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Electron capture from a hydrogenlike ion of large nuclear charge Zre by a bare ion of
charge Zpe moving with speed v has been studied using the strong-potential Born approxi-
mation to the amplitude. Under the conditions Zp << Z7 and Zpe? << #, it is shown that,
in comparison with the impulse approximation, the correct weighting of the target spectrum
of intermediate states in the strong-potential Born theory significantly alters the 1s—1s
cross section and at the same time makes peaking approximations to the amplitude more
realistic, even for low v. The specific cases of Z;=86, 10, and 18 are treated over the veloci-
ty range Z7/3 <#iv /e? <Zr/(0.3). Instituting a one-electron model, K-shell capture cross
sections and probabilities for protons on carbon, neon, and argon are calculated and com-
pared with experiment. The strong-potential Born theory is seen to give a good representa-
tion of the data. Total cross sections for 1s — 1s capture for Zp=Zr=1 are also presented.

I. INTRODUCTION

Although the study of electron capture in ion-
atom collisions dates from the early days of quan-
tum mechanics,’? a unified treatment covering a
wide range of energies has not yet emerged. Only
more limited results exist, for example, in nearly
symmetric collisions when a molecular picture is
adequate® at low velocities or a two-state approxi-
mation is valid at velocities close to the initial orbi-
tal velocity,® and at asymptotically high velocities
when a double-scattering mechanism dominates.’ In
the past few years, however, a promising framework
has evolved for inner-shell capture by a light bare
ion in which the incident velocity v is much larger
than the mean orbital velocity of the final bound
state. This framework, which is capable of treating
the intermediate and high-velocity regions, has been
developed by Briggs,® Macek and co-workers,”’
and others.'°

We can readily grasp the novel features of the
framework in terms of an electronic energy level dia-
gram.” Because the independent-electron approxi-
mation can be reasonably applied to the inner shells
of atoms, we consider capture from a hydrogenlike
ion of nuclear charge Z e by a bare ion of charge
Zpe incident with velocity v and for which Zp is
much less than Z;. Initially, the electron is bound
in the ground state of the target with energy ¢;, but
through capture it acquires the bound-state energy
€7 and the kinetic energy %mvz, with m the electron
mass. If we plot the energy spectrum of the target
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in the diagram of Fig. 1, then, since the final bound
electron-projectile system moves with velocity v rela-
tive to the almost stationary target ion, we can place
the projectile spectrum on the same diagram shifted
quards from the target threshold by an amount
smv?. Figure 1 is plotted to scale for Zr =4 and
Zp=1. The very small extent of the projectile spec-
trum as compared to that of the target is readily ap-
parent from the figure.

We describe the capture process as a two-step re-
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FIG. 1. Electronic energy-level diagram showing the
two-step picture of capture: (1) virtual ionization and (2)
attachment. The target spectrum appears on the left and
the final-state projectile spectrum on the right. The figure
is plotted to scale for Zp=1, Z;=4.
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action in which the electron is virtually ionized in
the field of the target and then becomes attached to
the projectile ion. Ionization provides the necessary
means for the electron gaining the kinetic energy
+mv? and momentum mV of the final state. The
novel aspect of the present formulation is the use of
target statm centered around the most favorable en-
ergy —mv + €; to mediate the capture reaction.
Such states have momentum of the order of m¥V.
The lower target spectrum is, moreover, seen to play
a significant role when the velocity decreases.

Because capture goes via intermediate states of
the stronger target potential and since the theory is
of the Born type, it is termed the strong-potential
Born (SPB) theory; it is unique among second
Born-approximation—type theories. The plane-wave
second Born-approximation theory,'! continuum in-
termediate state,'? and eikonal!® theories do not con-
tain the target bound states at all and approximate
the continuum states in various ways. The impulse
approximation® does contain the lower target states
but in an incorrect manner; for example, the bound
states have exponentially increasing wave functions.
None of these theories is applicable from an a priori
standpoint in the velocity range Zp <<v <Zr with v
in atomic units. No such restriction exists for the
strong-potential Born theory and yet it also agrees
with the third Born-approximation theory at asymp-
totically high velocities.”'* The SPB amplitude is
the only one containing the weaker electron-
projectile potential consistently to lowest order.” We
conclude that the SPB theory offers a comprehen-
sive approach to inner-shell capture for intermediate
to high impact velocities.'®

The purpose of this paper is to explore the impor-
tance of the target spectrum to the capture ampli-
tude as a function of the impact velocity v and
charge asymmetry. We do this by contrasting the
correct weighting of the virtual states in the SPB ap-
proximation with the inconsistent weighting in the
impulse-approximation (IA) theory. We further
present total cross sections and probabilities for K-
shell capture by protons from carbon, neon, and ar-
gon and compare with experiment. The SPB values
give generally good agreement with the data, partic-
ularly as the asymmetry increases. Qur results are
restricted to 1s—1s captures, but the formalism is
developed more generally.

The recent interest®!%'®~!8 in the theory of
inner-shell capture started with Briggs’s use® of the
impulse approximation in asymmetric collisions. He
realized that the IA results from keeping the lowest
term of an expansion of the full Green’s operator in
the natural parameter Zp/Zy. Subsequent calcula-
tions include those of Jakubassa-Amundsen and
Amundsen!®!® and Kocbach.!” These studies, cov-

ering a moderate range of charge asymmetry, show
that cross sections obtained using a peaking approxi-
mation differ considerably from exact ones with the
discrepancies increasing as the asymmetry decreases,
especially in the intermediate velocity region. For
example, at a velocity v=%ZT, the exact IA value
for the 1s—1s total cross section differs from the
peaking approximation value®%'© by ~30% for
protons on argon (Zr=18) and by ~50% for pro-
tons on neon (Zr=10) even though the expansion
parameter (Zp/v)* of the peaking approximation
equals 0.01 and 0.04, respectively, for the two cases.

Macek and Taulbjerg have shown,® however, that
the impulse approximation is derived inconsistently
by neglecting certain off-energy-shell terms of order
(Zr/v)* which become large for v below Z;. The
strong-potential Born theory corrects this problem
so that only errors of the order (Zp /v)* remain even
for low v less than Z; but much greater than Zp.
We further argue here, following the comments of
Macek and Alston,’ that the SPB amplitude has in-
herently better peaking qualities as a result of the
modified weighting of the intermediate states as
compared to the IA. This in turn implies that an
evaluation of the SPB amplitude using a less restric-
tive peaking approximation produces only relatively
small changes in the cross sections. Our study maps
the corrections as v and Z7 vary holding Zp con-
stant and interprets the corrections in terms of the
relative importance of the upper bound state and
lower continuum spectrum of the target. Since we
directly compare the SPB and IA cross sections and
because a variety of inner-shell models are used in
the literature, we present SPB and IA calculations
using identical models and identical approximations.

