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A detailed and systematic analysis of the scope of the Firsov model as modified by
Cheshire when no adjustable parameters are included in the calculations of the low-velocity
electronic-stopping cross section is presented. For this purpose we summarize and extend
our previously reported [Radiat. Eff. Lett. 43, 79 (1979); Nucl. Instrum. Methods 170, 205
(1980)] preliminary results on the role of all computational degrees of freedom that influ-
ence the outcome of the calculations, namely, (a) inclusion of trajectory, (b) accuracy of
wave functions and speed of atomic electrons, (c) motion of Firsov’s plane, and (d) con-
sideration of experimental conditions. We find that the Firsov theory is accurate only
within a factor of 2; therefore, at least a scale factor is necessary in order to get reasonable

agreement with experiment.

I. INTRODUCTION

This is the last of a series of papers written to
study the sensitivity of the modified Firsov model to
the different parameters involved in the calculation
of the inelastic stopping power of solids and gases.

In the study of the energy lost by ions while
traversing matter at relatively low energies, two
models have been extensively used in the literature,
namely, the Firsov formalism' and the Lindhard-
Scharff formalism.> Both models are based on the
electron-gas theory of Thomas and Fermi but differ
conceptually in that the Lindhard model considers
the projectile as an electric charge moving through
an electron gas and therefore the energy loss is
evaluated in terms of a drag force exerted by the
medium on the projectile. On the other hand, the
Firsov formalism considers the collision between
two Thomas-Fermi atoms and evaluates the energy
loss as due to a drag force produced by electron-
electron momentum transfer between both systems.
Although the two models provide, on the average,
reasonable estimates for the electronic-stopping
cross section (S,), the experimentally observed oscil-
latory behavior of S, as a function of projectile (tar-
get) atomic number cannot be explained by them as
they stand, and therefore in the last few years
several modifications have been introduced to both
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in order to account for the atomic structure of the
colliding partners.

Land et al.’> have carried out a comparison be-
tween the Firsov model as modified by Cheshire?
and the Lindhard model modified by other authors.’
They find that in both cases at least one adjustable
parameter is necessary in order to get good agree-
ment with experiment. Moreover, they conclude
that the predicted values of S, according to
Cheshire’s modification are strongly dependent on
the choice of a minimum impact parameter involved
in the calculations. We have recently found (Refs. 6
and 7, hereafter referred to as I and II) that the Fir-
sov model as modified by Cheshire is highly sensi-
tive to the accuracy of the atomic wave functions as
well as to the use of an average rather than an rms
speed for the atomic electrons. This fact constitutes
an additional computational degree of freedom
which should be considered in order to draw any
conclusions on the value of any adjustable quantities
in the Firsov approach.

In this work we confine ourselves to a detailed
and systematic analysis of the scope of the Firsov
model as modified by Cheshire when no adjustable
parameters are included in the calculations of inelas-
tic energy losses and particularly in the evaluation of
the electronic-stopping cross section (S,). We inves-
tigate also the role of all computational degrees of
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freedom that influence the outcome of the calcula-
tions, namely:

(1) inclusion of the trajectory determined by
standard and “realistic” interaction potentials,
respectively;

(2) use of accurate atomic wave functions and
average speed for the atomic electrons in the evalua-
tion of the momentum exchange between the collid-
ing partners as well as proper location of the region
where the momentum exchange is to be evaluated;

(3) consideration of the experimental conditions
for the evaluation of the distances of closest ap-
proach in multiple-scattering events.

Although the work is mainly devoted to
Cheshire’s modification, we find it convenient to
analyze Brice’s modification for the low-velocity re-
gion,8 which, in contrast to the above treatment, is
the only approach that evaluates the momentum
transfer between projectile and target from a
quantum-mechanical viewpoint. Our findings in
this case are that Brice’s model is not very sensitive
to the choice of wave functions, which is the only
quantity that could affect its predictions.

For completeness, the original Firsov model and
its modification due to Cheshire and Brice, respec-
tively, are briefly reviewed in Sec. II. In Sec. III we
analyze in detail the main factors that affect the pre-
dictions of the theory for the modifications reviewed
in Sec. II. Section IV presents the results of these
calculations using the appropriate parameters ob-
tained in a consistent way and a comparison with
experimental data from the literature is also shown.
Finally, a discussion and the conclusions of the
present work are presented in Sec. V. An Appendix
is devoted to the inclusion of some detailed calcula-
tions at the end of the work.

II. FIRSOV MODEL AND ITS MODIFICATIONS

A. Original model

The original model proposed by Firsov' for the
calculation of the inelastic energy loss is based on
the fact that in each individual encounter between
the incident beam ions and the target atoms, a de-
celeration of the incoming particles takes place due
to a drag force produced by momentum exchange
involving projectile and target electrons. Owing to
the indistinguishability of the electron we could re-
gard this momentum exchange as an electron ex-
change, i.e., as the projectile and target approach
each other, their electronic clouds start overlapping
and an electron, which originally belonged to one of
the systems, suddenly switches its parent atom, car-
rying with it a momentum mu where m is the elec-
tron mass and U the relative velocity of the two sys-

tems. The drag force is then calculated in terms of
the flux of momentum due to the electrons of both
projectile and target.

If the motion of the electrons is assumed to be
governed by the Thomas-Fermi field of the atom,
and a hypothetical plane is defined perpendicular to
the line joining the nuclei at a certain fixed position
dictated by the atomic Thomas-Fermi potential,
then an expression for the total flux of electrons
across an element of area dA4 of the plane in one
direction is readily obtained as

dé=n(v)dd , )

where n and (v) are the Thomas-Fermi number
density and average speed of the electrons, respec-
tively. The inelastic energy transfer € in a collision
for a given impact parameter b, corresponds to the
work of slowing down and, within this model, is
given by

eb)=m [u-dR [d¢ , @

where m and U have the same meaning as before
and R is the relative position vector between target
and projectile. The electronic-stopping cross section
(S,) is defined as the integral

S.= [, db2mbe(b), 3)

where the lower limit b, is necessary to account for
the particular experimental conditions* (see Sec. IV).
The location of the hypothetical plane is normally
determined by the region between projectile and tar-
get where the electrons “feel” the minimum poten-
tial energy. Firsov proposed that for projectile-
target combinations not differing by more than a
factor of 4 in atomic number, the plane could be po-
sitioned half-way between them.!

