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%'e have formulated a generalized method for the evaluation of the cross sections for ls-

np excitation of hydrogenlike ions by electron impact both in Coulomb-Bom and

Coulomb-Bom-Oppenheimer (CBG) approximations. In this formulation we have replaced
the associated Laguerre polynomial for the final-state wave function by an integral repre-

sentation. The main advantage of our method is that the higher-order parametric differen-

tiations usually adopted in order to obtain the amplitudes for the higher values of the prin-

cipal quantum number n are avoided by one-dimensional integration. To our knowledge,

this is the first atteInpt to calculate the electron-ion excitation cross section in the CBO ap-

proximation for an arbitrary p state without any recourse to partial-wave analysis. %e
have also calculated asymptotic scaled cross sections for the limit n ~ ac at different ener-

gies. The direct-excitation results are in good agreement with the existing theoretical find-

ings of Tully for different n values in the intermediate- and high-energy regions.

I, INTRODUCTION

The study of electron-impact excitation of one-
clcctron 1ons 1s considcrcd to bc of great 1ntc1cst bc-
causc of 1ts w1dc appl1catlon 1Q various astrophys1-
cal and plasma phenomena. Apart from thc experi-
mental studies of Bolder and Peart' and Dashchen-
ko et aI. , there are a number of theoretical
works on the electron-impact excitation of hy-
drogenlike ions in different approaches. The early
theoretical attempts by Burgess et al. , and by
Tully to investigate such excitation processes for
some low-lying states in the Coulomb-Born-
Oppenheimer (CBO) and Coulomb-Born (CB) ap-
proximations were based on the partial-wave expan-
sion. However, the partial-wave treatment is not
suitable in many cases owing to the requirement of
a large number of partial waves. Mitra and Sil '
first suggested a ncw method of evaluation for the
1s-2s and 1s-2p excitation cross sections of hydro-
genlike ions in both CB and CBO approximations

without any recourse to partial-wave analysis. The
matrix element appearing in the 1s-2p CB ampli-

tude in their work' required a one-dimensional in-

tegration to be carried out numerically, while in a
contemporary work, Sung Dahm Oh 8t Ql.

presented a closed-form cxprcss1on for thc same

matrix element, In a later development, '4'7 the ear-

lier method of Mitra and Sil was suitably general-

ized to include the excitation of any arbitrary s state
in an easily computable way.

In this paper, we have presented a generalized

method taking account of the exchange effect for
the calculation of the cross section of electron-

impact excitation of hydrogenlike ions to an arb1-

trary p state including the asymptotic limit of the

principal quantum number n. For the direct case
we have based our extension on the closed-form ex-

pression of 1s-2p amplitude of Sung Dahm Oh

et al. ,
' while for the exchange part we have fol-

lowed the earlier work of Sinha and Sil' for 1s~ns
amplitude.

II. THEORY

A. Direct amplitude

The expression for the direct amplitude for the transition from 1s to np state of hydrogenlike ions under
electron impact in the CB approximation is given by
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1('g (r~)=exp n' 1"(I a—)e '
&F~(a, i;i(E;r, —K; r&)),(+) ~ Z —1 lK ~ 'I')

l

with a =i (Z —1)/K;, b =i (Z —1)/E~, and Z is the nuclear charge
The ground-state hydrogenlike wave function P„and the generalized final-state wave function P„z are

given by

where!!)„
& ( r2} represents the np„or the np, wave function for hydrogenlike ion and r2„, denotes the x or the

z component of the coordinate vector r2.
Here we have chosen the axis of quantization along the direction of K; and the plane of scattering is taken

to be the x-z plane. We now use the following integral representation for the I.aguerre polynomial in order

to represent the final-state wave function:

m! exp[ g—t/(1 —t)]
(1 ])]m+1

where I is a closed contour enclosing the point t =O.
In view of the relation

we get for the p state after the substitution r =(x —1}/(x+1)

(n+1}! (x + 1 )Ii+1
L„+~(2A,„rt)=— . ', exp[ —A,„(x—1)r2] dx,2' (x —1)"

whcfc I is thc closed contour enclosing thc point x =1.
We now define

Using Eqs. (1"},(1'"),and (3)3„,can be written as

(n+1)t e3„,( r ))=Xi,X„q r2„,
16m.i ~jz

(x+1)"+'
~Jr' — 8x

1)n —1

where A, =A, &+A,„x.
After performing the space integration in Eq. (4) we arrive at

(n+1)! ~ 1 8 f 1 Bf ri (x+1)"+'
Jg pjp 4

~ Q ~ 2 2 ~~ 3 )
x

r&

f(r))= I r'e 'dr'.

