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Doubly differential cross sections of secondary electrons ejected from N, by electron im-
pact have been measured by a crossed-beam method. The incident energies used were 50,
70, 100, 200, and 400 eV. The energy and angular range of secondary electrons measured
were from 1.0 eV to one-half of the difference between the incident energy and ionization
potential and 12° to 156°, respectively. The present results have been compared with two
previous measurements and considerable discrepancies were found.

I. INTRODUCTION

Total ionization cross sections of N, by electron
impact have been measured by Tate and Smith,!
Rapp and Englander-Golden,? and Schram et al.}
The doubly differential cross sections (DDCS) of
secondary electrons from N, have been measured by
Opal et al.* and DuBois and Rudd.’ The energy
and angular range of secondary electrons in the mea-
surements of Opal et al. were from 4 eV to one-half
the incident energy and from 30° to 150°, respective-
ly. The range of incident energy used was from 50
to 2000 eV. DuBois and Rudd had an energy range
of secondary electrons from 4 eV to the difference
between the incident energy and ionization potential,
and an angular range of 10°—150°. The incident en-
ergies used were 100, 250, and 500 eV. Neither mea-
surements covered the low-energy range of the
secondary electrons below 4 eV from where a large
fraction (as much as 50%) of the ionization cross
section comes, and they do not agree with each other
in the shape of the DDCS’s of the secondary elec-
trons as well as the magnitude of the differential
cross section and the total ionization cross sections.
Both measurements mentioned above include disso-
ciative ionizations (N%) in addition to the direct-
ionization cross sections (N,*, N,?%, etc.). Crowe
and McConkey® have measured the dissociative and
single ionization cross sections of N, separately by
electron impact. The incident energies used were
from 50 to 300 eV.

This paper presents results of experiments in
which the DDCS’s of secondary electrons ejected
from N, have been measured by electron impact
utilizing a cross-beam method. The energy and an-
gular range of secondary electrons measured were
from 1.0 eV to one-half of the difference between in-
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cident energy and ionization potential and from 12°
to 156°, respectively. The incident energies used
were from 50 to 400 eV.

II. APPARATUS AND PROCEDURE

The apparatus used for the present measurements
is the same as that used previously for the measure-
ments of secondary electrons ejected from He,’
CO,,% and H,.” A detailed description of the ap-
paratus can be found elsewhere.” ! Briefly, the ap-
paratus consists of three subsystems: a rotatable
electron-beam monochromator, a neutral beam col-
limated by a fused capillary array, and an electron
detector fixed on the vacuum chamber wall. The ro-
tatable electron beam of a certain energy in a hor-
izontal plane intersects with the vertically collimat-
ed neutral beam at 90° in the interaction region. The
ejected electrons from the neutral beam are detected
by an electron channeltron multiplier after energy
analysis by 127° electrostatic energy analyzer. When
the neutral beam of N, was on the background, pres-
sure rose to 2X 10~3 Torr and the density of the
beam in the interaction region was estimated to be
three times larger than the background density.

The stray magnetic fields in the plane of the
measurements have been reduced to less than 10 mG
in all directions by three orthogonal Helmholtz
coils. The absolute energy scale was calibrated fre-
quently to within 0.05 eV with the use of the He res-
onance at 19.3 eV.

The procedure used to measure the DDCS is as
follows: the collimated neutral beam of N, is turned
on and the signal count is integrated for 10 sec for
each angle from 12° to 156° in 12° increments for
selected incident and secondary energy. The mea-
surements are repeated with the gas beam off to ob-
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tain the background counts. The difference between
the two signals DDCS of secondary electrons ejected
from the N, beam.

The correction of the final data for the path-
length effect due to the background density has been
made. The contribution of the background density
to total signal has been measured at 90° to be
(3412)%.

ITII. EXPERIMENTAL RESULTS

The DDCS of secondary electrons have been mea-
sured at the incident energies of 50, 70, 100, 200,
and 400 eV. The results have been calibrated among
themselves by normalizing the scattered signal
against the incident electron current and target den-
sity for each incident and secondary electron energy.
The normalized results have been placed on an abso-
lute scale using the elastic cross sections of N, at 50
eV measured by Shyn and Carignan.'!

The statistical uncertainty of data points is less
than 4% except for the secondary energies less than
3 eV at small angles (<24°). The upper limit of the
uncertainty at 12° was estimated to be 15%. There
is 7% uncertainty in intersecondary electron energy
calibration and 6% in interincident energy calibra-
tion. The normalization process of the present re-
sult to the elastic cross sections of N, at 50 eV in-
cluding the uncertainty in N, elastic cross sections
(+14%) contains +15% uncertainty. The path-
length correction has 2% uncertainty except at 12°.
Thus the resultant uncertainty of the present result
is +18%.