It is evident that the main feature in the Firsov
model is the flux evaluation as given by Eq. (1).
Since this flux depends directly on the electronic dis-
tribution n, a corrrelation between the details of the
charge distribution and the electronic-stopping
power could be expected. In fact, for a Thomas-
Fermi atom the electronic distribution does not
change appreciably with Z,° therefore the original
Firsov idea as it stands cannot account for the ex-
perimentally observed strong variations of S, as a
function of projectile (target) atomic number.'?

Several authors®*®!!'~!3 have properly modified
the original model of Firsov in order to explain the
structure effects in S, and, although there exist dif-
ferent versions for such modification, we can essen-
tially group them into two main categories: (1) those
approaches which have been made by retaining the
idea of the electronic flux as being a classical ef-
fusion process, evaluating it through the use of more
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accurate descriptions of the electron density and
velocity (first proposed by Cheshire et al.) and (2)
those that have used a quantum-mechanical formu-
lation for the flux evaluation in the spirit of the ori-
ginal Firsov model (first proposed by Brice).

Since these two approaches are substantially dif-
ferent in their formulation, before proceeding any
further, we consider it useful to present a brief re-
view of their main assumptions for the sake of com-
pleteness.

B. Cheshire’s modification

Cheshire et al.* evaluated the flux given in Eq. (1)
by replacing the Thomas-Fermi density and the
average speed by more accurate expressions, namely,
the Hartree-Fock wave functions for the atomic
electrons and the corresponding rms speed derived
from the expectation value of the kinetic-energy
operator for any particular orbital. Denoting by w,
the population of orbital A then the expression for
the flux [Eq. (1)] due to this orbital is

dpr =70 a9 (v])12. (@)

The correspondlng expression for the rms speed of
orbital A, in terms of the kinetic-energy operator T,
is

A~ 172
WDV=@/mI | [ifpar | ®

Following the idea of rectilinear trajectories as in
the original Firsov model, Cheshire retained the no-
tion of a minimum impact parameter in Eq. (3). In
addition to this a new variable was introduced in or-
der to account for the position of the hypothetical
plane through which the flux was to be evaluated.
By considering the degree of nuclear screening for
systems with different electronic structure, the loca-
tion of the plane was set at the point where the col-
liding atoms make equal contributions to the elec-
trostatic potential.

Using Egs. (4) and (5) into Eq. (2) and integrating
over the hypothetical surface, Cheshire’s result for
the contribution to €(b) from orbital A of either pro-
jectile or target is

ex(b)=mmuw,(1/a){vi)I(ab) , (6)
with

Iab)= [ " diar(r’—a?)dr . (7

The dimensionless quantity a represents the frac-
tional position of the hypothetical surface between
the incident particle and the target. The electronic-
stopping cross section is readily obtained from Eq.
(3), once a minimum impact parameter is deter-
mined. This last quantity has been considered as an
adjustable parameter’ and it will be a subject of fur-
ther discussion later in this work.

C. Brice’s modification

As the reader must be aware, Cheshire’s modification is basically a semiclassical approach in which the cen-
tral feature of the original model is retained in its essence, i.e., the flux is calculated as given by Eq. (1). A sub-
stantially different treatment to the flux evaluation was first introduced by Brice,® who described the rate of
momentum transfer between projectile and target in terms of the quantum probability current across the plane
in one direction. For this purpose, Brice defined a partial wave function (PWF) as

A(E)=(1720P" [ dk [ dk, [, "dke’ TR (8)

where T’ is a point on the plane relative to one of
the colliding partners and (k) the Fourier
transform of the electronic wave function for a
given orbital. The motion of the plane, as projectile
and target approach each other, is accounted for by
ko. A direct consequence of this is that the PWF
will only consider those electrons whose velocity al-
lows them to reach the plane and hence contribute
to the flux. In terms of the PWF the flux is given as

¢=_i £ OAL A%,
2m * oz * a3z
—2ikg | Ay |2 |dxdy . 9)

I
Using this expression in Eq. (3) and integrating
over all impact parameters (including the zero
value), the low-energy contribution to the
electronic-stopping cross section becomes14

9P
3z

u<<ersf. 10
It is worth mentioning at this stage that Eq. (10)
is the lowest-order term to a more general depen-
dence of S, on u (see Ref. 8). Equation (10) gives
the explicit dependence of S, on the electron distri-
bution through o(k). Ongmally, Brice employed
simple hydrogenic orbitals to obtain a closed expres-
sion for S, as

S, =—8hu [ dk, [ dk, [ dk.k,
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S, = —128(N, +N,)fuag/15Z s 11)

with N|,N, the number of electrons for projectile
and target, respectively, and Z . a parameter adjust-
able to experiment; a is the Bohr radius. More re-
cently, it has been shown'* that the Z ¢ parameter is
obtained from first principles when more realistic
descriptions for the atomic wave functions are used.

III. DETAILED ANALYSIS

A first look at Eq. (7) could lead us to conclude
that the only degrees of freedom introduced in the
computation of S, are contained in the parameters a
and b. However, it has been shown in I and II that
Cheshire’s modification is extremely sensitive to the
accuracy of the electronic wave functions and to the
way in which the average speed of atomic electrons
is described. In this section we make an exhaustive
analysis of all the factors that influence the predict-
ed values for S, according to Cheshire’s modifica-
tion.

A. Sensitivity to the atomic wave functions

The original Firsov model contemplates the elec-
tronic distribution of the colliding partners as due to
the free Thomas-Fermi atoms. If we are to consid-
er, however, the detailed electronic structure of pro-
jectile and target, we must establish the limits to
which such a study must be carried out within the
spirit of the original model. From this point of
view, since the Firsov model was originally designed
to describe changes in internal energy of the collid-
ing partners on a statistical basis, i.e., assuming a
continuous distribution of electronic energy states,
we shall not attempt to account for effects of a pure
quantum origin such as inner-shell promotion

mechanisms or processes requiring a more funda-
]

mental analysis based on molecular-orbital theory.'’
We shall, therefore (consistent with the fundamental
Firsov concept), consider that the atomic structure
of projectile and target can be described by the free-
atom spatial electronic distribution. For solid tar-
gets we expect that the electronic distributions are
different from those in the free-atom case; however,
we shall still consider the free-atom wave functions
as a reasonable description in order to explore the
scope and predictions of the Firsov model.

