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We describe a three-dimensional model, based on the temporal invariance of the statisti-

ca1 properties, which allows us to calculate the spatial and energy probability densities of
strongly confined ions in the presence of a buffer gas. This model is then applied to a pop-
ulation of Cs+ ions for which we compute these densities within the whole stability dia-

gram and for various gases. In the case of helium, in particular, we show that these laws

can be described by Gaussian functions, and we present the evolution of the temporal aver-

age of the spatial dispersions and ionic temperatures at the working point.

I. INTRODUCTION

Ion storage by rf quadrupole field trapping is a
particularly efficient research tool in atomic phys-
ics.' Indeed, it is possible to maintain an ionic
population for long periods of time (from a few
seconds to several hours) free from magnetic fields,
collisions, and walls effects. Moreover, because of
the quasiperiodic movement of the ions in each
direction, the first-order Doppler effect is discrete.
The second-order Doppler effect can be reduced by
such techniques as radiative, ' collisional, and

optical cooling. ' ' Then the equilibrium state of
the trapped ions is close to the thermodynamic
equilibrium. These properties allow one to study
long-lived phenomena ' ' (e.g., lifetimes of meta-

stable states and autodetachement processes)' '
and spectroscopy at very high resolution (e.g., hy-

perfine structure and frequency standards). '

To this end it is useful to know the energy and

spatial properties of the ionic populations. We have

previously established ' ' a stochastic model which

permits us to describe such statistical behaviors as
the lifetime of the ions and the energy and spatial
distributions in the presence of infrequent elastic
collisions with a neutral atomic gas. In particular,
we have shown that the introduction of a light gas
can increase the lifetime and reduce the mean
values of the energetic properties of the ions. More-
over, we have shown that these distributions tend to
Gaussian distributions after some initial reorganiza-
tion time. The application of this formalism, how-

ever, does not allow one to treat, in a general
manner, the three-dimensional case because it

would require excessive computer time and

memory, and we have used an approximate method
in a previous study. Following this work we in-

troduced an easier method, based on the temporal
invariance of the statistical properties due to the
periodicity of the rf field, which allows us to verify
the assumed form of the distribution and to com-

pute their parameters. It has been successfully test-
ed for the one-dimensional (1D) case and its use

on a realistic three-dimensional (3D) model has

turned out to be interesting in the study of space-

charge effects.
In this paper, we apply this method to obtain the

parameters which describe the energy and spatial
distributions and show the limits of the validity of a
Gaussian pattern. Firstly, we present the principle
of the method applied to a 3D model, after which

we explain the criterion chosen to decide whether or
not the distributions may be represented by a
Gaussian function and finally we show the results
obtained from a systematic study of the stability di-

agram.
The present study concerns positive cesium ions

in a radio-frequency field of period 0/2m =10 /2m

rad s '. Nevertheless, results are valid for values of
0 which can be in a large range around this one.
The ions evolve in a trap of large dimension with a
dilute buffer gas (conditions which are always satis-
fied with collisional cooling). The partial pressure
of the buffer gas does not exceed 10 mm. Under
these conditions, the time between ion-atom col-
lisions is approximately equal to 100 periods of the
radio-frequency field. Space-charge phenomena are
neglected here. These hypotheses are realistic when
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the total number of ions is not greater than 10~.25

In this case, the mean time between two ion-ion col-
lisions is of the order of several seconds and heating
which could occul bccausc of thc inhomogcncity of
the rf field cannot be induced.

II. FORMALISM (REF. 22)

The dynamic state (x, x) of each ion cannot be
known but can be described by a random process

(X(t),X(t)) whose properties are Markovian be-

cause of the shortness of the interaction time com-
pared with the other characteristic times. After
some collisions, the initial conditions are forgotten
and (X(t),X(t)) reaches an asymptotic regime. The
associated probability law, rigorously depends on
the confinement well depth, but when this is in-

creased (while staying within the values generally
used experimentally), the probability law rapidly
convergcs to a limit independent of the depth.
Therefore one can replace thc real trap by one of in-

finite depth. The function (X(t),X(t)) associated
with the asymptotic behavior and defined by the

probability density f»»( x, x, t) is not stationary be-

cause of the periodicity of the radio-frequency field.
It is, however, invariant to any temporal translation
of the driving field which is a multiple of
T~ =2m'/O.