The impulse approximation and strong potential
Born amplitudes for capture into the ground state
can be reduced to three-dimensional integrals of the
form

A= [ d’p fENp?+2ZH)"F),

in which ¥ may be a complex function of p with
real part greater than or equal to 2. On account of
the conditions Zp/v <<1 and Zp/Z7 << 1 assumed
in the present treatment, the dominant contributions
to this integral arise from the region near the origin
where the integrand as a whole is peaked and where
f and y vary slowly. We can consequently simplify
the integrand by neglecting part or all of the P
dependence of f and y to obtain peaking approxima-
tions to 4.

Two separate peaking approximations are em-
ployed here. In one of these, which we call full
peaking (FP), all of the P dependence of f and v is
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neglected; the amplitude is
A= f(0) [ d’p(p?+Z3)~7O.

The second peaking approximation is less restrictive
and more complicated. Since f is more peaked for
P transverse to the projectile direction V than for p
parallel to it and since y can be expressed as a func-
tion of p, only, we introduce the transverse peaking
(TP) approximation'® in which we neglect only the
P. components of P in f; the amplitude is

ATPz fdplf(pzﬁ) fdzpl(p2+ZI%)—Y(sz) '

It will be seen that an important distinguishing
feature of 4™ is a more accurate representation of
the target spectrum near the ionization limit. The
IA amplitude in both the FP and TP approxima-
tions is obtained in analytic form thus allowing a
determination of which parts of the amplitude
change significantly between approximations.

We evaluate the p, integral in the transversely
peaked SPB amplitude by closing the integration
contour in the upper half-plane. This is necessitated
by the close proximity of the bound-state poles to
the real p, axis. An exact evaluation of the SPB am-
plitude would not alter the situation. Thus, the
method adopted here for calculating the amplitude
proceeds along the same lines as that needed for an
exact evaluation.

Jakubassa-Amundsen and Amundsen'® have also
performed improved SPB calculations but the level
of approximation used is not entirely clear. They
did not attempt a systematic determination of the
effects of the off-shell term and its connection with
the target spectrum. When v >Zy, both the SPB
and IA cross sections obtained using the transverse
peaking approximation should converge to the full
peaking cross sections as v increases, until very high
v where the Thomas peak® dominates and the devia-
tions may increase again (although their magnitudes
are small). This implies that the ratio of the corre-
sponding Jakubassa-Amundsen and Amundsen cross
sections should converge, within a factor of the or-
der of Zp/Z, to the Macek and Taulbjerg® factor

My (v) [ 2=2/[(14+V))(1+e~?™)],

where v=Zr/v. Their cross sections do not exhibit
this behavior until relativistic velocities are reached.
Our cross sections do converge in the expected
manner. At the lower limit of the velocity region
treated v~Z1/3 we do find better agreement with
the Jakubassa-Amundsen and Amundsen TP-FP de-
viations.

The plan of the paper is as follows. Section IIA
sketches the derivation of the SPB amplitude to a
form where the transverse and full peaking approxi-

mations can be introduced. We carry through these
approximations in Sec. IIB. A model potential is
introduced and cross-section formulas outlined in
Sec. IIC. Comparison of the SPB and IA cross sec-
tions for hydrogenlike targets is undertaken in Sec.
IITA. Model potential calculations are compared
with experiment in Sec. III B. Section III C contains
results for Zp=Z;=1. In Appendix A, we estimate
the contributions to the amplitude arising from the
region of intermediate momenta surrounding the
singularity of the electron-projectile interaction in
momentum space. Appendix B gives a justification
for evaluating the transverse peaking amplitudes by
closing the p, integration contour in the upper half-
plane.

Much of the development of Sec. I A relies on
Secs. II and IV of Macek and Alston.’ The prior
form of the capture amplitude is used and atomic
units (i=m=e=1) are assumed. In general, the
coordinate and momentum representations are relat-
ed by the equation

¢(F)=(21T)_3/2 f d3p a(—p*)ei’ﬁ-?
The norm |q| of a vector q is simply denoted gq.
With V the impact velocity, we use the notation g,0,
q, respectively, for the components of g parallel to
and perpendicular to V with 0" a unit vector. A
plane wave function is denoted

$e(P)=(2m) 32 KT

II. ANALYSIS

A. The strong-potential Born amplitude

Our model consists of a bare ion of charge Zp in-
cident on a hydrogenlike ion of nuclear charge Zr
with a velocity v >>Zp. We consider asymmetric
collisions with Z; much greater than Zp. The ini-
tial bound state ¢; of the electron and target (e +7')
has energy €;. After capture takes place, the elec-
tron and projectile form a bound system (e +P) in
the state ¢, with energy €,. We neglect the internu-
clear potential and any resultant effects such as pro-
jectile deflection following the arguments of Wick.!

In the total center-of-mass frame, initially P and
(e+T) have relative momentum K; and finally T
and (e +P) have relative momentum K;. Two
“average” momentum transfer vectors are defined
by the relations’

and
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which are accurate to order m/M; and m/Mp.
Here, we have m, Mp, and M as the electron, pro-
jectile, and target masses, respectively, and

a=Mr/(m+M7),

B=Mp/(m +Mp) .
]

Aspp=27)"2 [ dp $HHIVp (F—K) (93, 7.

where ¢ #(P) is the momentum wave function (com-
plex conjugated) of the final bound state and Vee P
—K) is the electron-projectile interaction in momen-
tum space.

The intermediate off-energy-shell target continu-
um wave function ¢ (T) satisfies the inhomogene-
ous wave equation

(He—e+imp3 (T)=—(e

with 7 arbitrarily small and positive and with H¢
the Hamiltonian for the Coulomb problem with
charge Z;. In Eq. (1), the off-shell energy of the
outgoing electron in the target frame is given by’

—5kDgp(® @

e=302+V-B+es . (3)

The capture amplltude Eq. (1) is an overlap in-
tegral between ¢ ¥ 7(P) and an excitation matrix ele-
ment including Vp, (P — —K). The matrix element
represents the virtual ionization of the electron into
the target continuum induced by the projectile ion.
Owing to the presence of ¢ f(p ), intermediate states
|

Aspp=2m"2 [ d’p § H(B)e™*T(1 +iv)A~"M(P)

with
Z m™v/2 _
M(P)=2Z, ‘_T —NI—ZW d 2 (st
Y |B-K|? o
and
A=(p*+2Z3) /42 +2V B +in) . 6)
The quantity v is defined by the equation
v=Zr /(0 4+2V-B+in)/?. )

We have retained the p? term of Vp. (P —K) because
of future considerations.