Let us describe an atomic orbital as the linear
combination of Hartree-Fock-Slater (HFS) orbitals:

WD=3Cr e TH YRR, (12)
14
where
C, =126, /(2n,]2a, (13)

and a,,£,,n, are tabulated quantities given by
Clementi et al.,'® Y¥ being the usual spherical har-
monics.!” Regarding the rectilinear trajectory ap-
proximation, and in terms of these last two expres-
sions, it may be easily shown that Eq. (7) becomes

Iab)=(1/4m3,C,C, [ ~r*~le~"(r*—a??) dr ,
P9

(14)
with

v=n,+ng, N=§,+&; . (15)

Although the integrals that appear in Eq. (14)
may be evaluated analytically, it is convenient to re-
tain their explicit expression for all practical pur-
poses (see below). The contribution to S, from orbi-
tal A of either projectile or target is obtained by sub-
stituting Eq. (14) into Egs. (2) and (3) which after
little manipulation becomes

52 =(amu /2a)0, (0]} * T C, Coa*+ 03 e (v, 1;B) (16)
P9
where
J(v,y;B>=fo°°(B+1)“+2e—7ﬁ [fow(P-#1)"“le“(ﬂ+')””(p2+2p)l/2dp dp (17)

and the following definitions hold:
vy=mnaby, B=b/by—1, p=r/aby—1, (18)

v and 7 being given by Eq. (15). The integrals
J(v,7;B) have been evaluated numerically in I and II
using a 15-point Gauss-Laguerre procedure.

Several authors have used a minimal-basis repre-
sentation for the atomic orbitals in Eq. (16) and it
has normally been accepted that the predicted values
of S, within this representation are reasonably good.

However, when more accurate wave functions are
used, a strong dependence of the predicted values for
S, on the choice of basis set is observed as shown in
Fig. 1, where we plot S, for different neutral projec-
tiles incident on carbon (v =0.50v,) using different
degrees of accuracy for the wave functions into Eq.
(16).

The major problem with the minimal-basis set is
that it yields a reasonable value for the energy of the
atomic orbitals while providing an inadequate



25 CARBON TARGET
v=0.5yv,, by=2.50a,,2=0.5

MINIMAL BASIS
SINGLE Z
DOUBLE Z
EXTENDED BASIS

20 |-

> x e ©

S.(10™ eV cm?/atom)

| S— 1 —_— 1 .l

5 10 15 18
PROJECTILE ATOMIC NUMBER

FIG. 1. Sensitivity of the predicted values of S, to the
choice of basis set using the rms speed for the electrons
and the rectilinear trajectory approximation.

description of the electronic distribution. This, to-
gether with the orbital velocity, represents the deter-
mining factor in the evaluation of the flux using
Cheshire’s treatment. The effect of the choice of
basis set on the electronic distribution is illustrated
in Figs. 2(a) and 2(b) where the radial charge distri-
butions of the 4s and 3d orbitals in Cu(3S), calculat-
ed using a minimal (M), single-zeta (SZ), double-
zeta (DZ), and extended (E) basis set, are plotted.
The shift in the maximum for the radial charge dis-
tributions as a function of the accuracy of the wave
function is clearly observable. The less accurate
wave function tends to describe poorly the shape
and extent of the most external orbitals, which hap-
pen to be the most important in the evaluation of
S,.'* It can thus be expected that part of the
discrepancy in the theoretically predicted values for
S, when using different degrees of accuracy is due
to their different description of the electronic densi-
ty.

Let us concentrate for the moment, on the in-
tegrals I(ab) appearing in Eq. (14). As pointed out
by Komarov et al.'® these integrals correspond to an
“incomplete and distorted normalization” of the
wave function, the degree of distortion being
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FIG. 2. Radial charge distribution of some orbitals of
Cu(3S) calculated with different accuracies for the elec-
tronic wave function. (M) minimal basis, (SZ) single
zeta, (DZ) double zeta, (E) extended: (a) 4s orbital, (b) 3d
orbital.

governed by the product ab (note that this product
also appears in the limits of integration). Figure 3
shows a plot of I(ab) for the various basis sets for
the case of the 3d orbital of Cu(3S). The strong
dependence on the choice of accuracy for the wave
function is evident at the larger values of ab. More-
over, we could match the values of I(ab) for the
minimal- and extended basis set by choosing dif-
ferent values for product ab in the two cases. This
explains why the use of accurate wave functions in
the calculation of such integrals demands a different
value for ab with respect to the calculations that
employ minimal-basis sets. This is partly respon-
sible for the fact that some authors have used
ad hoc minimum impact parameters in their calcula-
tions. > 18
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TABLE 1. Brice’s Z. parameter for some ion-target
combinations.?

MINIMAL BASIS . A Target Rb
______ SINGLE 7 Projectile C Ne

-~—=- DOUBLE Z Cc+ 1.530 2.010 1.872
EXTENDED BASIS (1.469) (1.962) (1.764)

I(ab)/1(o0)

08 -

Ne* 1.871 2.291 1.977
(1.804) (2.242) (1.867)
Rb* 1.974 2.134 1.999
(1.947) (2.116) (1.926)

2Values in parentheses obtained with minimal-basis sets
(see text).

0.4 }—

So far we have found that the apparent sensitivity
of Cheshire’s approach to the type of wave functions
is mainly due to the extension of the electronic dis-
tribution and the accuracy with which this can be
described. Interestingly enough, Brice’s treatment is
not appreciably sensitive to the choice of wave func-

0.2 -

N rcmemes

o 05 10 15 tions. Table I shows the value for Brice’s Z

ab(au) parameter for different basis sets in a few cases. As

FIG. 3. Behavior of the integrals I (ab) [Eq. (14)] as a
function of ab for different accuracy of the wave func-
tions (see text).

can be seen, very little difference is found (~5%)
between the values obtained using a minimal-basis
set and an extended basis.

B. Sensitivity to the average speed of atomic electrons

In their modification to the original Firsov model, Cheshire et al. and other authors>!! =138 replaced, for

simplicity, the Thomas-Fermi average speed of the electrons by the Hartree-Fock rms speed [see Eq. (5)]. Al-
though for a classical gas of particles we may expect no strong variations between average and rms speed, for
an electron gas the differences are quite important'® and, as a consequence, the predicted values of S, must de-
pend strongly on the use of (v) rather than (v?)!/? in Eqs. (6) and (16). We have shown in II that this is
indeed the case and in this section a detailed analysis of the reasons for such a behavior is presented.