We substitute the above expression for A(r &) in Eq. (1) and carry out the r~ integration following closely the
procedure adopted by Sung Dahm Oh et aI. , ' in their parallel case of 1s-2p transition and finally obtain
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T]s—np

Ni N &(n +1)!IiixIiix
1 g2 1 g ( +1)npi

I dx,
S~i(Z —1) r A, (})i,2 ),~ BA

Z —1 Z —1
Xz.——exp m I (1—a), X~ ——exp m I (1—b)

f

1=(KI,i
~
[H, V y(r, )

~
K, ,a)

~
K;, a+ n}= e ' ' Fi(ia+n, l;i(K;r i

—K; ri)),

~ KI,b+n) =e ~ 'iFi( —(b+n), 1; i {Kgr,—+KI ri)) .

The expression [H, V] occurring in Eq. (6') denotes the commutator of the operators H and V. Expression
(6) may equivalently be thrown into the form

I{ iNsgp( n+ 1)iIiix~Ãx g
'

1 g
'

( + 1)n+i
I aix . (7)

Siri(Z —1) r' elk g Bk ( —1)"

Taking the projections of I along the directions of K; and E~ we obtain the x and z components of the transi-
tion amplitude T]s Il as

z„=c{t)„,
1 3 - (x +1)"+'I.Kl, dx,

rR

x ax
(x +1)

( I .K~ —cos0 I .K; ) —,
(x —1)"

(Sb)

X],N„p(n +1)!XgX~C=-
8ai(Z —1)

and cos8 =K;.K) .
The expressions of I -K; and I K~ have been given by Sung Dahm Oh et a3. ' as

QI K.=—
l 2

I Kg ———
2

2/K'
2 [(I +i,b Ib)k=o {I+l-.b Ib)]-+{I+i.b -Ib)

),
' I +-i b-

r

2iL~
[(I,„+i I,b)~ o (I,,b+—i I,b)] —(I, b+i —I,„)+— I, b—+i

l q'I'1 —AT]

I.,=f '
iFi(a, 1;i(K;ri —K; ri))iFi(b, 1;i(KIri+KI ri))dri .

Z —1 2m a
Igb =exp —vp

2K; a y

The integral I,b has been evaluated analytically by Nordsieck and may be written as

y+g Kl.Kg —K; Kg
2F) 1 —a, b, 1;

y A

with
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a= z(q +A. ), q=K; —Kf, P =Kf q —iAK. f, y=K; q i—AK;. —a, 5=K;Kf+K; Kf —P .

It should be noted that the form of the expression of I,b in Eq. (11) differs from that of Sung Dahm Oh

et al. ' though they are completely equivalent.
We shall now present the calculation of T, only, since the calculation of T„ is very similar to that of T, .
Applying the method of integration by parts and noting that

n

I .I( .
wax

is a single-valued function over the closed contour, we obtain from Eq. (Sa)

T, = f I fC; —(x n)—
n

dx

Integrating by parts a second time we finally obtain

2Cg - 1 x+1'= g»r '
'JX x

' n
~n 2n

(x —n)
x —1

—1 dx. (12)

Following Sinha et al. ' the contour I ' has been chosen to be a circle with a suitable radius (x =ane'~). The
integral (12) thus reduces to a one-dimensional integral over P ranging from 0 to 2m".

i2Can 2~= 1 x+1T= I E ~—
0

n
~n 2n

(x —n)
x —1

—1 e'~dP .

B. Exchange amplitudes

In the CBO approximation one requires further evaluation of the exchange amplitude in addition to the
direct one. The x and the z components of the exchange amplitudes are given by

g...= f f ((„'~ (r~)f'-„"(~~) P»(rz)g'-+'(r~)dr~dr& .
12 r1

(14)

To evaluate g„, we first start with the parent integral

—Air~ —"rIrl —i Kf. r~ i L7 r l 1 1 i(K~r~+ Kf r~)t~ i(K,.rl —K, r l)tlV=- e e e e ——e eI" 71 I ~ F12 P1

(x+1)n+'
P (a1,t1)P (a2,t2), d r 1d r2dt1dt2d

4m (x —1)n
(15)

where we have used the integral representation of 1F1 as

(O+ 1+ )

1F1(iaj,1;z)= dtjP (aj, tj)e '
2n-i

with

p(aj tj ) tj (tj 1) J 1 2.
I j is a closed contour encircling the two points 0 and 1 once anticlockwise.

