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Subshell formula for the Bethe-Born stopping approximation
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It is known that the subshell contributions to the coefficient of the O(lnE) asymptotic

term of the Bethe-Born stopping-number formula are not given correctly by partitioning the

squared matrix element defining this coefficient into a simple sum of its subshell contribu-

tions. This interesting result is extended to the second, or O(1), asymptotic term in the

stopping number. In this case, the subshell decomposition results in a sum of two expres-

sions. One is simply the subshell decomposition of the squared matrix element defining the

O(1) coefficient for the total system. The second term is more complex in form but sums to

zero, as it must, when summed over all subshells in the target. It is pointed out that this

second term and its summation requirement can be used to impose a useful restriction on

the construction of theoretical subshell corrections for the Bethe-Born formula.

The Bethe-Born approximation to the stopping
number 8 of a structurcless charged particle in-

cident on an atomic target,

8-(Z —q)ln(4IEfMR) —L (0),
is extremely useful because of its simplicity. Equa-
tion (1}is the first two terms in the asymptotic ex-
pansion of the stopping number for large collision
energies E. Here, Z —q is the number of electrons
bound to a target with nuclear charge Z, q is the
ionic charge of the target, m is the electron mass,
and M is the projectile mass. The quantity

L (0)= g f)ln(~&/R)

poses thc only requirement for detailed information
concerning the target structure. The sum in Eq. (2)
is over all target electronic states, including the con-
tinuum, fj is the dipole oscillator strength, EEJ is
the target's transition energy between the initial and

jth states, and R is the Rydberg energy unit.
The two coefficients Z —q and L(0) appearing in

Eq. (1) have been partitioned into their subshell con-
tributions for a number of purposes. This included
the important problem of constructing shell correc-
tions to the Bethe-Born formula (see Ref. 2, for ex-
ample) and facilitating the indirect computation of
I.(0). The subshell decomposition of the 0(lnE)
coefficient is intuitively expected to be

Z —q =S(0)=QS„(0),

where S(0) equals the target's dipole-oscillator-
strength sum over all states as defined by the
Thomas-Kuhn sum rule. '* S„(0) is the analogous
sum for some subset of occupied target states that

are considered equivalent, such as a shell or subshell.

Ho~ever, it was shown in Ref. 5 that this expecta-
tion is not correct and a more general form for this
partitioning is required. Shell-correction terms have

been computed by a number of investigators, 6 but a
general formula for the O(1) coefficient in Eq. (1)
was not displayed in these works.

The following discussion presents an extension of
the Ref. 5 results to the coefficient of the O(l} term
in Eq. (1), L(0). This coefficient is demonstrated to
have terms in addition to those that make up the
shell, or subshell, contributions to L(0). These addi-

tional terms in the subshell formula for the coeffi-
cient of O(1} sum to zero when summed over all oc-
cupied orbitals. This is, of course, necessary if Eq.
(1) is to be recovered. This requirement results in an

important restriction on the construction of shell

corrections for thc Bethe-Born stopping number.
A11 theories that attempt the construction of a

shell, or subshell, correction to the stopping number
reduce the matrix elements required in this compu-
tation to one-electron form. ' ' This is justified
if wave functions of the Hartree-Pock type are used
to describe the target (i.e., electron correlation is ig-
nored) and if the one-electron orbitals in this wave
function are orthonormal. Hence a one-electron
theory is assumed here in extending the results
presented in Ref. 5. However, the following presen-
tation differs in two ways from that given in Ref. 5.
A target with fully occupied orbitals is assumed in
Ref. 5. This specialization is avoided here by the in-

troduction of a factor constructed to preserve the
Thomas-Kuhn sum rulc for arbitrary orbital occu-
pation and to reduce to the fully-occupied-orbital
cases treated in Refs. 5 and 7. This factor has not
been derived by starting with a Hartree-Fock-type
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multielectron wave function and must be considered
ad ho@ in origin. The second difference concerns the
assumption made here that the target orbitals are
members of the same orthonormal and complete set.
Satisfaction of the Thomas-Kuhn sum rule is
guaranteed by this assumption. However, the fol-
lowing developments do not depend on this assump-
tion, and they apply to as broad a class of one-
electron orbitals as do the results of Ref. 5.

