Consider the ease
of fine-structure levels of a given principal quantum
number. The definition of the generalized
frequency-shift terms connecting two levels

~

e ) and

~

e') [Eq. {6b) coupled with {4c)]indicates that both
states must have the same magnetic quantum num-
ber so that p, I.p~, is nonzero. It can also be shown
that S, , can be expressed in the form

ger Qpev p(erole
r 1

(the c„are expansion constants) and that

g&P, I p~, co~, is the e' —e matrix element of a spher-

ically symmetric operator. It then follows that the
generalized shift terms are zero unless all of the an-
gular momentum quantum numbers for the two
states

~

e ) and
~

e') are equal. This can occur only
when the two states have different principal quan-
tum numbers.

For these generalized frequency-shift terms to
have an experimentally significant effect we must
have nearly degenerate states with identical angular
momentum quantum numbers. This can occur in
the higher excited states of hydrogenic ions with
large Z, or in multielectron atoms and moleeules
where different electronic configurations can over-
lap. In such systems these vacuum dressing terms
can lead to anomalous branching ratios and line
strengths. These terms would then have to be in-
cluded to obtain a proper interpretation of the spec-
tra in these systems.

Even when there is no degeneracy or near degen-
eracy the generalized radiative frequency shifts
occur, but in those cases the shifts are quite small,
and are in fact included in normal fourth-order per-
turbation theory. It is only the occurrence of near
degeneracies which causes these terms to enter in
second order as does the normal Lamb shift.

~12
'F22 ='F22+ {712+3'21)

Q) 21
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