The comparable IA amplitude is obtained from
Eq. (4a) by relating the off-shell function ¢ (T) to
the on-shell function $3(f) which satisfies the
homogeneous version of Eq. (2). Specifically, we
have, when”?! e~ %kz,

The vector I_{i is equal to v;V with
=Mp(m +Mq)/(m+Mp+My) .

For the total system energy we have K?/2v; +e€;.
Macek and Alston have shown’ that the SPB ap-
proximation to the capture amplitude is given by

)|l TR0 g.7)) (1)

I

having momentum mV + P with p <Zp produce
the major contributions to the amplitude. Thus, in
Eq. (1), we have the mathematical expression of the
schematic picture of Fig. 1 with capture being relat-
ed to ionization.

The matrix element involving the off-shell wave
function can be reduced to a one-dimensional
parametric integral following Kelsey and Macek.?
Macek and Alston’ evaluated this integral and ap-
proximated the result by making use of the condi-
tions p <Zp and Zp <<v. The capture amplitude is
then taken to be primarily a sum of contributions
from the reglon P~0. But since Vp,(p K) is a
factor in the P integrand peaked around p= K, the
question arises as to the magnitude of the contribu-
tions to the amplitude from the region p~K. It is
shown in Appendix A that these contributions are of
the order (Zp/v)? or (Zp/Zr)* and are therefore
negligible.

When terms of the order (Zp/v)* are neglected,
the SPB amplitude for an initial 1s state is given
from Macek and Alston’s Eq. (4.17) in the form

(4a)
(p—iv)*+K*4+25-(J —ipd) -
2, 72 ®
p+J
T
YD) =A™ 2D (1 4iv)g (T, ®
where
=—(k24+X)/4X?, iv=Zr/X | ®)
Here,

X=[—-2e+in)]'"?

with ReX > 0. The impulse approximation does not
include the factors multiplying ¥3:(T) in Eq. (8). A
comparison of Eq. (8) and Eq. (4a) thus gives the IA
amplitude as

An=02m" [ dpHEM(P), (4b)



2346 STEVEN ALSTON 27

where terms of order (Zp /v)* have been dropped.

Equations (4) can apparently be derived directly
from Eq. (1) by substituting Eq. (8) and performing
the well-known integral

($3(D) |97 | $(P))

This procedure in no way justifies the statement that
Agpp Eq. (4a) is accurate to order (Zp/v)%; however,
Eq. (8) does succinctly relate the SPB and the IA ap-
proximations based on the small value of A. That
is, because A is of the order of (Zp/v)?, the reduction
of Eq. (1) to Eq. (4a) follows and implies that errors
of order Zr/v are introduced in the IA amplitude
Eq. (4b).

The equivalent impact parameter form of the IA
amplitude Eq. (4b) was evaluated exactly by
Jakubassa-Amundsen and Amundsen.!®!® A similar
calculation of the SPB amplitude Eq. (4a) is compli-
cated by the additional off-shell factor and is a for-
midable problem. On the other hand, we can evalu-
ate both amplitudes using the same approximation
conditions to determine relative contributions of the
upper bound states and lower continuum. We there-
fore pursue an approximate evaluation of the ampli-
tudes using the transverse peaking approximation
and then compare with the full peaking values.

B. Approximate evaluation of the amplitudes

To evaluate the amplitudes Eqs. (4) we use the
wave-treatment form of the simplification employed
by Jakubassa-Amundsen and Amundsen'® and by
Kocbach.!” With the use of the relation

K42, =J"+2¢;
|

and taking into account the u differentiation, the
factor M (p) is seen to be inversely proportional to
K*|K—P|% accordingly, |A(K,)| decreases rap-
idly as K, increases. Here, 4(K,) is either of the
two amplltudes Aspp(K,) or Aja(K;) and K2
=K? K In the case of protons incident on argon
at 12 MeV, the full peaking approximation where
M(P)=M(0) and v=Z/v in Egs. (4) gives’

|A(K,)/A(0) |*~ 5
for K, ~2|K,| and
|A(K,)/A(0) |*~ 5

for K;=3|K,| for both A[5(K;) and Agpp(K)).
Similar behavior exists for the amplitudes even at
lower energies. For 3-MeV protons on argon, the
corresponding ratios are 2‘0 and 4.

Since our goals are to simplify the P integral of
the amplitudes and to obtain a less restrictive ap-
proximation than the full peaking one, we use the
above discussion to write our approximate ampli-
tudes by neglecting terms of the order

|BrKy| /| K |
and
pi/IK |
so that
M(B)=M(p,?) .

Here, we also assume the condition p <Zp <<v of
Sec. ITA. This simplification allows the P, integral
to be evaluated analytically. When the final state is
1s, Egs. (4) become

e™?I'(1+ivIM (p,?)

SPB_8(7T3ZP)V2 f dp,

and
M(p,l?)

AR =8(732Z3)12 )
f 3+z,%

(P2+Z3)" (1 +iv)[4(w?+2vp, +ing)] "

(10a)

(10b)

The superscript TP denotes transverse peaking as terms involving p l-I_i | are neglected. Note also that the final

state 1s designation is suppressed.

We perform the p, integrations in Egs. (10) by closing the integration contours in the upper half-plane. The
contour used for the SPB amplitude is shown in Fig. 2. For the IA amplitude, a large semicircle is added.
Reasons for closing in the upper half-plane and a discussion of the singularity structure of the integrands in

Egs. (10) are presented in Appendix B.

Using the Cauchy-Goursat theorem and neglecting certain contributions following the discussion in Appen-

dix B, Eq. (10a) is expressed as

e™ I (1+ivIM (p,0)

ARy =—8(r°Z2)' [ _dp,

(p2+Z3) (1 +iv)[4v? +2up,)]

(11a)
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FIG. 2. Closed contour used for the p, integration in
deriving the transverse peaking SPB amplitude Eq. (11a).

where I' is the contour going around the branch cut
taken from p,=iZp to i » and where Egs. (5) and
(6) are used. We evaluate Eq. (11a) numerically.
From Cauchy’s residue theorem, the corresponding
IA amplitude is given in the simple form

AR =8(7°Z3) *M(iZp0) (11b)
with
V=ZT/(U +IZP)

and M defined in Eq. (5).