Absolute cross sections of DDCS for five incident
energies measured are shown in Tables I-V. The
present results contain the contributions from disso-
ciative ionization, single ionization, and multiple
ionizations.

Figure 1 shows a three-dimensional perspective
diagram of secondary electrons ejected from N, by
200-eV electron impact. Below 20 eV of secondary
energies, angular distributions are nearly isotropic
except for very low energies (<5 eV) where there is
a strong forward scattering. It is noted, however,
that the backward scattering stays nearly constant
from 1 to 12 eV of secondary electron energy and
decreases gradually as the second energy increases.
There is an increase in the scattering signal near 60°
above 40 eV and this is due to the momentum and
energy conservation of the colliding system.

Figure 2 shows the DDCS of 4.0 eV secondary
electron at 50-eV electron impact along with the re-
sult of Opal et al. Agreement between the present
result and that of Opal et al. is relatively good near
90° and very poor at extreme angles. This may be

TABLE III. DDCS (d % /dQ dE) of secondary electrons ejected from N, by 100-eV electron impact (in units of 10~2° cm?/sreV). (The numbers in parentheses

represent extrapolated data points.)

Ao/AE
(10~'® cm?/eV)

168

156

144

171.1

132

120
205.3

108

171.1

96
126.6
145.0
129.2
120.3
110.4

84
119.8
129.3
130.4
125.1

72
112.9
133.5
134.0
130.4
119.8
106.4

48

36
102.7
135.9
162.4
156.9
159.5

144.6

24
205.3

12
592.7
483.9

E; (eV)

20.44
18.29
18.03

17.11

16.08
14.51

12.84
10.50

~ O~~~ o~ —

198.5
135.0
145.5
137.6

99.2
129.9
126.1
123.2
118.6
105.1

95.8
127.4
156.4
158.8
148.1

1.0
20
3.0
4.0
5.0
6.0
8.0
10.0
12.0

133.1

140.0

149.8
128.6
122.2
112.0
101.6

207.5

138.8
134.8
127.3
119.7

136.4
130.4
116.3

104.8

231.8

365.8

193.9
202.7

330.6
266.7
199.0
174.4
148.4
117.1

100.0

123.0
112.7

113.9
102.5

99.4

135.2
126.3

153.8
138.1

126.1 105.7 98.7 91.2 86.0 83.0 87.0

109.6
102.6

83.9 74.2 70.2 69.8 69.1 73.2 77.8 86.9

98.3

123.1

9.55
7.12

4.98
3.22
2.40
2.20
2.18
2.18

81.9 74.3 64.8 59.8 59.1 62.9 69.4 77.6

96.6

115.6

89.0 72.6 62.4 50.3 429 38.7 40.2 45.3 51.2 57.5

98.0

15.0

30.9 34.0 395 45.6
17.2 21.1 25.6 29.8
13.2 15.4 19.1 23.5
11.1 13.7 17.7 214
10.0 12.7 16.1 20.6
9.83 124 16.0 20.3

27.1

16.5

11.6
9.52
8.54
8.03

26.7

16.5

11.7
9.44
8.21
7.63

29.1
18.2
12.9
10.4
9.00
8.34

78.2 59.9 49.5 41.5 35.1
56.3 40.6 339 274 21.8
41.6 321 25.5 18.6 15.3
449 30.7 229 15.9 12.6
52.1 321 23.0 16.3 11.3
55.5 33.3 224 15.2 10.7

94.5
67.1
59.6
69.5
84.0
94.7

20.0
25.0
30.0
35.0
40.0
42.2
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o'e

N2
SECONDARIES
Ej=200eV

599

0O 30 60 90 120 150 180
6 (deqg)

FIG. 1. Three-dimensional perspective diagram of
secondary electrons ejected from N, at 200-eV incident
energy.

due to the overcorrection of path-length effect on
the results of Opal et al.

Figure 3 shows the DDCS of 30 eV of secondary
electrons ejected from N, at 100-eV electron impact
along with the results of Opal et al. and DuBois and
Rudd. The results of Opal et al. have the same
trend described in Fig. 2 except for the larger DDCS

-16
10 T T T T T
N2
E;= 50.0eV
3 Es= 4.0eV
@ X PRESENT RESULT
» o OPAL et al.(4.13 eV)
> 7
[ = .
1
L
w
© X
(=]
©
5 *
- x X X x @
Yo 10" R .
o (e}
o o
109! 1 J ] |

90 120 150 180

|
30 60
9 (deg)