The average speed for a given atomic orbital is given by

() =fi/m) [ ®3(K) | K | ®4(K)dry (19)
where @, ( K) is the Fourier transform for orbital ¥,(T) [see Eq. (12)], which explicitly reads as'*
- ~ mp—h
®,(K)=2/m)"%MKMY LR S (-1 C, 9 — (k2 £) AL (20)
P P
P

Substitution of Eq. (20) into Eq. (19), together with appropriate manipulation (see the Appendix), yields the fol-
lowing expression for the average speed (in units of v):

(V) =4A+ 1) |22 A (= 1)+t C,C e, D T T T (A + 2, A+ 1;E2,E2)
pq
-2
+ 3 CE3K(nyg, 06 7 |, 21)
P &h

with I(A,A+2,A+1; £5,£2) and K(n,,g,h;]) given in the Appendix by Egs. (A5) and (A9), respectively. D*? is
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a differentation operator defined as'*
Da.b 3¢ ab

ogr gl

(22)

On the other hand, introducing Eq. (12) into Eq. (5), the following expression for (v?)!/? is obtained:

(vi)V2=2'23 C,C(v—2)In " H{[AA+1 )—ng(ng—DIn*+vE,[26,ny —Ey(ny—ng—1 )—=2&nam1} , (23)
P

with 7,v defined by Eq. (15).

Table II shows a comparison between the values
of (v, ) and (v3)'7? as evaluated through Egs. (21)
and (22), respectively, for selected orbitals of some
atoms and ions. It is now evident that the large
differences observed between the average and rms
speed make Eq. (16) a highly sensitive function of
the choice of speed. Therefore in accordance with
the original theory, it is important that the average
speed is used. Moreover, Table III shows, as expect-
ed, that the values of (v, ) (and (v%)!/?) are strong-
ly dependent on the accuracy of atomic wave func-
tion. As an example, the (v) and (v?)!/2 for the
3s, 3p, 3d, and 4s orbitals of Cu(3S) are shown in
this table.

These results, together with those of Sec. III,
underline the importance of employing both the ac-
curate wave functions and the average speed for the
atomic electrons through all the calculations, if the
Firsov model as modified by Cheshire is to be used
in a consistent way.

C. Importance of the trajectory and position
of the Firsov plane

Up to this moment we have shown explicitly the
importance of the choice of wave functions in the
evaluation of S, within Cheshire’s modification to
the Firsov model. Moreover, the use of the accurate
wave functions together with the average speed for
the electrons removes the major inconsistencies

J

[1-V(R)/E4)dR

which had always been present in such calculations.
However, as pointed out before, all the previous dis-
cussion is based on the assumption of a rectilinear
trajectory for the projectile. We shall now analyze
how important the inclusion of the trajectory is in
the calculations of the inelastic energy loss in a sin-
gle collision to draw any conclusions on the validity
of the rectilinear trajectory approximation.

In order to evaluate the integral given by Eq. (2)
along the path, let us assume that the inelastic ener-
gy loss is small as compared to the total energy and
hence treat the trajectory as the elastic one, i.e., a
typical central-force problem.?’ The term ®-dR in
Eq. (2) may be related to the dynamical variables
through the orbit equation and it may be shown that

poll1—V(R)/E,4)dR
[1—V(R)/Eq—b%/R¥\2’

E-dR= (24)
where 1, is the projectile speed in the laboratory
frame, b the impact parameter, and V(R) the pair-
wise interatomic potential between projectile and
target. E; stands for the relative kinetic energy:

Ereleomp/(mp+mT) y (25)

with m,,my the projectile and target atomic mass,
respectively, and E, the projectile initial kinetic en-
ergy in the laboratory system. Introducing Eq. (24)
into Eq. (2) the inelastic energy loss from a given
atomic orbital A, with population w,, of either pro-
jectile or target reads as

exb,Ey)= %muow;‘(vk ) fR: T

—V(R)/Ey—b%/R?*]!?

[ ¥nda (26)

with R, the distance of closest approach in the collision evaluated through the condition

1—V(R)/E 4 —b%/R3=0.

27

Following Latta and Scanlon?' we may remove the singularity in the integral over R in Eq. (26) by adopting

the variable xk where

k=(1—Ry/R)'?.

(28)

Introducing the HFS wave functions [Eq. (12)] and after integrating over the Firsov plane, Eq. (26) reduces to



2410 CRUZ, VARGAS-ABURTO, BRICE, ALONSO, AND ARMOUR 27

1 1=V(Ry/(1—kM)E ' (1—k*)"2dk S (v,n,0)

€x(b,Ey)=(1/2b)mooR 3w {vy ) fo 77 (29a)
2k ————[V(Ro)— V(Ro/(1—k?)
K + szzErel[ 0 0
with
s % (v—=1) | aRo | s—n,—n
FLv,n,a)=3C,Coexp[—naRy/(1—k)] ¥, ——— | —— P, (29b)
. X'} s=0 s l_K

where v,n are given by Eq. (15) and a denotes, as
before, the fractional position of the distance be-
tween projectile and target where the Firsov plane is
located.

The total inelastic loss due to projectile and target
is thus the sum over all occupied orbitals of both
systems, i.e.,

€(b,Ey)= [zq] + [ze;;] (30)
A A t

(where p represents projectile and ¢ represents target)

and the electronic-stopping cross section may then

be evaluated through Eq. (3).

Equations (29a) and (29b) should be regarded as
the most general expression to obtain the inelastic
energy loss in a collision within the Firsov model
and, from this moment, they will constitute our
working equations in order to proceed with our
analysis. We first note that the quantity e(b,E,) is
dependent on the kind of interatomic potential used
to describe the binary interaction and also dependent
on the position of the Firsov plane. It is therefore
pertinent to analyze how sensitive it is to the dif-
ferent choice of these quantities, since this will have
direct consequences in the evaluation of S,.

P

TABLE II. Average and rms speeds for some atoms
and ions.?

System Orbital (v) Vrms
H s 0.849 1.000
Ar 1s 14.789 17.554

2s 3.942 7.085
3s 1.026 2.762
2 6.155 6.919
3p 1.713 2.395
Li* 1s 2.249 2.690
Nat Is 8.319 10.609
2s 2.241 3.699
2p 2.976 3.437

3A1l quantities in units of bohrs.