For comparison purposes, we use the capture am-
plitudes obtained when M(P)=MI(0) and v=2Z7/v.
This restrictive peaking approximation, when substi-
tuted in Egs. (10), leads directly to the amplitudes®®

—2iv 1
V4 e™/ (= +iv)
AFP =8( 523)1/2 _ﬂ __—2 M(O)
Skp =5\ <p 2v Va(l+iv)
(12a)
and
ATY =8(7°Z3)*M(0) . (12b)

The fact that A1+ and A} are given analytically al-
lows an isolation of that part of the IA amplitude
which varies significantly from one approximation
to the other and thus to determine which part of the
physical mechanism is modeled differently between
the two approximations. We pursue this point when
discussing the effects of the target bound states.

C. Model potential and cross-section formulas

Section II B dealt with capture from a hydrogen-
like target ion. To proceed with inner-shell capture,
we introduce, following the discussion of Macek and
Alston,’ the independent-electron model using the
scaled Coulomb potential

Vs=—Zs/r+(Z3/2+€p)

to approximate the exact one-electron K-shell poten-
tial. The scaled charge Zg is defined after Slater??
and the experimental binding energy €z for the tar-
get K shell is taken from Krause.?> Modifications of
the basic formalism are straightforward as they in-
volve Z going to Zg and the use of the altered rela-
tion

J?=K>+2ep—¢s) ,
where
K,=— —;—v-f-(eB —€7) /v .

In general, the possibility of capture is greater in the
model potential picture since the electron is less
tightly bound and moves in a screened Coulomb po-
tential as represented by Zj.

The total capture cross section for an impact velo-
city v is obtained by integrating the amplitude
squared over all transverse momentum transfers K.
With azimuthal symmetry we have the integral

o=m)~ [“dK K, |4(K)|?, (13)

where A4 is the amplitude. The capture probability
P(b), i.e., 21 times the probability that capture takes
place for a given impact parameter b and a given
velocity v, is simply

P(b)=2|a(b)|?, (14)

where a (b) is the capture amplitude in the impact
parameter representation and the factor of 2 comes
from two K-shell electrons. We relate a(b) to
A(K) through the Fourier-Bessel transform after
Shakeshaft and Spruch,?*%’

a(b)=2m)~" [ “dK, K Jo(K DAK,) . (15)

III. RESULTS AND DISCUSSION

In Sec. III A, we discuss the different weightings
of the intermediate states in the SPB and IA theories
by presenting ratios of cross sections for capture
from a hydrogenlike ion obtained from both full and
transverse peaking calculations. Total cross sections
and probabilities for K-shell capture are compared
with experiment in Sec. III B. Results for the sym-
metric capture case Zp=Z=1 appear in Sec. III C.
We first make some comments on the numerical cal-
culations.

In calculating the total cross section or capture
probability, the two integrals of Eqgs. (11a) and (13)
or of Egs. (11a) and (15) are performed. An adap-
tive eight-panel Newton-Cotes quadrature routine
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was used for both integrations.?® The individual-
panel convergence criterion for the p, quadrature
was taken to be 102 smaller than the similar cri-
terion for the K, quadrature. This condition helped
ensure that the absolute error of the p, quadrature,
that is, of the amplitude itself, was of the order of
the desired individual-panel error for the K, quadra-
ture.

The p, integration around the branch cut was di-
vided into two parts: one along the cut and one
along a circle centered at the branch point. Both the
large p, value at which the cut integration is ter-
minated and the radius of the circle are, to some ex-
tent, free numerical parameters. In actual calcula-
tions, these two parameters as well as the conver-
gence criteria for the two quadratures were all
varied independently over several orders of magni-
tude to establish the overall reliability of the code.
This procedure was followed for representative low-
and high-velocity cross sections before production
runs were executed.

We further checked the code for calculating the
transversely peaked SPB amplitude Eq. (11a) by go-
ing to large velocities v>>Z7. In this case the
transverse and fully peaked values for the total cross
section should converge. Then, since the IA ampli-
tudes are given by analytic expressions and because
the off-shell factor should also converge for large v,
we have a check of the code. As an example, for
v=100Z;=1800, we find the fractional error
| o™ —0ofP | /0FP to be 0.0202 and 0.0201 for the
SPB and IA cross sections, respectively. For a velo-
city v=100Z; and target charge of 50, we find the
SPB error lto be 0.007 27; thus, we have a smaller er-

ror (by ~ ) for a larger target charge (by ~3).
The asymptotic cross sections also agree well with
the analytic forms derived elsewhere.>® The fully

peaked values agree within 1% of the formulas
ofX =0px(0.295+ 570 /2" Z;) (a.u.)

and
o =0pk(0.319+ 570 /2" Z;) (a.u.)

with the asymptotic Brinkmann-Kramers cross sec-
tion opx equal to 2'¥7Z3Z3/5v'2. The more
accurate o7x agrees well (~0.6%) with the exact 1A
limit®

o =0gk[0.295+ 570 /2" (Zp+Z7)] .

An analogous SPB result has not been derived due
to the difficult integrals involved. Because we do
not know the higher-order terms for these asymptot-
ic forms of the cross sections, we can not check the
codes for greater accuracy than those listed.

A. Comparison of the IA and SPB theories for capture
from a hydrogenlike ion

The total capture cross section is, in general, dif-
ferent when the amplitude is evaluated more accu-
rately. We have given in Egs. (11) and (12) two sets
of amplitudes obtained from two different peaking
approximations with the first set being more realis-
tic. The SPB and IA theories are compared by tak-
ing ratios of the corresponding cross sections wheth-
er they be fully peaked ones or transversely peaked
ones. Since the introduction of the model potential
basically shifts the cross section upward without
changing its form,’ we compare cross sections for
capture from a hydrogenlike target by protons.