FIG. 2. DDCS of 4.0-eV secondary electrons ejected
from N, at 50-eV incident energy (dot is an extrapolated
data point) along with those of Opal et al.
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E;=100eV
Es= 300eV
—_ X PRESENT RESULT
e o OPAL et al.(30.5eV)
558 & DuUBOIS and RUDD
~
NE X
8 Sy
w X 04 o A ®
© o X 20 X
o x é o, & x
E 19 ) X x x 2 o o
b 1o i
[4V]
©
10-20 1 L | I Il
0 30 60 9 120 150 180
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FIG. 3. DDCS of 30-eV secondary electrons ejected
from N, at 100-eV incident energy along with those of
Opal et al. and DuBois and Rudd.

than the present results. The result of DuBois and
Rudd agrees with the present results at extreme an-
gles, however, their results are larger near 90° than
the present results.

Singly differential cross sections (SDCS) at 50-eV
electron impact along with the results of Opal et al.
are shown in Fig. 4. The general shape of the results
of Opal et al. agrees with those of the present re-
sults, but the absolute magnitude is smaller than the
present results by 50%, approximately. Figure 5
shows SDCS at 100-eV electron impact along with
the results of Opal et al. and that of DuBois and

-16
10 T T T T
N2 Ej=50eV
x  PRESENT RESULT
; o OPAL et al.
(]
NE XX x gy
x X
SIO-W— S0, x X -
w °®o0
s © o000
b
L]
IO'IS | L | |
(o] 5 10 15 20 25
Es(eVv)

FIG. 4. Singly differential cross section of secondary
electrons ejected from N, at 50-eV incident energy along
with those of Opal et al.
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Np Ej=100ev
— x PRESENT RESULT
g o OPAL et al.
~ X, a  Du BOIS and RUDD
N ’5536
§ 077 %ﬂao& B
w a8
N %
b 2
< Bna
g 8,0
g8 | | | 1
0 10 20 30 40 50
Eg (eVv)

FIG. 5. Singly differential cross section of secondary
electrons ejected from N, at 100-eV electron impact along
with those of Opal et al. and DuBois and Rudd.

Rudd. The agreement among the three measure-
ments is generally good in shape and magnitude.

Figure 6 shows the total ionization cross sections
of the present experiment along with other measure-
ments. The results of Tate and Smith agree with the
present results very well below 100 eV and, however,
above 100 eV their results are larger than the present
results by 10%, approximately. The results of
Schram et al. are in a right trend in shape and mag-
nitude with the present results above 400 eV. The
results of Opal et al. agree well with the present re-
sults except a low-energy impact (50 eV). The value
at the low energy incident is smaller than the present
result by 10% approximately. The results of Rapp
and Englander-Golden show smaller values below
200 eV and larger values above 200 eV than the
present results. The results of DuBois and Rudd are
substantially smaller than the present results (more
than 25%). Crowe and McConkey have measured
only N,* cross sections, and the difference between
their results and the present measurement is about
30% at 100-eV incident energy and smaller at other
incident energies. This may imply that this 30% is
the sum of a multiple ionization cross section and
dissociative ionization cross section at 100-eV in-
cident energy.

Finally, Fig. 7 shows the Platzman plot of the
present results along with semitheoretical results
analyzed by Kim.!? The detailed explanation and
advantage of the Platzman plot can be found else-
where.!>!3 Briefly, the ordinate of the plot is the ra-
tio of the singly differential cross section to the
Rutherford cross section Y(E), and the abscissa is
the ratio of R, the Rydberg constant, to E, the ener-

6
T T T 1 T T
TOTAL IONIZATION CROSS SECTION Ny
-% - PRESENT RESULT
5 p——— TATE and SMITH .
------ RAPP and ENGLANDER - GOLDEN
-~ —=SCHRAM et al.
— 4 }— o OPAL et al. .
NE & DUBOISeNdRUDD
5] O CROWE andMc CONKEY (Np*ONLY)
[$¢]
o 3
=
2 -
-
o S B B S B B
10 30 50 70 100 200 400 1000

E;(eV)

FIG. 6. Total ionization cross section of N, along with
the previous measurements.

gy transfer. In this plot, Y (E) approaches the effec-
tive number of electrons participating in the ioniza-
tion process for large transferred energy and Y (E)
also resembles E(df/dE) in shape for small E,
where (df /dE) is the density of the dipole oscillator
strength for ionization. The Platzman plot is very
effective in checking the consistency for experimen-
tal data on secondary electrons.
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FIG. 7. Platzman plot.
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Agreement between the present result and Kim’s
analysis which is based on the Born approximation
is generally good except near the middle of the ener-
gy region. This may be due in part to inadequacy of
the Born approximation in the low-energy region.
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