ThUs, settlllg g, all arbitrary fllnctloll of (x, x),
and setting

G(t) =g(X(t),X(t)),

to be the corresponding random function. G(t) is
also invariant, for any scqucncc of times

~Osti =&O+ Tm. - . ~ &g =tO+J~~

The mean values (G(to)), (G(tl)), . . . , (G(t, ))
arc equal.

This property permits us to establish a relation
which Q1ust bc satisfllcd foI' any function 6 when

f»»(x, Ã, t) ls sUltable. (G(to)) ls sllllply wrlttell as

(G(te))= fg(x, x)f~(x, x, t)dxdx .

I.et k be a particular value of g. In order to cal-
culate (G(tk)) we must take account of the dif-

fclcnt cvcnts which occul bctwccn to and tk. These
events depend on p2, the bulk density of the gas
atoms, fl, (vl), the probability density of the veloci-

ty of this gas, and s, the ion-atom collision cross
section. Because p2 is small, the probability that
more than one collision occurs between to and tk,
which can bc chosen hclc, ls ncgliglblc, pI'ovidlng
one limits the maximum value of k. Let fc( c ) be
the two parameter function which describes the col-
lision. In the absence of collisions between two in-
stants t and t', we let W, , be the determinist
function which allows one to obtain (x(t'), x(t'))
from (x(t), x(t)).

The mean value (G(tk) ) depends on the history
of the ion between to and tk..

(i) If (x(to), x(to))=(xo, xo) is known and if no
collision occurs between to and t@ with probability

t0+kT
I —pcs f, ffI,(vl) i vz —x(t)

i
d vldt,

then G(tk)=g(xk, xl, ), where

(Xk, Xk)=WI I (XO, XO) .

(ii) If (x(to), x(to)) is known and if one coihsion
occurs between t and t+dt, to g t g tk, with the in-

cident atom having a velocity between v2 and

v2+dv2 and collision parameters between c and
c +d c, with probability

pls fI;(vl)fc(c)
~
vI —x(t) ~dv, dc dt,

then G(tk)=g(x p, x k), where (x k, x'k) is obtained
from (x'(t), x'(t)) by (xk, xk)=W, ,„(x'(t),
x'(t)). Here (x'(t), x'(t)) is the new dynamical
state, acquired at the instant t due to the collision,
obtained from thc calculation of

(x(t),x(t))=W.. . (xo, xo) .

(iii) Without information on (xo, xo), v2, and c,
and on the instant t of the collision (or its ex-
istence), the mean value of G(f~) is obtained by
weighting the results obtained in (i) and (ii) by the
probability of their realization. I.et f»» (xo, xo) be

0 0

the value of f»»( x, x, to); then
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t0+kT
(G(tk))= f g(xk, xk) 1 —p,s f, ffv, (v, )

~
v, —x(t) ~dv, dt f» (xo, xo)dxodxo

t0+kT
+ f, ff»~, (xo&xo)fp2sfv, (vz)

~
v2 —x(t)

~
fc(c)g(xk, xk)dxpdxodv2dc dt,

0

but {G(tk))={G(tp)). So,
r +kT

pcs f ff»» (xoxp) ffv (v2}
~

v2 —x(t)
~
[fc(c)g(x k, xs)dc —g(xk, xk)]dxodxpdv2 dt

0

—f [g(XP, XP) g(—xk, xk)]f»~ (xp xp)dxpdxo ——0. (2.2)

Let I(g,f»» ) be the left-hand side of (2.2);

I(g,f»» ) can be used to determine f»». the
0 0 0 0

method consists of finding the function h of xp and

xo for which I(g,h) equals zero for any function g.
In fact, the problem is difficult to solve in the gen-
eral case but can by simplified for small values of
pz.

f»» depends on p2s and it is possible to make an
0 0

expansion over successive powers of p2s by setting

f»» (x,x)= fp(x, x)+p2sfi(x, x)

function fp on which a fine structure (the other
terms of the expansion) is superposed. The impor-
tance of these terms are negligible here because of
the supposed value of p2s.

The fundamental information about f»» is
0 0

therefore given by fo which we, now, seek to deter-
mine. Setting (2.3) in (2.2), I(g,f»» ) is identically

0 0

zero if all the coefficients associated with the suc-
cessive powers of p2s are zero, from which a
hierarchical system of equations can be inferred.