Figure 3 presents ratios of SPB and IA cross sec-
tions. Recall that the full peaking ratio is a univer-
sal function of Zr/v only. In the velocity region
v>Zr, we see that the transversely peaked (TP)
values converge nicely to the fully peaked (FP) value
until very high v where the Thomas peak® dominates
and the deviations increase again (although their
magnitudes are small). This behavior differs
markedly from that found in the Jakubassa-
Amundsen and Amundsen results'® where the TP
values for Zr =10, 18 are much larger than the FP
one until relativistic velocities are reached. The
reason for this discrepancy is not known though it
may have to do with the approximate evaluation of
the off-shell factor in Ref. 18. Our TP values devi-
ate more from the FP value for lower Zr, that is,

06 == T T T T T TTTTT1T]
TET S |
N |
04 NN\ / i
N
W\ Z7=6/
02 \\\ v\ /T
\l\\ ~./ /
I OofF \\ /]
S O 10/
8 N
2-02 - .
5 \.
~ 38
-04 N4
06k ==}TP |
— FP
1 ] L1 41111111
04 10 20
Z1/v(a.u)

FIG. 3. Ratios of the SPB and IA cross sections for
Is —1s capture from hydrogenlike ions by protons with
the use of transverse peaking (TP), Egs. (11), or full peak-
ing (FP), Egs. (12), for various Zy.
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for lesser asymmetry. Thus when v >Z; the TP
values are not greatly different from the FP value
although the deviation is a function of the asym-
metry.

When v <Zr quite a different picture emerges.
The SPB cross section at v ~Z7 is larger than the
IA one independent of Zy. As v decreases, oarg be-
comes smaller than ojs for Z;=18, but the ratio
still follows the FP curve. For Z;=10, the same
trend is started but quickly reversed and for Z; =6,
oarp always remains larger than o1s. The full peak-
ing approximation seems to break down in the inter-
mediate velocity range and this apparent failure is
strongly dependent on the asymmetry. Note that
our ratios and those of Ref. 18 agree better for
v=Zr/3.

The failure of FP is largely confined to the im-
pulse approximation as is apparent from Fig. 4. In
this figure we plot the SPB and IA ratios of the TP
and FP cross sections as a function of Z;/v for
various Zy. Except for high velocities, the strong-
potential Born TP value is always larger than the FP
value. On the other hand, the TP values for the im-
pulse approximation are always smaller than the FP
values and the deviations increase as v decreases.
For v < Zy they are increasingly larger than the SPB
deviations which are of the order of 10—15% or
even much less as for Zy=18. The large deviations
of the IA as shown in Fig. 4 produce in turn the
large variations of Fig. 3.

In connection with the increase of the TP cross
sections over the FP ones, the SPB theory follows
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FIG. 4. Ratios of TP and FP cross sections for 1s —1s
capture from hydrogenlike ions by protons for either the
SPB or IA theories for various Z7.

the same trend as in the plane-wave second Born-
approximation theory. There, recent exact calcula-
tions?’ have shown that approximate evaluations of
the amplitude, which also make use of peaking argu-
ments, tend to underestimate the actual amplitude.

Below a velocity roughly around 2.5 a.u., the SPB
curve for Zr =6 diverges; this behavior reflects not
merely a failure of FP but points to the basic limit
of the theory, namely, Z3/v? is no longer small.
The Zr=10, 18 curves as plotted are still well
within the range of validity: for Z3/v2=0.1, the ra-
tio Zr/vis ~3.2 in neon and ~5.7 in argon.

The poor modeling of the IA amplitude by the
full peaking approximation which is apparent in
Figs. 3 and 4 implies that, in the intermediate state
momentum integral, the matrix element for excita-
tion to a continuum state is not sufficiently peaked
about p=0. This fact is related to the relative im-
portance of the upper bound states and low continu-
um of the target to the intermediate-state integral.
Consider the amplitudes ATE and AT} Egs. (11b) and
(12b), respectively, which both contain the factor
I'(1—iv). Since v is different in the FP and TP ap-
proximations, we also have this factor different in
the two approximations. Figure 5 shows a plot of

the ratios )

F(l—iVTP)

TP , FP I 2 S
O1A /aIA, F( 1 —i‘VFP)

and

[oia/ | T(1—ivee) | ]

[off /| D1 —ivep) | 2]
for Z;y=18 and where the condition Zi/wr<<1 is
always satisfied. We use the IA theory because both

ots and af}: are given by analytic expressions. It is
seen from this figure that the I" function is the part
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FIG. 5. Ratios of TP and FP values for the IA cross
section and components of the cross section for 1s—1s
capture from Ar!'’* by protons showing the relative varia-
tion of these quantities as v decreases.
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of the IA amplitude which is modeled poorly in the
FP approximation, particularly at low v. On the
other hand, the rest of the IA amplitude that gives
rise to curve 3 is modeled better.

If we look at the amplitude before the p, integra-
tion is done, i.e., at Egs. (10b), (5), and (7), we see
how I'(1—iv) as a function of p, is treated different-
ly in the TP approximation,

and the FP approximation, M (p)=M(0). In partic-
ular, as we integrate along the negative p, axis,
I'(1—iv) changes rapidly in the TP approximation
when € is in the lower continuum or is near a bound
state. (Recall from Appendix A that the ground
state does not appreciably contribute.) For the FP
approximation, however, I'(1—iv) is smooth for p,
in this region. This difference is accentuated for
lower v since the relevant values of p, are closer to
the still-dominant region p, ~0. The other factors
in M(p,0') are not as sensitive to the lower target
spectrum and this is reflected again in curve 3. We
conclude that the FP approximation does not work
well in the IA theory in large part because of the ra-
pid variation of I'(1 —iv) for p, near the bound state
and lower continuum spectrum of the target.

It is immediately clear why the FP approximation
works better in the SPB theory. Comparing IA and
SPB amplitudes, Egs. (10), we see that the off-shell
factor of the SPB theory alters the weighting of the
various p, regions. This reweighting is particularly
important for the lower intermediate states as point-
ed out by Macek and Alston. Consider’ the off-shell
factor R defined for the TP approximation as the ra-
tio of p, integrands of the SPB and IA amplitudes

2 2 -7
+Z .
p P e—l1rT/2r(l_+_T)

v 4+ 2up, +in

with
r=iv=Zr/(—v*—2vp, —in)'/?.

Since p,= —v/2 is the target threshold, we are in-
terested in the region p~ —V/2. Here, when 7 is
imaginary (lower continuum), R rapidly oscillates
and this behavior compensates for the effects of
I'(1—7) when integrated over p,. When 7 is real
and positive (bound states), we have

IR | =Q2an)p?r/Z}) e ™"

which is much less than unity, and this compen-
sates, once again, for the effects of I'(1 —7). For the
other regions of p,, | R | is of order unity and varies
more slowly.