The integral g„, may now be generated from V through the relation
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av
Ci ——

~~x,z dk = K;

N ),N„p(n +1)!Ng.Ng

32K l

(x+1)"+'
r2 (A, —B,t, )(A2 —82t2) (x2 )

dx

r

= —16m +~ 1—1 B& 1 Bz (x +1)"+'
1—

) dx,
BX1 +r' A1 /11 A2 A2 (x —1)"

Vp
———16m'

2a
ill, )

%e call the two parts of V involving the potentials 1/r ~~ and 1/r
&

as V~ and V~, respectively.
Performing the space integrations in Vz we obtain

where

A) ——5 +q, B)——2(E.K;+iE;q), AP ——Sf+A, ), Bg ——2(K) +iEfA, ))

'g =k~x

The space integral in V& can be evaluated as the double derivative of the Lewis integral

8 8 1 (&+1)"+'
V1 =8 f, —

2 f„(J1 Lp(at, t1)p(n2, t2)dttdt2 1dx
(x —1)"

with

&2 p+(p2 ~)1/2L= ln
(p2 y)1/2 p (p2 ~y)1/2

p=k1(K +rl' )+rt'(K~ +XI ), ay=[(K,' —Kf) +(rt'+At) ](K~' +rt' )(&f +~1 )

K' =K t) —b, Kf —Kftg —Kfs A) —k) LKft~& f3 0 ~It i t1 ~

%'e now use the integral representation of the Lewis integral I. (Ref. 25)

L =2'' f du(au +2pu+y)

where we have split the product ny in a manner such that a and y are linear functions of t& and tz. Thus we

choose

a =(K,'—Kf)2+(rt'+A, ;)2,

y=(K +g')(Ef'+A, ", ) .

It may be noted that p is already a linear function in t1 and t2 Next w. e express a, p, and y in the following
form in order to perform the t& and tq integrations analytically:

a =A +Bt, +Ct, t, +at, ,

P =P+Qt, +Rt, t2+St2,

y =E+Ft)+Gt)tp+Htp,

where', B,C, . . . , etc., are functions of K;, Kf, A, ~, and q only.
In view of Eqs. (19) and (20) L can be thrown into a form as used earlier by Sinha and Sil,"

I. = —2m
00 dU

( V + W)t ) tp+( U+ F)t )
—Vtp —U

' (21)

where U, V, W, and F are functions of the constants A,B,C,D, . . . , etc.
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Substituting (21) for L in (18) we first carry out ti and tz integrations analytically, following the method of
Nordsieck. It is to be noted here that Nordsieck evaluated the integral of the type

1
Jp = —

& r fz L (ti, tq)p (a|,t| )p (az, tq )dt, dt's4~2 r r (22)

for some restricted values of the parameters. But our integral (18) is to be evaluated for any complex value of
x within the contour I . We have noted that our result may be obtained by an analytic continuation of the re-

sult of Nordsieck around the point x = 1. We then arrive at the expression given below':

Jo ——2n exp( —m.a 1 )
0 ' ' U(F+W)

(23)

In view of Eqs. (23) and (18) the exchange integral
involving the 1/r |z part now becomes

a a (x+1) +'
V, =8 IIi,JO, dx .

ax, a~
(24)

Using the relation (17b) and then applying the
method of integration by parts we finally obtain
from (24)

n

V| —— f 2(n —x)8 x+1
Jodx .=

x„ax,

C. Asymptotic value of the scaled
cross section

To evaluate the asymptotic scaled cross section
we first note that in the limit n ~ oo the excitation
threshold energy becomes —,Z and the quantity
A.„x on the contour x =ane'~ is independent of n.
Further, the final momentum Kf becomes a con-

-+
stant parameter and as a result I E;/A, becomes
constant in the above limit. Thus we need consider
the following limit only in Eq. (13):

(25)

This integral is then transformed to a one-
dimensional P integral as in the direct case. The
differential cross section in the CBO approximation
is given by

x+1
hm

n ~ x —1

where

If

~n 2lt
(x —n) +

x —1

=e ~ (ae'& —1) —+2 Z 2
a'e "&

(26)

y =a-'e-'& .

Finally, in view of the n dependence of the normali-

TABLE I. Scaled cross sections (on'Z in units of ~a 0) for ls-np excitation of He+ by elec-
tron impact. (a) CB cross section; (b) CBO singlet; (c) CBO triplet; (d) total CBO cross section.

Energy
(Threshold

units)

1.5 (a)
(b)

(c)
(d)

2p

13.32
28.46

5.643
11.35

Excited levels

3p

7.568
17.64
2.689
6.428

6.327
15.16
2.138
5.393

5.088
12.59
1.621
4.365

2.5 (a)
(b)

(c)
(d)

11.78
18.27
7.413

10.13

6.494
10.47
3.906
5.546

5.377
8.771
3.188
4.584

4.272
7.072
2.489
3.634

3.5 (a)
(b)

(c)
(d)

10.32
13.61
7.839
9.281

5.582
7.524
4.142
4.987

4.595
6.238
3.383
4.097

3.626
4.965
2.645
3.225
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TABLE II. Scaled cross section (on Z in units of
mao) for 1s-np excitation of He+ by electron impact in

CB approximation.