Here, the target is described by a single complete
set of orthonormal orbitals P (r) that could have
been generated, for example, in a Hartree or
Hartree-Fock-Slater treatment of the target. In a

nonrelativistic treatment, the collective index 0, indi-
cates the principal, the total angular momentum (I),
the angular momentum projection (m), and the
spin-projection (p) quantum numbers. The orbitals
are degenerate in m and p, so the natural choice for
an equivalent set of electrons would be those with
the same principal and total angular momentum
quantum numbers. This set has a degeneracy
d=2(2l+ 1), and its occupation is p. Subscripts are
added to these quantities to distinguish sets of
equivalent electrons. The one-electron matrix ele-
ment basic to stopping power is related to the di-
mensionless generalized oscillator strength

2

P(K;i,n)= [4bE(i,n)m/(Kaid„)] g g fdr P';(r)Q~„(r)exp(iK r)

Here, n (i) designates the principal and total angular
momentum quantum numbers for the initial (final)
set of equivalent electrons, ~(i,n) is the energy
difference between the n and i orbitals, and K is the
usual momentum transfer. ' The one-electron dipole
oscillator strength is P(0;i,n).

All matrix elements required to describe the target
stopping are constructed from the one-electron
quantity introduced in Eq. (3). For example, the
stopping number for the set of equivalent electrons
described by the index n is written here as

Xi[i,n)

B„=p„g(1—it; ) f, ,
dKK 'P(K;i, n),

l

where K, (Kt ) is the minimum (maximum) value for
the momentum transfer and h; =p;/d;. The sum, as
are all sums appearing below, is over all i values
needed to define the complete set f, including the
continuum. The sum of 8„,defined in Eq. (4), over
all n is the present one-electron approximation to 8
of Eq. (1). Other many-electron quantities required
below are written in an analogous fashion as

S„(0) p„g (1—h;)P(0;i, n)

and

L„(0)=p„g (1—h;)P(0;i, n)ln[~(i, n)/8] . (6)

I

The sum of Eq. (5) over n is shown below to be con-
sistent with the Thomas-Kuhn sum rule, mentioned
above, and the same sum over Eq. (6) is the present
approximation to I (0) appearing in Eqs. (1) and (2).
Note that the above definitions also provide the
one-electron sum rule

g P(K;i,n) =1

and the approximations

Kt(i, n) 2mM -'k,

K, (i,n) MM (-i, n)/(A'k),

apply if E =A k'/2M ~~hE(i, n).
The idea of a partial sum rule appears to have

been first introduced in Ref. 7. The Ref. 7 work and
its subsequent application in Ref. 5 assume all de-
generate orbitals are either full or empty. The
(1—h;) term is introduced here to avoid this restric-
tion and, as it was constructed from the require-
ments that (a) the present one-electron model repro-
duce the Thomas-Kuhn sum rule for the atom and
(b) it reproduce the full or empty (h;=1 and 0,
respectively) degenerate orbital results.

Elementary concepts from distribution theory
can be used to express 8„ in a form more convenient
for the following asymptotic developments. Equa-
tion (4) can be rewritten as

f&(i, tt &

B„=p„g(1—h;) f .
,
dt t 'P(t;i, n)

l

f&[i,n) t (i,n)

=p„g (1 k; ) lim f dt t—'P(t;i, n)+P(0;i, n)inc —f '
dt t 'P(t;i, n) P(0;i,n)lne—

&~0

where the change of variable t =fiK(2m') ~ was introduced for later convenience. The definition of the fin-
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ite part of a divergent integral, if P(t;i, n) satisfies some relatively weak restrictions, is

t~(t', n)
'

tr(i, n)

Fp f dt t 'P(t;i, n) = lim f dt t 'P(t;i, n)+P(0;i, n)lne
0 a~0

so Eq. (9) becomes
t (i,n)

8„=p„g(1 h;) —Fp f dt t 'P(t;i, n) Fp—f dt t '(lit;i, n) (10)

The manipulations used * to develop a large-E asymptotic expression for Eq. (10) requires interchanges of
the g,. operation, which allows EE(i,n) to approach infinity, the dt integration, and the limit as E approaches

infinity. A rather long but elementary argument using the techniques of Ref. 9 can be used to construct condi-
tions on P(t;i, n) that guarantee no asymptotic error of order O(1) occurs in making these interchanges. Such
conditions certainly exist, and this point is dismissed with the assumption that a realistic generalized oscillator
strength will also conform to these conditions. Neither Ref. 5 nor 7 discusses these questions.