1. Sensitivity to the interatomic potential

Evidently, the quantity of central importance in
any trajectory calculation is the pairwise interaction
potential. In the past, the most commonly used po-
tentials have been of the Bohr?? or Thomas-Fermi
type® or some improved version of them.?* Howev-
er, it is worth pointing out that while the Thomas-
Fermi potential overestimates the interaction for re-
latively large separations, the Bohr potential un-
derestimates it, and in a way we should consider
these as two extreme cases, as pointed out by Kal-
bitzer et al.?> Only recently has attention been paid
to more elaborate and realistic descriptions of the
repulsive potential based either on ab initio SCF
(self-consistent-field) calculations?®~2® or on approx-
imations made through density-functional ap-
proaches employing the HFS atomic orbitals.?’~>!
To analyze the sensitivity of the trajectory calcula-
tion to the type of interatomic potential we shall
evaluate €(b,E;) using the Bohr, Thomas-Fermi-
Moliere (TFM), and realistic potentials, respectively.
The Thomas-Fermi-Moliére potential is given by

Viem(R)=(Z,Z,e?/R)X1tem(R /a) , (31)

where, as usual, Z, and Z, represent the atomic
number of projectile and target, respectively, and

X(R /a) is the Moliére screening function®*:

X1em(R /a)=0.35¢ ~0-3R/6_.(,55¢ — 1.2k /a

+0.10e ~6R/2 | (32)
where a is the Thomas-Fermi screening length:
a=0.8853a4(Z33 +237°)"1/2 (33)

For the Bohr potential we shall use the expression
Vg(R)=(Z,Z,e2/R )e ~0-8853R/a _ (34)

Finally, for the realistic potential we shall use the
results of either ab initio calculations or the near-
ab initio quality calculations of Gordon and Kim?%
which are based on the statistical model of the atom
but employing HFS wave functions to describe the
electronic density of the atom, following the pertur-
bative approach first made by Lenz and Jensen.’>33
Although these potentials do not have an analytical
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TABLE III. Average and rms speeds for selected orbitals in Cu(3S) for different basis sets.?

Orbital Minimal Single Z Double Z Extended
3s 2.017 1.042 0.959 1.662
(2.325) (5.918) (5.721) (5.731)
3p 3.133 3.328 3.711 3.799
(3.354) (5.281) (5.392) (5.403)
3d 4.098 3913 3.7 3.726
(4.400) (4.202) (4.342) (4.338)
4s 0.472 0.380 0.535 0.589
(0.552) (0.718) (1.081) (1.185)

*Values in parentheses are for v,,s. All quantities in units of bohrs.

expression, it has been shown recently?’ that they
can be properly parametrized into the screened
Coulomb plus Born-Mayer expression:

V(R)=(Z,Z,e*/R)(ARe Rt ¢ —FR) | (35)

where the quantities 4,c,3 are parameters obtained
through a least-squares fit to the numerical values.
In Figs. 4(a), 4(b), and 4(c) we show the potential en-
ergy curves according to the different descriptions
discussed above for some particular examples. As is
apparent from these figures the parametrization
given by Eq. (35) describes reasonably well the real-
istic potential (less than 10% difference on the aver-
age) for a relatively wide range of internuclear
separations.

To investigate the sensitivity of € to the inclusion
of a trajectory calculation as well as to the choice of
interatomic potential, we have first kept the position
of the Firsov plane fixed half-way between projectile
and target (@ =0.5 in Eq. (29)] and evaluate the in-
elastic energy loss as a function of the impact
parameter through Egs. (31)—(36) for the different
interatomic potentials and energies. Figures 5(a)
and 5(b) show the results of this calculation for
Li*-Ne and Na*-Ne, as an example. As the reader
must be aware from this figure, the importance of
the nonrectilinear trajectory calculation becomes evi-
dent for very low energies (<2 keV) and very large
differences (~500%) are detected between the
evaluation of € with this approach compared to that
using a rectilinear trajectory approximation [V =0
in Eq. (29)]. Furthermore, the sensitivity of € to the
particular type of potential becomes higher as the
energy is reduced and, as expected, the long- (short-)
range character of the Moliére (Bohr) potential is re-
flected by the slow (fast) convergence of the corre-
sponding curve to the V' =0 case. Interestingly
enough, the rectilinear trajectory approximation
turns out to be very good for energies higher than
about 10 keV for all practical purposes, as was veri-

fied also for other cases. This fact justifies widely
the use of a rectilinear trajectory approximation in
order to describe the inelastic energy loss, within
this model, in gas or solid-thin-film transmission ex-
periments. For range studies, however, we should be
aware of the increasing importance of the trajectory
and thus accurate interatomic potentials should be
used as slowing down takes place in order to proper-
ly account for the inelastic energy losses, as pointed
out by Wilson et al.>* for the case of nuclear stop-

ping.

2. Sensitivity to the position of Firsov’s plane

So far all the calculations have been done keeping
the Firsov plane at the half-way position, regardless
of the type of systems involved in the collision. By
these means the importance of the interatomic po-
tential was indicated and the validity of the rectilin-
ear trajectory approximation confirmed for energies
above ~10 keV. Let us now study quantitatively
the importance of the location of the plane in the
calculations. To do this, a particular interatomic
potential has been selected; in this case, the Moliére
potential; and different estimates for the position of
the plane have been used in the calculations.

For any interatomic distance, a corresponds to
the fractional position between the colliding partners
where the atomic potential is the same for the elec-
trons of projectile and target. This will define the
region of “influence” of each of the systems, divid-
ing the space into the two physical regions necessary
in the flux calculation.

Rather than using an approximate analytical
atomic potential, like that proposed by Green
et al.,*® for example, we shall use the HFS wave
function given by Eq. (12) to construct the electronic
density and solve Poisson’s equation to obtain the
atomic Hartree-Fock potential. Next, the parame-
ters a and a’ =1 —a, which define the distance from
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FIG. 4. Bohr, Thomas-Fermi-Moliere, and realistic in-
teraction potentials in the repulsive region for some cases:
(a) Ar-Mg ab initio (Ref. 28), (b) He-Be ab initio (Ref.
27), (c) Na*-Ne from Ref. 29(a). The parameters 4, a,
and B correspond to the best fit of Eq. (35) to the numeri-
cal values (see text).

the plane to target and projectile, respectively, are
obtained.