The first equation of this system [associated with

(p2s) ] can be written
+ (p2s ) f2( x, x ) + (2.3) f [g( xp& xo) —g( xk& xk )]fp( xp, xp)d xod xp ——0 .

and imposing the restriction that fp( x, x ) be
normed. Thus fp( xp x p) also represents a probabil-

ity density. f» . looks like a "sinooth density"X+0

(2.4)

The second equation, where the influence of col-
lisions appears, is

t0+kT r

f ffp(xo, xp) ffv (v2)
~

v2 —x(t)
~ ffc(c)g(xk, xk)dc —g(xk, xk) dxodxpdvz dt

0

=f [g(xp xp) —g(xk xk)]f i(xp xp)d xpd xo . (2.5)

Equation (2.5) includes two unknown functions fo and fi. fi can be eliminated in the following way: Think
of some properties of the motion of the ion in the trap. ' Let g(t),g(t) (g=x, y, or z) be the components of
( x(t), x(t)). They are expressed according to the two constants of the motion (ut, p~ ) by the relations

Qg
g(t) =

t [1+At(t)]cos(coact pre) B~(t)sin(t—ptt —y—t)],
Ng

g(t) = u~ j Ct(t)cos—(coact
—&p~)+ [1+D~(t)]sin(coact q&g )], —

(2.6)

where A~(t), B~(t), C~(t), D~(t) are trigonometric series of the successive harmonics of the driving frequency.
The fundamental frequency co~/2~ depends on the working voltage (co„=co~). The quantities

pig(kT~ ) g(kT )

1+Ag(kT ) 1+DE(kT~ )
+

2

(2.'7)
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are invariants.
If we choose for the function g a function of u, then (2.5) is simplified, and with k equal to 1 it becomes

to+ T

f,
'

ffo("o "o)ffv, (v2)
I
"2 "(t) l[fc(c}g(u')dc —g(uk)]dx dxodv dt=o,

0

therefore fp must be a solution of this equation.
It is easy to see that fo does not depend on the frequency II of the rf field by a change of variables.

(2.8)

DI. DETERMINATION OF fo

The following remarks allow us to be more pre-

cise about fo. As a result of the cylindrical symme-

try of the trap, fo may be written

0 0f0(«0~«payor~3 0»0»0 )

=p((«o+yp)' ', («0+yp)'~', xp, »o), (3.1)

but we also know that (cf. the Appendix) if u„and

u, are the invariants corresponding to (xo, xo) and

(zo, zo), it follows that

fo(«p, «p, 0,0 zp»0) =4(u u

and from (3.1) we have

fo(«o «0 o 0»0 &0) =m(
I «o I I

«o
I

»0»0)

from which it can be deduced that

m( I «o I, I «o I »0,»0) =0(u. ,u, )

and therefore that

P((X'+y')'~2, (XO+yO)'~2 Z Z )

=P(( u„+u~)'~', u, ) .

«nsequently, we will choose functions fp which
depend on the quantities

2 2 2 ' 2
tox(«0+yp) «0+yp

[I+~.(0)1 [I+D„(0)]' '

2 2
Q)gZO gO

[I+A, (0)] [1+D,(0)]

The previous works' ' have shown that in the case
of a light buffer gas f»» and thus, f0, are close to

being Gaussian; therefore, we assume, initially, a
function fo whose form is

E
3 4 2 exp

87T O'Ox 0'Os

2 2 2 ~ 2 ~ 2 2
tox(«o+3'o) «o+3'o toz&0 &0

2trp„[1+3,(0)] 2oo„[1+D„(0)] 2op, [1+2,(0)]2 2trp, [1+D,(0)]~

(3.3)

with

1
exp+2~ &sxo

2
XO

2
20sxo

where E is a normalization factor.
The marginal laws are expressed, in this case, for

the x components, for instance, of the position and
the velocity by

with

trump=tro [ I+Dx( 0])

u o and o„„o characterize the distribution law at

the instant to. Because of the invariant to transla-

tion by kT~, we must have

o~(kT~ )=g o

and

1
exp+2~ &I3xo

o (kT~ )=o

This is really true since A (t) and D (t) are period-

ic. Dispersions corresponding to any time are

given, from (2.6), by
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1&1
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L

& zo (mk) idly versus time. We call it the pseudotemperature
of the ionic population.