We conclude that the IA theory overweights the

lower spectrum incorrectly in such a manner as to
cause large cancellations in the amplitude. The TP
cross section consequently decreases greatly from
the FP value. The SPB theory treats the lower spec-
trum properly with the off-shell factor compensat-
ing for the IA overweighting; the overall effect on
the cross section is to produce only a relatively small
increase of the FP value. Thus, in Fig. 3 the large
differences at low v in the Z; =6, 10 TP curves are
directly attributable to the different treatments of
the threshold region of the target spectrum.
Equations (4a) and (10a) show that a more accu-
rate evaluation of the SPB amplitude than the trans-
verse peaking one involves a change of the relation

MB)=M(p,0) .

But from Fig. 5, curve 3, we expect such a change of
M(P) to have a limited effect on the cross section.
Moreover, the TP approximation already treats
[(1—iv) of M(P) and the off-shell factor essential-
ly exactly. Thus, the small size of p,"K, implies
that changes in o in an improved approximation
should amount to a few percent or less with a weak
velocity dependence.

The extension of the present work to capture into
excited states is in certain cases straightforward.
Since the momentum wave function ¢,(p) is more
localized for these states, the neglect of the 'K,
terms is more well justified. Excited s states and
states of higher angular momentum aligned along V,
e.g., 2p with m; =0, require no modification of Eq.
(I1a) other than the replacement of é1,(P) by the
appropriate ¢;(§). Such is not the case, however,
for the other excited states because the P, integral
for these automatically gives zero. We must retain
the p,"K; terms to obtain a nonzero amplitude in
this situation; the amplitude evaluation will then be
more involved, requiring a numerical p, integration
in addition to the p, one.

Since the full peaking amplitude is independent of
Zp/Zr and the deviations from it are relatively
small in the SPB theory, there is the possibility of
treating a particular Z; by a perturbative correction
to o5p. (The universal FP curve is tabulated in Ref.
9.) Considering Fig. 4, we see that the deviations
shown in the SPB curves follow the same form as a
function of Z;/v for all three values of Z, al-
though the magnitudes are larger for lower Z;. For
example, starting from low Z /v the first maximum
of the deviation occurs at a Zy /v value % of that
for the first minimum for each Z;. One could
reduce the deviation to a function of the quantities
Zp/Zr and Zy/v and some constant parameters
which would be determined by expanding all factors
of the integrand of Eq. (10a) except
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(p7+2Z3)~' "

in a Taylor series about p,=0; the terms of this
series proportional to p? would determine the con-
stant parameters after p, integration.

B. Comparison of model potential calculations
with experiment

Total cross sections for K-shell capture from car-
bon, neon, and argon by protons are shown in Figs.
6—8. Theoretical curves were calculated using SPB
or A amplitudes after incorporating a model poten-
tial into the formalism in the manner of Sec. IIC.
Compared to capture from a hydrogenlike ion, the
overall effect of the model potential is to increase
the cross section. Experimental values are taken
from Rgdbro et al.?® for carbon, Cocke et al.?® and
Rodbro et al?® for neon, and Macdonald et al.,*°
Andriamonje et al.,’' and Horsdal-Pedersen and J.
Lahn Rasmussen’ for argon. The measured values
include capture into all final states.

These figures give a striking comparison of the
SPB and IA theories. The transverse and full peak-
ing IA cross sections differ greatly at lower velocity,
while the transverse and full peaking SPB cross sec-
tions differ relatively little (<15%). The SPB
differences, moreover, are weakly dependent on the
charge asymmetry when compared to those of the
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FIG. 6. SPB and IA cross-sections for K-shell capture
from carbon by protons. Data are from Rgdbro et al.
(Ref. 28).
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FIG. 7. SPB and IA cross sections for K-shell capture
from neon by protons. Data are ®, Rodbro et al. (Ref.
28), and W, Cocke et al. (Ref. 29). Curve code is the same
as for Fig. 6.
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FIG. 8. SPB and IA cross sections for K-shell capture
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and B, Macdonald et al. (Ref. 30). Curve code is the
same as for Fig. 6.
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IA. Even within the transverse peaking approxima-
tion, IA cross sections deviate considerably from
SPB ones. As the discussion of Sec. IIIA has
shown, it is the SPB’s inclusion of the off-shell fac-
tor, which provides for the correct weighting of the
intermediate target states, that significantly alters
the cross section in comparison with the IA one.
This inclusion also allows the simpler full peaking
approximation to give a more realistic treatment of
the capture process in the SPB theory. The latter re-
sult is a desirable feature because of the approximate
charge scaling known to exist for inner-shell cap-
ture.?

The SPB cross sections give generally good agree-
ment with the experimental data, considering the
theory does not include capture into excited states.
The agreement is better than for the IA values
which are seen to be too large for velocities below
the matching velocity v =Zg. The matching veloci-
ty corresponds to incident energies of ~0.8 MeV for
carbon, ~2.4 MeV for neon, and ~7.8 MeV for ar-
gon. At low incident energies, e.g., around ~0.4
MeV in neon, the SPB values are above the data.
This most probably ?oints to the limitation of the
theory, since (Zp/v)* is not extremely small then.
For carbon near an energy of 0.1 MeV, agg
diverges from ag',’,, for the same reason. A possible
reason for the SPB values being too large at large
velocity will be mentioned shortly.

The discrepancy between the two sets of data
points in neon?®?’ and argon®®3? is a result of the
larger values being measured by taking better ac-
count of the small impact-parameter contributions
to the cross section.

Figures 9—11 present capture probabilities P(b)
following Eqgs. (14) and (15) for protons on neon and
argon. The strong-potential Born TP probabilities
are always larger than the corresponding FP ones;
the reverse is true of the impulse approximation.
Moreover, the ratios of the two sets of values are rel-
atively independent of the impact parameter. For
example, with 0.7-MeV protons incident on neon we
have the ratios

P /PSR =1.09
and
PI¥ /PTY =0.61

for b=0.3ay/Zs changing monotonically to 1.10
and 0.59, respectively, for b=2.6a,/Zs. Here, a, is
the Bohr radius and Zg=Z;r—0.3. The same
behavior holds generally for all the probabilities.
These ratios are exactly what one reads from the to-
tal cross-section curves; that is, on Fig. 7 we find
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FIG. 9. SPB and IA probabilities for K-shell capture
from neon by protons. Data are from Horsdal-Pedersen
(Ref. 33). Curve code is as in Fig. 6.
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FIG. 10. SPB and IA probabilities for K-shell capture
from neon by protons. Data are from Horsdal-Pedersen
(Ref. 33). Curve code is as in Fig. 6.
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FIG. 11. SPB and IA probabilities for K-shell capture
from argon by protons. Data are from Cocke et al. (Ref.
34). Curve code is as in Fig. 6.

o3pp/o5pp=1.09
at 0.7 MeV and
oif /oty =0.61

at the same energy. Thus, there is no major redistri-
bution of the amplitude versus b in an improved ap-
proximation, as may be expected since the off-shell
factor does not depend on K, .