With the aid of Eq. (12) and after solving
Poisson’s equation for the radial charge density it
may be proven that the electrostatic potential due to
orbital A is

.|
W =—SC,C,———e™ ") , (36)
A(r) 5 P qnv+1r X

where

v (k=21 %G (gr)7 !
Thamlt 2T 2T

=0

(37)

and 7,v are as defined in Eq. (15). The total electro-
static potential at the distance r from the nucleus is
then due to the superposition of all orbitals, i.e.,

W(r)=JwWi(r), (38)
x

with w; the population of orbital A. The fractional
position at which Firsov’s plane is located between
projectile and target is then obtained at the point
where

Wy (r) =W, (r) |[R—r|), (39a)

where the indices p and ¢ stand for projectile and
target, respectively and R is the relative distance.

Note the implicit dependence of a on the integra-
tion variables in Eq. (29a). We are then bound to
evaluate a through Eq. (39a) for each integration
point along the trajectory. This amounts to consider
the Firsov plane as moving, as projectile and target
move relatively to each other. Since this calculation
becomes too time consuming, we decided to see
whether the motion of the plane was important or
not. For this purpose we calculated an average
value for a obtained as

1
<aHFS>— m—To

[, (39b)
"o

where a(r) is a minimax polynomial approxima-
tion®® to the numerically calculated a values as a
function of distance in the range 0.01a, <r < 8a,.

No appreciable differences were observed in the
values of e(ab) when the constant average value
(aurs) was employed instead of the full calcula-
tion, as may be verified from Figs. 6(a) and 6(b).
This result indicates that the motion of the Firsov
plane is not relevant in this approach. Figures 6(a)
and 6(b) also show the values obtained through the
use of the half-way plane criterion' and the criterion
proposed by Kishenevsky,”” which considers the
fractional position @, measured from the heavier
collision partner as

a,=[1+(Z,/Zg)'""*17 ", (40)

where Zy (Z;) is the atomic number of the heavy
(light) system.

Observe, for the particular cases shown in those
figures, how important the location of the plane be-
comes. In general, the criterion given by Eq. (40)
gives a good average description for the whole range
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Mg*-Be and O* — Be, the curve for ag=0.5 has been omitted in this last figure for clarity.
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of interest (up to about 20% difference with the
values obtained with a=0.5 or {(ayps)) and, in-
terestingly, the relative differences among the vari-
ous approaches appear to be independent of projec-
tile energy. Since the position of the plane is of such
relevance in the calculations we have estimated the
differences in its location when the projectile is ei-
ther a singly charged positive ion or a neutral atom.
Table IV shows the average parameters (ayps) for
both neutral and singly positive charged projectiles
along with the corresponding estimates from Eq.
(40). We note first that there are considerable differ-
ences (+10%) in the location of the plane when the
different charge states for the projectile are used.
On the other hand, the Kishenevsky criterion [Eq.
(40)] gives, in general, a reasonable estimate for the
position of the plane. This criterion will therefore
be used in the forthcoming analysis.

Note that the e curves for Lit-NeMg*-Ne,
O™-Be in Figs. 6(a) and 6(b) exhibit, in general, an
exponential behavior for relatively large values of
impact parameter (and, therefore, of distances of
closest approach) as first pointed out by Oen and
Robinson.”® However, the inclusion of shell struc-
ture in these calculations is apparent in Fig. 6(b), for
example, where the extended 3s orbital of Mg™
seems to be responsible for the still high contribu-
tion to € even for relatively large values of 5. This
trend is also observed in other colliding pairs and
has been previously pointed out by several au-
thors.'%

TABLE IV. Values for {aygs) and a, for several pro-
jectile target combinations.

Projectile Target (ayps)?® a,

Bet C 0.54 0.52
0.47)

Ne* C 0.41 0.52
(0.44)

Tit C 0.56 0.55
0.51)

ct Ne 0.49 0.52
(0.45)

Mg+ Ne 0.57 0.51
(0.62)

o+ He 0.54 0.56
(0.60)

ot (0] 0.45 0.50
(0.50)

Cu*t Cu 0.39 0.50
(0.50)

*Values in parentheses correspond to neutral projectiles.

IV. COMPARISON WITH EXPERIMENT

So far, we have found the importance of the vari-
ous quantities that enter the calculation of the in-
elastic energy loss (and, therefore, of S,) within
Cheshire’s modification to the Firsov model. We
shall now apply the theory (without any fitting
parameters) to evaluate the electronic-stopping cross
section for several cases and compare it with the ex-
perimental measurements reported in the literature.
This will provide information relevant to the scope
of the Firsov model as modified by Cheshire, when
all the quantities involved in the calculation are
evaluated consistently.

In all the calculations we shall use the extended
HFS atomic wave functions together with the aver-
age speed for the atomic electrons as well as the rec-
tilinear trajectory approximation. For this purpose
we have chosen the data from transmission experi-
ments through gaseous targets as well as thin solid
films (~400-A thickness). In order to be able to
compare the predictions of the Firsov model with
experimental measurements it is necessary to relate
the macroscopic experimental variables (i.e., target
thickness, gas pressure, detector solid angle, etc.) to
the average properties of the individual collision
events. In particular, multiple scattering often
causes a portion of the transmitted beam to lie out-
side the detector acceptance angle. The experiment
thus measures S, only for a selected subpopulation
of the transmitted particles. We take this effect into
account here by evaluating a minimum impact
parameter by, which is consistent with the experi-
mental geometry, i.e., particles which have collisions
with impact parameter less than b, suffer large-
angle deflections and are thus not counted.

Although the experimental measurements con-
sidered here all involve “thin” targets (i.e., ~400 A
for the solid targets, and equivalent thickness for the
gaseous targets), they are not sufficiently thin that
correlation effects are important.** Thus, we may
make a straightforward statistical analysis of the
multiple scattering suffered by the beam.

Let the root-mean-square scattering angle for the
individual small-angle collisions be defined as 0,
where

6, 6
0= [ *6%(0)sin0do/ [ " o(0)sing do

41)
with 64(by) a maximum scattering angle consistent
with the minimum impact parameter b.

In Eq. (41) o(0) is the differential cross section
for scattering into the solid angle sinf d6. Let 6, (x)
be the root-mean-square angular deflection of a par-
ticle beam transmitted through a target of thickness
x. Then 6, is related to 6, through the equation
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d 2 % : 2
E;BL=n fo 6°0(0)sinf dO =nb 0 , (42a)

where n is the target atomic density and o, given by
0
oo= [, 0(6)sin0 do , (42b)

is the total small-angle scattering cross section.