The average parameters, for instance T„, can be
calculated with formulas of the type

m

T„= I T„(t)dt . (3.7)

$70

(tnfl])

Ox

110

1 p 7
'' $'

I

200

~ }I
l l

I I

~l".+
p J

l

I

P C

I

OZ

We define the temperature of the ionic population

by this equation. The quantities corresponding to
the direction Oz are obtained by analogous formu-

las.
If f&& has exactly the form given by (3.3), the

problem is reduced to seeking the values o[h and
o.o, for which (2.8) is always zero. To this end, the
integral of (2.8) is computed by substituting cro„and
oo, for different values A,„and A,, and with various
functions g. Let C; be the curve in the (k„,A,, )

plane that represents the value for which (2.8) is
zero corresponding to a function g;. Then oo„and
o.o, are the coordinates of the intersection points of
different curves, C;. If the shape of fo is known, to
determine these parameters it is enough to take only
two functions g;. In practice, we must verify the
suitability of the functional form of fo. To do this
we must evaluate (2.8) for a larger number of func-
tions g. We choose the following functions:

3 4 5

cr (t) =
t [ 1 +A„( t)] +8, ( t) I

'r2
cox

(3.4)

FIG. 1. Determination of the parameters cro„and oo,
in the ion-distribution law (3D model) by a zero method.

(a) The Gaussian model is suitable. Zeros corresponding
to various functions g(u, ) [and g(u, )] are quasicoiu-

cident, the width of each curve indicates the uncertainty

of the computation. (b) Gaussian model is not valid.

Zeros of the various functions g(u„) and chiefly g(u, )

are clearly separated. 1, g(u)=u„u„' 2, g(u)=u„; 3,
g(u)=u, ; 4, g(u)=u, ; 5, g(u)=u, '.

g&x(u) =~xs gz (u) =uxor g3x(u) =&x s

g]g( u) Qgp g2g( u ) Qg & g3g( u)=Qg

g (u) =u„u, .

Let k„"' and Ag" be the values found for o„and
era, for functions g;. If fc is exactly Gaussian, these
values are independent of i When fo. cannot be ap-

proximated by a Gaussian, the different pairs

(A,„'",A,,")are distinct. Figure 1 illustrates this point.
When the differences between the various pairs are
of the order of the uncertainty of the result, we con-
sider that the chosen model for fo is suitable. We
will now explain how we can give significance to
the more important divergences.

a„„(t)=tro„ [ C„(t)+ [ 1 +D„(t)]']'r' . (3.5)

From this last parameter, one deduces another
parameter

T„(t)=—tr,'„[C„'(t)~ [1+D„(t)]'/ '",
k

where m is the mass of the ion and k the Boltzmann
constant. This parameter has the same dimension
as a temperature but it periodically varies very rap-

IV. CONTROL OF THE SUITABILITY
OF THE PATTERN REPRESENTATION

When the form chosen for fo is not convenient,

all the curves C; are not concurrent. Then we must

use a pattern which allows a more precise descrip-
tion of the probability density. To this end, it is

necessary to increase the number of parameters
which characterize fo (two in the Gaussian case) to
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looked for by a method which approaches the one
described above. %'e use the following g functions:

gl(u)=~„' g2(u)=Q„' g3(u)=u, .

Two of these functions are sufficient to determine
the pair (b,c) which characterizes the distribution,
the third is needed to check the suitability of the
representation as before. For c equal to 1, the
values h of b for which (2.8) is equal to zero corre-

spond to thc vaflous estimates of thc standaI'd dcvl-

Rtlon of 8 Gaussian law obtained fol each function

g;. We computed the values of b, c, and b [(2.8) is
evaluated by a Monte Carlo technique], along the
axis a=0, along the lsobeta P =0.2 (with P &0.5)
and at the point a=0, q=0.2 for several buffer

gases. In Flg. 2 wc show thc palfs

FIG. 2. Evolution of the relative spreading between

thc various cstlQlates of b;: 5 obtained by thc onc"
parameter method vs e. One can sec that the magnitude
of 5 indicates the difference between the real distribution
and the Gaussian one. Real distribution is chosen in the
form of Eexp( —u, '/2b ). Open circles correspond to
axis a=O, squares at P, =0.2, closed circles to a=O,
q=0.2 and various buffer gas. (For clarity, uncertainties

of thc points arc not always shown. )

at least four. The working of the relation (2.8) be-

coIIlcs 1Ilofc difflcult. Slncc thc RIIQ here ls csscn-

tialy qualitative, we limit this study to an 10 model

(Oz direction). %C choose a test function which de-

pends on two pafamctcfs:

1Ecxp, —
2$2

APgZO Zo

1+3,(0) 1+a,(0)
I f

'

where K is the normalization factor.
When the component of fc in the direction Oz is