The agreement of the SPB probabilities with the
experimental data of Horsdal-Pedersen®® for neon
and of Cocke et al.** for argon is better than for the
IA ones, although the TP values in some cases im-
prove agreement and in other cases lessen agree-
ment. Since the argon data and calculations are at
higher energy, the SPB and IA results do not differ
greatly. Notice also the linear character of the ar-
gon curves implying a decreasing exponential
behavior for P(b) and therefore |a(b)|. This
behavior follows from the character of the Fourier-
Bessel transform of a (b) and from the sizes of b and
K ; it reflects the exponential nature of the initial
charge distribution.

One possible reason for the discrepancy with ex-
periment is that our P(b) does not take into account
the competing process in which an L-shell electron
is captured by the projectile at the same time a K-
shell electron is excited to fill the L shell. This pro-
cess is experimentally indistinguishable from the
supposed dominant process considered in this paper.
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But in the region v > Zr, the K-shell capture proba-
bility Px(b) (we attach the subscript for clarity) is
extremely small; for example, in argon for K-shell
capture by 7-MeV protons, we have Px(b)~ 1075 or

|ag(b)| ~0.003 .

Since the two processes are coherent (they have the
same final state)) we must add amplitudes.
Jakubassa-Amundsen’ has calculated argon L-shell
capture probabilities Py (b). She finds

Pr(b)~2x10~*

for 1-MeV protons in the impact-parameter range of
interest here. It may be expected that at 6 MeV
P, (b)=~10* For a 1s—2s excitation®® probability
Pyx(b) of the order of 1073, the capture probability
for the two-step mechanism is of the order
PxP; =107, corresponding to an amplitude of the
order of 0.3 1073, This represents a 10% contri-
bution to the overall capture amplitude which could
raise or lower the resulting probability.

C. Symmetric capture

For symmetric collisions, the effects of a more ac-
curate treatment of the target spectrum on the cap-
ture cross section have been discussed by Macek and
Alston.” They show, using the full peaking approxi-
mation, that the SPB 1s— 1s total cross section for
protons on hydrogen lies below the Brinkman Kra-
mers® (BK) cross section in the range of impact en-
ergies (in MeV)

0.1<E<10.0 .

This result contrasts with the behavior of the exact
second-order BK (BK2) cross section®’ which lies
above the BK one for E from 0.1 to ~3 MeV. Itis
known, however, that the BK theory already overes-
timates the capture probability; thus, for the lower
energies, we attribute the difference in behavior of
the SPB and BK2 cross sections to a poor represen-
tation of the intermediate target spectrum in the
BK2 theory. That is, the lack of discrete target
states and the use of plane waves for the continuum
states in the BK2 theory lead to an unphysical in-
crease in the cross section.

While the approximation of going to the energy
shell, Eq. (4a), is well justified for the symmetric
case, the further approximation of full peaking is
not so clearly justified. It is of some interest, then,
to see whether the transversely peaked values of the
SPB cross section also lie below the BK one. Table
I gives BK, BK2, and SPB cross sections in 1Ta(2)
over a broad energy range. (Since the TP values are
presumably more accurate, the FP values are not
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TABLE I. Cross sections for 1s—1s captures when
Zp=Zr=1. The BK and second-order BK (BK2) values
are from McGuire (Ref. 37) except for the BK2 values at
0.1 and 0.2 MeV which are from Wadehra et al. (Ref. 27).
The SPB values were obtained using Eq. (11a). The num-
ber in parentheses is the power of 10 multiplying the cor-

responding table entry [e.g., 3.28(—4) denotes
3.28% 1074
E oK OBK2 OspB
(MeV) (mad) (mad) (mad)
0.1 0.398 1.4 0.542
0.2 0.0262 0.074 0.0214
0.5 3.28(—4) 7.95(—4) 1.74( —
1.0 7.91(—6) 13.63(—6) 3.52(—6)
5.0 7.38(—10) 6.09(—10) 3.09(—10)
10.0 12.11(—12) 8.04(—12) 5.57(—12)
50.0 8.07(—16) 4.51(—16) 6.80(—16)

given; in general, the TP values are greater than the
FP ones.) We see that, except for the very lowest
energy, the SPB values remain below the BK ones.
At 0.1 MeV the applicability of the theory is ques-
tionable since this corresponds to a velocity of ~2
a.u. The coupled states calculation of Shakeshaft®®
gives 0.0053 ma} for the cross section at 0.2 MeV so
that the SPB value is a factor of 4 too high, al-
though it agrees much better than does the BK2 es-

timate.
The SPB cross sections were obtained from Eq.

(11a) with the following modifications. The
minimum momentum transfer K, is set equal to its
exact value of —v. For ls— Is capture, the rela-
tion

J 426, =K2+2¢;

reduces to J 2=K?2.

At asymptotically high velocities, both the BK2
and SPB cross sections are known>° to have a velo-
city dependence of v ~!! as compared to the v~
dependence of the BK cross section. Table I shows
that this behavior has not yet allowed the second-
order theories to dominate the first-order one at the
very high energy of 50 MeV, but the SPB cross sec-
tion appears close to doing so. The impact velocity
is ~0.3 ¢ for 50 MeV—a velocity for which rela-
tivistic effects could be important.

|

IV. CONCLUSION

We have established that the correct treatment of
the lower target spectrum in the SPB theory is an
important factor allowing the full peaking approxi-
mation to represent the exact amplitude with
moderate accuracy.

We have also shown that the correct treatment of
the target spectrum produces major changes in the
capture cross section itself as compared to the IA
one. The structure of the SPB amplitude has been
clarified in this study and the theory is shown to be
soundly based and internally consistent; moreover,
the approximation is seen to give a good representa-
tion of the measured cross sections.
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APPENDIX A: CONTRIBUTIONS TO
THE AMPLITUDE FROM THE REGION p =K

While the region p<Zp does indeed give the
dominant contributions to the amplitude, one notes
that Vp,(P— K) peaks for large p~K For com-
pleteness we show this region gives a negligible con-
tribution. We do thls by mtegratmg over the finite
volume of order Z3 centered at p= K. The value
obtained is compared with the rough estimate® of
the fully peaked value of the amplitude which is
z zT)5/2/1<6 The limited integration volume is
Justlfled since the integrand is peaked and because
¢ f(E) dominates Vp,(p—K) at large distances from
p=K.