Equation (42a) is readily integrated for thin tar-
gets (i.e., assuming that AE is small so that o is not
a function of depth) to yield

0} =nogxb2, - (43)

If one identifies 6; with the detector acceptance an-
gle then, Eqgs. (41)—(43) can be used to determine a
value of 6. This is equivalent to fixing a minimum
impact parameter for the experimentally observed
subpopulation of transmitted projectiles.

Following the idea of near rectilinear trajectories
and using the impulse approximation for a binary
collision, it may also be shown*! that

14

R (R*—by?)~""%dR ,

E06rms =by fb:

(44)

where V(R) is the interatomic potential and E, and
0. are the projectile energy and individual scatter-
ing angle in the laboratory, respectively.

Equations (41)—(44) provide us with a useful
means to calculate the minimum impact parameter
necessary in the calculations of S, [cf. Eq. (3)], con-
sistent with the appropriate experimental conditions.
Dependence of the minimum impact parameter on
interatomic potential is also accounted for in the
near rectilinear trajectory approximation through
Eq. (44).

For thin amorphous and polycrystalline targets
we have considered the scattering cross section as*?

o,=mr?, 7~0.5n"13, (45)

where ¢ is the mean interatomic distance. For gase-
ous targets we used

o, =mb3, (46)

with b, the impact parameter, which in this case is
obtained self-consistently when Eq. (46) is inserted
into Eq. (44) (see below).

After little manipulation with the help of Egs.
(43)—(46), it may be shown that

(1.128)d =120 ~V8E (05 =Z,Z,e3f(by) , (47)
(kgT/Pmd)'?E)0% =Z,Z,e*bof(by),  (48)

where s and g stand for solid and gas targets, respec-
tively. kg is Boltzmann’s constant, T the absolute

temperature, P the pressure in the gas target
chamber, d the target thickness, and f(b,) a func-
tion of b, obtained after integration of the particular
interatomic potential used in Eq. (44). For the Bohr,
Moliére, and parametrized potentials [see Egs.
(31)—(35)], we obtain, for f(bg),

0.8853a 'K ,(0.8853b,/a) (Bohr) , (49)
a~'[0.35K,(0.3by/a)+0.55K,(1.2bo/a)
+0.1K(6by/a)] (Moliere) ,  (50)
aAdbyKolaby)+BK,(Bby) (parametrized) ,
(51

where K, and K, are the zeroth- and first-order
modified Bessel functions of the first kind,*’ respec-
tively. Equations (47) and (48) were solved numeri-
cally for by for the three potentials mentioned
above. Table V shows the results for some particu-
lar examples. Note that the Bohr potential gives
quite reasonable estimates for b, as compared to
those from the realistic potential, whereas the
Moliere potential gives systematically higher values
of by which is to be expected due to its long-range
character. In view of its simplicity and the fact that
it gives calculated b, values in reasonable agreement
with those obtained using more sophisticated poten-
tials, the Bohr potential has been used in the follow-
ing calculations. The use of the Bohr potential in
this case is, on the other hand, consistent with the
requirement of a short-range interaction in order to
consider uncorrelated events in the treatment of the
collision sequence, mainly in solids.

In the light of the previous analysis we have cal-
culated S, for several cases shown in Figs. 7—11. In
all the cases shown the corresponding values for b,
were obtained according to Egs. (47) and (48). Fig-

TABLE V. Some values of b, obtained for different
potentials according to Egs. (47)—(51) for solid and gas
targets.®®

System Bohr Moliere Realistic
Lit-Ne 1.24 3.87 1.55¢
Na*t-Ne 1.08 3.36 1.56°
He-Be 1.40 3.10 1.61¢
Ar-Mg 1.15 2.70 1.70¢
Mg-Ne 1.08 3.36 1.48°¢

2All values in a.u.

bI"’rojectilcg velocity v =0.9v,. For solid targets a thickness
of 300 A is assumed. For gas targets P=0.1 torr,
T =273 K, d =0.8m. In all cases the half detection angle
is 6, =0.165".

‘Potential from Ref. 29.

dPotential from Ref. 27.

‘Potential from Ref. 28.
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FIG. 7. Experimental measurements and theoretical
estimates for 200-keV oxygen ions incident on several tar-
gets.

ure 7 displays the results for 200-kev oxygen ions in-
cident on various targets (2 < Z < 18) along with the
experimental data and conditions taken from the
literature.**=*° For beryllium targets, the experi-
mental value for S, was obtained from range mea-
surements®® and therefore we used the value by=0
in the equation for S, to get an estimate, assuming
that the rectilinear trajectory approximation is still
reasonable for most of the individual collision
events, where the inelastic losses are still dominant.
For nitrogen and argon targets no theoretical esti-
mate was made due to the lack of information on
the experimental conditions.** Apart from the rela-
tively good quantitative agreement between theory
and experiment in this case, we note that the ampli-
tude of the oscillations in S, is well described when
proper distinction is made between solid and gas tar-
gets through Egs. (47) and (48). Also shown are the
theoretical predictions of Land ez al.*® who used the
rectilinear trajectory approximation, together with
the extended basis set, rms speed, and a fixed value
for by (=2.5 a.u.) for all the cases.

Figure 8 shows the theoretical estimates and ex-
perimental measurements* for several projectiles
(3<Z <12) with velocity v=0.9v, incident on

NEON TARGET
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FIG. 8. Theoretical estimates and experimental mea-
surements of the electronic-stopping cross section for
several projectiles (v =0.9v,) incident on neon.

neon. Our calculations lie systematically high with
respect to experiment. This may be partly due to
the fact that b, was evaluated using the Bohr poten-
tial, the short-range character of which makes it less
suitable than the realistic potential for describing
ion-gas collisions at the energies considered, as
shown in Table V for the neon target. This figure
shows also the results of Land et al. as a compar-
ison.