10

Energy
(Threshold

units)

5

8
12

Excited levels

2p 3p 4p 5p 00p

8.775 4.660 3.815 3.489 2.990
6.795 3.537 2.878 2.625 2.239
5.304 2.722 2.205 2.007 1.707

10

zation constant we obtain the amplitude proportion-
al to n . Limiting expressions for the exchange
amplitudes in Eqs. (17a) and (25) can be obtained

easily following the same procedure.

C4 0

C

III. RESULTS AND DISCUSSIONS

The usual practice of repeated application of
parametric differentiation to obtain the excitation
cross section for higher n values has been avoided in

the present work by one-dimensional integration.

By virtue of our method it is possible to evaluate
the 1s-np excitation cross section of hydrogenlike
ions for any arbitrary value of n, including the
asymptotic limit (n~ao), at any energy through a
general computer program with equal ease and pre-
cision. For a consistency check of our generalized

program we have reproduced the CB results of
Tully for 2p, 3p, and 6p up to the figures quoted by
him at several energies with Z =2 and 4. For the
CBO results we have reproduced the 1s-2p cross
section of Mitra and Sil' for Z =2 at double the
threshold energy.

W'e have noticed that at an energy higher than
four times the threshold, the CBO cross sections are
nearly equal to the corresponding CB cross sections.

10 30 60 90 120 150 180
SCATTERING ANGLE (4eg)

FIG. 1. Scaled differential cross sections (do 1'dQ)n'
for the 1s-np transition of He+ by electron impact at an
energy 1.5 times the threshold in the CBO approxima-
tion. a, n=2;b, n=4;c, n=oo.

We have tabulated the CB and CBO results for a
He+ target at energies 1.5, 2.5, and 3.5 times the
threshold energy for n =2, 3, 4, and 00 in Table I.
Beyond this energy region we have calculated only
the CB cross sections up to 12 times the threshold
for n =2, 3, 4, 5, and oo which are tabulated in
Table II. In Table III we have presented the
Fano-Macek alignment parameter (FMAP)
A go] (0 50'z 0'z ) /( pz +0'z ) both in the CB and

TABLE III. Fano-Macek alignment parameter (FMAP) for 1s-np excitation of He+ by
electron impact. I: FMAP in CB approximation; II: FMAP in CBO approximation.

Energy
(Threshold

units)

1.5

2p

—0.6216
—0.6321

Excited levels

3p

—0.6241
—0.6296

—0.6246
—0.6297

—0.6250
—0.6302

2.5 —0.4260
—0.4169

—0.4113
—0.4026

—0.4064
—0.3980

—0.4004
—0.3923

3.5 —0.2912
—0.2809

—0.2720
—0.2620

—0.2658
—0.2559

—0.2582
—0.2484
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10 sponding FMAP in the CB approximation for all
values of n. But at energies 2.5 and 3.5 times the
threshold, the situation is reversed. From our re-
sults of the total cross section and the correspond-
ing FMAP one can find the x and z components of
the total cross sections through the relations

10 2 Osc
cr„=— -(1+3„)),

3 n'Z4

10

10

10 30 60 90 120 150 180
SCATTERING ANGLE (deg)

CBO approximations. It is interesting to note that
at 1.5 times the threshold energy, the FMAP in the
CBO approximation is a little higher than the corre-

FIG. 2. Scaled differential cross sections (der/dQ)n
for the 1s-np transition of He+ by electron impact at an

energy 2.5 times the threshold in the CBO approxima-
tion. a, n =2; b, n =4; c n = op.

We have also studied the nature of the differen-
tial cross sections in CBO approximation for dif-
ferent values of n. We have plotted in Fig. 1 the n

differential cross sections for He+ against the
scattering angle at 1.5 times the threshold energy
for n =2, 4, and oo. Figure 2 exhibits the corre-
sponding curves at 2.5 times the threshold energy.
It may be noted that at 1.5 times the threshold ener-

gy the differential cross section rises in the back-
ward direction after reaching a minimum near 110'
while at an energy 2.5 times the threshold the
minimum occurs near 115'. This rise in the back-
ward direction may be attributed to the exchange
effect. It was noted earlier' that the agreement of
the CBO 1s-2p excitation cross section results with
experiment for e-He+ was good enough even at an

energy as low as 60 eV. This is in contrast with the
1s-2s CBO cross section results which grossly
overestimate the experimental findings near the
threshold energy. In electron-hydrogen excitation a
similar feature was noted for Born-Oppenheimer
calculations, viz. , the 1s-2p results were much better
near the threshold region compared to the results of
1s-2s excitation. Thus we may expect that our 1s-

np results may provide a reasonably good estimate
of the excitation cross sections for any value of n

(including the limit n~ oo) throughout the energy
range considered here.
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