The expansion for small t

P(t;i, n) =P(D;i, n)+a (i,n)t~+

where a is independent of t, provides the result

t (i,n) t (i,n)

lim Fp f dt t 'P(t;i, n) Fp f— dt t 'P(0;i, n) =O(E ')
0 0

if BE(i,n), appearing in the definition of t, (i,n), has any finite value. If this stipulation about t, (i,n) is ig-

nored, as effected by the interchange of operations discussed in the previous paragraph, one may rewrite Eq.
(10) as

tI(i, n)

8„-p„g(1 h; ) Fp — dt t 'P(t;i, n) —P(0;i,n)lnt, (i,n)
0

(10')

The integration limit tt(i, n) appearing in Eq. (10 ) is independent of i if Eq. (()) is used, so the integration and

summations operations can be interchanged, and
tI

8„-p„Fpf dt t ' —p„g (1—h;}(()(0;i,n)lnt, (i,n) —p„g h;Fp dt t 'P(t;i, n)
l l

tr

-p.»tt —p„g(I —h;)p(0;i, n)lnt, (i,n) —p„g h, Fp f dt t 'p(t;i, n)

results if Eq. (7) is used. Finally, the definitions of
Eqs. (5)—(8) provide

8„-[p„+S„(0)]l n[ iirkM '(2ni/8)'~ ]—L„(0)
tI—p„g h, Fp f dt t '(()(t;i,n) . (11)

l

The coefficient of the O(lnE} [ =O(lnk)] term is
identical to that found in Ref. 5. The definition of
Fp is provided between Eqs. (9) and (10).

Equation (11) is an asymptotic representation of
the Born stopping number including all O(lnE) and
O(1) terms for the equivalent electrons described by
n. Equation (1) must be recovered when summed
over all orbitals in the complete set describing the
target.

The required properties become obvious by use of
the general relationship between the oscillator
strength for the j-k and k-j transitions'

dj p(K;kj )= dkp(Kj, k), —

[

which is satisfied here [see Eq. (3)]. For any
nonzero contribution to the sum

g g p„h;P(K;i, n) = g g (p„p; /d; )P(K;i,n), (13)
n i

say i =k and n =j, there must be another term with
indices reversed. Equation (12) shows that this pair
of terms sums to zero, and hence Eq. (13) also
equals zero. This is sufficient to show that the sum
of Eq. (5) over n reproduces the Thomas-Kuhn sum
rule. Hence

Z —q =S (0)= g S„(0)= —, g [S„(0)+p„]

and the O(lnE) coefficient in Eq. (1) is obtained
from Eq. (11). The same argument shows that the
term following L„(0) in Eq. (11), i.e., the third term,
sums to zero as required. Note that tI is indepen-
dent of summation variables i and n. Finally, the n

sum of Eq. (11)equals 8 of Eq. (1) if the Eq. (6) def-
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inition is used.
The form presented in Eq. (11) for the orbital con-

tribution to the Bethe-Born stopping number is new,
and the existence of the third term in Eq. (11) has
been implicitly ignored on occasion when discussing
shell corrections; see Ref. 11 for an example. In
fact, this third term imposes an important restric-
tion on the construction of shell corrections. To
derive a shell correction from theory for a particular
set of equivalent electrons, it is necessary to have a
low-energy theory that is accurate at sufficiently
large E to overlap the small-E range of validity for
Eq. (11). If the relatively easy-to-calculate quanti-
ties S„and L„(0) are known, 3 then a value for the
third term of Eq. (11) is also known. When this
process is carried out for all sets of equivalent elec-
trons, the resulting n and sum of Eq. (11) must re-
vert to Eq. (1). This requires the numerical values
for the third term just generated to sum to zero. If

the low-energy and Bethe-Born theories describe the

same process to the same degree of accuracy, this re-

quirement should be satisfied. The present use of
Bethe-Born theory is generally accepted as accurate,
so if this requirement is not satisfied, the low-energy

theory can be renormalized to produce the required
result. This procedure has been carried out for pro-
ton stopping' with encouraging results.
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