In Fig. 9 we show the experimental measurements
of S, in thin carbon films for several projectiles with
velocities v =0.41v,,**® and v =0.63v, (Ref. 51)
along with our theoretical predictions and those
from Ref. (50). Although some of the experimental-
ly observed trends are reasonably well described by
the theory, the agreement with experiment is similar
to that obtained by Land and Brennan®® using fit-
ting parameters. There are a number of features
which are clearly not explainable in terms of the Fir-
sov model. For the v =0.41v, case, the overall qual-
itative agreement appears to be better than that ob-
tained for the higher velocity but the quantitative
agreement, particularly for projectiles from neon to
phosphorous where differences between theory and
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FIG. 9. Theoretical estimates and experimental mea-
surements of the electronic-stopping cross section for
several projectiles incident on carbon targets. (a)
v =0.41vy; (b) v =0.63v¢; O, theory, this work; A, theory
from Ref. 50; X, experiment (Refs. 51 and 52).

experiment are as high as 60%, is significantly
worse. The results at the higher velocity for the
transition elements shown (21 <Z <30), while still
consistently high, represent a considerable improve-
ment over our previous calculations.” This is not
unexpected since the extent of the 3d and 4s orbitals,
which make the most important contribution to
S.,'* necessitate a larger value of b, than the fixed 1
a.u. used in the earlier calculations.

Figure 10 displays the corresponding theoretical
results as well as experimental data*® for various
projectiles incident on an aluminium target
(v=0.41vy). Here, there is good overall quantita-
tive agreement, although the shape is not too well
reproduced.

Finally, Fig. 11 shows the results of this calcula-
tion for singly stripped ions (v =0.68v,) channeled
in the (110) direction of a silicon single crystal
along with experimental data.’? In this case b, was
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FIG. 10. Electronic-stopping cross-section measure-
ments and theoretical predictions for several ions
(v =0.41v,) incident on aluminium.

set equal to the channel halfwidth (by=3.82 a.u.)
and € summed over the number of collisions per unit
path length. The positions of the oscillations are
qualitatively well predicted, but clearly the magni-
tude of S, is overestimated. One probable reason for
this is that the charge density within the channel is
much smaller than implied by the use of free-atom
charge distributions. This directional effect is not
present in amorphous materials where, on the aver-
age, we could superimpose free-atom charge distri-

20;
SILICON TARGET 110>

v=0.68 v,

Se (10" eV cm?/atom)
o

sH

: PROJECTI(_IS ATOMIC V\II?JMBER
FIG. 11. Experimental measurements and theoretical
predictions for several projectiles (v =0.68v,) channeled
along the (110) direction of a silicon single crystal. X,
experiment (Ref. 53); O, theory, this work.
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butions to account for the total charge density in the
material.

V. CONCLUSIONS

We have made an exhaustive analysis of all fac-
tors that could affect the predictions of the inelastic
energy loss within the Firsov model as modified by
Cheshire. Our findings can be summarized as fol-
lows.

(1) The results of calculations using this model are
highly sensitive to the choice of the wave function
and the speed of the atomic electrons. It is suggest-
ed, for the sake of consistency, that accurate wave
functions and the average speed should be used in
any calculations within the model.

(2) The nonrectilinear trajectory calculation was
found to be relevant only for very low energies ( <10
keV) and therefore the use of the rectilinear trajecto-
ry approximation is justified for projectile energies
higher than about 10 keV in the description of
transmission experiments. For the analysis of range
measurements the full trajectory calculation should
be used together with a realistic potential due to the
large differences (~500%) observed when the pro-
jectile energy becomes very low.

(3) We have given quantitative support to the
Kishenevsky criterion for the location of Firsov’s
plane and found that the motion of this hypothetical
plane is negligible for all practical purposes.

(4) To evaluate univocally the minimum impact
parameter involved in the calculations it is necessary
to take proper account of the experimental condi-
tions (target thickness, detection angle, gas chamber
pressure, etc.), and to utilize the appropriate intera-
tomic potential.

We have shown explicitly the role of the different
quantities that enter the calculations which should

be considered if any adjustable parameter is to be
used in this model. Overall, we find that using the
most accurate wave functions available, a proper
average speed, a minimum impact parameter based
on reasonable interatomic potentials, and locating
the Firsov plane at the saddle point of the total po-
tential seen by the electrons, the Firsov theory is ac-
curate only to within a factor of 2. However, the
relative values of dE /dx as functions of either Z,
(projectile atomic number) or Z, (target atomic
number) are reasonably well reproduced by the
theory (~10%). We, therefore, conclude that the
Firsov theory may be used with confidence to obtain
dE /dx for a given projectile target (Z,,Z,) com-
bination provided experimental data are available
for nearby values of (Z,Z,) in order to evaluate the
scale factor. The Firsov theory may also be useful
in comparing results for different (Z,,Z,) combina-
tions when only relative effects are important.
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APPENDIX

In this appendix we show the main steps followed to obtain the expression for (v, ) given in Eq. (21). The
average electron speed of orbital A is given (in units of vo=7%/ma,) as

() =47 [ 7 O}k, (K)dk

(A1)

where ®,(k) is the radial part of the Fourier transform given by Eq. (20). After substitution of this last equa-
tion into Eq. (A1) it may be shown that, for terms with p+gq,

+ —An,—A >
(00) pg =221 3 C,Cp(— 1) T "D ™" fo

P.q
where the differentiation operator D®? is defined as
pes_ 3 3
aEs 3L

k2 +3dk
(K2 +E M2k g M

(A2)

Introducing the new variable, u = 1/k?2, Eq. (A2) may be expressed more suitably as
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(k) ppg =22 3MPA+1) T, G, Cp(— 1)
pq

where

u*du

+nq+1 —-A-l,nq——l

(&1 (MA+2,A+ LELED], (A4)

IA+2,A+1E5eD= [

O (I+&uM A4 Egu!

(AS)

The integrals appearing in Eq. (A5) have been obtained explicitly in Ref. 14 and therefore we do not write
them here for the sake of space. We note now that, since ny,ng > A, then

p" Mg =0, (A6)
and therefore Eq. (A4) becomes finally as

(k3 ) psg =22 AN+ 1) 3 G, C,(— 1?0 Mg D 7 M T (A2, A4 1E2,€2) (A7)

p.q
For terms with p =g, it may easily be shown that
(kipaq=4 3 G 3 Kinpg b SME, PN, (A8)
4 8

where

T 18 +H(n, — MNP(n, —g N, —h)(2n, —h—g —h — 122" 87" A9

(n, —A—2g)!(n, —A—2h)ig!h\(2n, —g —h +1)!

and g,k are such that 0 <g,h <(n, —1)/2. Adding Egs. (A7) and (A8) we get, finally, the value for the average

speed for orbital A given in Eq. (21).
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