Our starting point is the amphtude given by Eq.
(2.17) of Macek and Alston’ in which the matrix ele-
ment involving the off-shell wave function has been
reduced to a one-dimensional parametric integral.
Their result is

Aspp=02m>"2 [ d*p §H(B)Vpe (B — KM, (B)+My(B)] (A1)

where
My(B)=(dy5,+(7) | " T-K0T | g,())

and

(A2)
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167Z N, X
(2”)3/2(1 —me) a[l.

My(B)= [.dpp™"(D1D,—2[ E\E, +4X°K Ky lp+ F1Dop?} ™! (A3)

The contour C starts at 1+i0, encircles the origin within the unit circle, and ends at 1—i0. The other quanti-
ties are defined by the relations

X=[-2e+im]"? ReX>0; r=Z;/X; D;=(X+p;+k?;

E=X?—pl—k} Fi=(X—p )2 +k} ¢(0)=Ne ™, N;=(Z}/m)'?,

where k,=p—K, K,=P+7, and ,uz—O After the p, differentiation in Eq. (A3), we set u, equal to Zy.
Equation (A1) is still an exact expression. We now proceed to evaluate it for the region p ~ ~K.

Define the vector &= P— —K with & <Zp <<Zr, assume a Is final state, and suppress numerical coefficients;
our amplitude Eq. (A1) becomes

Aspp < Z3 [ d%[(K+ 812+ 23] U8 +a?) ™' [M, + My(K +5)] (A4)
where
M, < ZHK*+2Z})™? (A5)
and
ZS/ZX
Mﬂmaﬂ [ dpp~"(D\D; —2[E\E, +4X*8-(5—T)Jp+F,Dyp?} " . (A6)

We have used the relation K2 + 2¢; —J L 2¢f to gain Eq. (AS). In Eq. (A4), a—0, is a convergence factor.
Recalling that u,=Z; and K, = — 2 7V —(€r —€;)/v, we have the order-of-magnitude estimates

|F\/Dy | ~8%/Z% «1,
|[E\E,+4X28-(8—T7)1/D\D, | ~ | KV +2Z3K |8/K?Z% «< 1,

where we have expanded D, D,, etc., in powers of 5. These small ratios together with |p| <1 allow us to
evaluate the p integral by keeping only the factor p~". Using the approximate forms

X=Z;r—v8,/Zr—in, T=~1+08,/Z%+in, (A7)
we find
Z7 3 1
(1—e=2mn~! | d 008) | %7~ (A8)
Joae l v(8,+im) T D2 1 Dy |yz,
T
Substituting Eqs. (A7) and (A8) into our expression where B is some number of the order of unity.
for M, [Eq. (A6)] and retaining only terms linear in The term Zp/K? in the second set of brackets is
8, we obtain from M, and is the relative contribution of the first
2 == Born term. The second two terms are the relative
MyK+8)« — 215/2(“'”'s /227 —2K-8/K7) . contribution of the second Born term. This result
vK (8, +in) shows the contributions to the amplitude from the

(A9) large P ~K region are smaller by factors of the or-
der (Zp/v)? or (Zp/Z7)* and confirms the well-

If we insert Eq. (A9) and the expression for M, known observation*® that, in second-order theories,
[Eq. (A5)] into the SPB amplitude Eq. (A4), the large momentum components of the final bound
large P contributions are seen to be state do not appreciably contribute to capture.

However, the SPB theory contains the target bound
states in the intermediate-state integral and this fact

Aspp(P~K)« somewhat restricts the definition of large momen-

(ZpZr)?
K6

tum components which give rise to negligible contri-
X ﬁ _ _Z_P _ 6Z,K, butions.
K? 222 uK? ’ The bound-state poles are located at




2356 STEVEN ALSTON 27

pe=—7v—(e+2Z}/2n%) /v —in

and, in particular, the ground-state pole is at
p, =K, —in corresponding to §,=0. For §,~0, the
estimate Eq. (A7) holds and thus the ground state
does not contribute significantly as an intermediate
state. The same is not true, though, of the excited
states and especially the highly excited ones, since in
this case 8 is of the order ZZ/2v and not small. The
poles corresponding to these states are close to the
origin p=0 and are expected to contribute signifi-
cantly when €=0, as suggested by Fig. 1.

APPENDIX B: DISCUSSION OF
THE SINGULARITY STRUCTURE
OF THE INTEGRAND IN THE AMPLITUDE

Considering the various factors of the integrand
in the amplitude Eq. (10a), we observe that the
bound-state poles

pzz—%(v +Z;2~/n2v)—i1]

arising from the factor I'(1—iv) of M(p,0’) and the
branch point

pr={[K(v—iZs)/20K,]*—1}v

arising from the term
[(p—iv P+K2—2p, (K, +v+ip)] ™" | u=z,

are located in the lower half-plane.

There are also poles at p, =K, +K,. The residue
of the one in the upper half-plane contributes to the
amplitude. In general, the form of the integrand
given in Eq. (10a) does not represent the exact in-
tegrand well when P is large because terms of order
(p/v)* have been neglected; however, because K, is
large and the contributions correspond to the p ~K

region, we do not include them here. Finally, of the
remaining two branch points at p, = +iZp, only one
is in the upper half-plane. We further note that the
bound-state poles are arbitrarily near to the —p,
axis and therefore complicate a numerical integra-
tion along this axis, but for the cut integration, all
the singular points except those at +iZp are located
at distances of the order v or Z; from the origin of
p, integration for all K. The conditions Zp /v << 1
and Zp/Z1 <<1 imply the corresponding factors of
the integrand vary slowly in the region p, ~iZp.

Therefore, we conclude that, from a numerical
point of view, integration around the cut is clearly
the best way to evaluate the SPB amplitude.

The cuts for the branch points besides those at
+iZp must be compatible with the phase convention

T<arg(—Z)< +m

with Z equal to
A[K2+(Zr—iv)*=2p,(K, +v+iZ7)] ,

where A is defined in Eq. (6). This condition fol-
lows*! from the derivation of Eq. (4a). We have
chosen the cuts for the factors of

(pz+2Zp)7'7"

so that the respective branches are defined as

|p,+iZp| >0, —w/2<arg(p,+iZp)< +37/2

and

|p;—iZp| >0, —3w/2<arglp,—iZp)<+m/2.

Our discussion of the integrand of the SPB ampli-
tude Eq. (10a) given here can be applied to the in-
tegrand of the IA amplitude Eq. (10b). The only
difference is that we have poles at p, = +iZp.
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