Gaussian, c is equal to 1 and b represents the stand-

RI'd dcvlation a. FOI' Rny othcf valUc of c, & ls then

glvcn by

Iy'exp[ 2(x '+y—')']dx dy
A (C)= Iexp I [——,(x 2+y2)]'I dx dy

A(c) is evaluated numerically. It is 8 decreasing
function which is found to be between 1 and 4 for c
within the range 1 to 0.5. b Rnd c must make the
cxplcsslon (2.8) zcI'o fof any function g Rnd they afc

where 6,'„ is the arithmetic average of (b ) which
corresponds to each case. Practically RB the points
Rfc sltuatcd on 8 cufvc Rnd lt caQ bc scen that lt ls

possible to Rssoclatc with the spfcad of thc vRlucs

obtained by the one-parameter method a value of c
which indicates the difference between the real dis-
tribution and the Gaussian distribution.

The calculations of s show that we always get

b,' &b' &b' and often b,' &~ &O'. The ratios

~
b,'„~

~
/b,'„are, in the case of helium, for any

working point, always new to 1%; under these con-
ditions, even if 8 Gaussian law does not represent
RCCUIatcly thc fc81 distribution (0.9&c%0.75), thc
values of b; are convenient estimates of the stand-
ard deviation. For argon and krypton, for which c
is close to 0.7 and 0.3, respectively, the standard de-
viation and b,'„differ by only 10%. %C note that
similar calculations done in a less systematic way
allowed us to foresee these results.

Finally, when c lies between 1 and 0.9, consider-

ing thc lack of acculRcy, thc Gaussian approximate
is entirely justified. For 0.9&c&0.8, the spacings
between the various estimates are lower than 10%,
wc assume that thc cholcc Gf 8 GRUsslRQ dlstrlbu-
tlon docs not lnducc too much cffoI' Rnd, ln Rccof-
dance to the uncertainty, the moment of second oI'-

der is wcH approximated by b&. Given that the
spI'c8dlng of thc values has thc same magnitude ln

the 30 model, we take as a criterion of the limit of
the suitability of a Gaussian pattern that differences
between b are of the order of 10%.

%'c apply the method just described, which uses 8
30 model, to Rn lonlc population of ccsluIQ. Thc
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buffer gas is considered to be in a Maxwellian
equilibrium at a temperature of 300 K with a densi-

ty such that the assumption of the rarity of collision
holds (see Sec. I). These are treated according to a
classical hard-sphere model. The integral of (2.8) is
calculated Monte Carlo fashion. By using a vari-
ance reduction technique, it is possible to obtain a
precision of approximately 1% with 10000 sam-
ples. Under these conditions, each evaluation of the
integral needs ten seconds of CDC-750 computer
time. The parameters of fo are studied for different
points (a,q) in the stability diagram and for several
buffer gases. Note that 0~, and oo„are indepen-
dant of Q.

26tj

A. Computations of oo, and no,
and suitability of the Gaussian

approximation

1. Hehum

We calculate oo, and cro„ for 26 points of the sta-

bility diagram. Along the axis a=0, the Gaussian

model is entirely valid from criterions described
above since c is near to 0.95(+0.05). When we

move the working point (a,q) in the stability dia-

gram, the component upon Oz loses this quality
when P„becomes greater than 0.4 or 0.5 Figure 3

shows the variation of o.o, and oo„along an isobeta.
With the help of similar curves obtained for various
isobeta we represent points on the stability diagram
corresponding to contours of 0.0, and 0.0„(Fig. 4}.
In a region near the origin these parameters are
practically equal to 138 m/s (which is the magni-
tude of the Maxwell velocity of cesium atoms at the
same temperature). When we go away from the ori-

gin, these parameters, chieAy ao„ increase.

2. Neon

In the domain of adiabatic approximation, oo,
and pro„are slightly greater that the values obtained
with helium (o.o,

——147+3 m/s, oo„——147+3 m/s},
fo stays Gaussian in a region placed on the left of a
line passing approximately through the points
(a=0,q=0.6) and (P, =0.2,P, =0.2). oo, and oo„
are then, respectively, near 170 and 160 m/s.

{b}

FIG. 3. Variation of the parameters {a)00, and {b) uo„
of the distribution law of the ions in the case of a Gauss-
ian pattern {30model), along the isobeta P, =0.2.

tween 161 to 178 m/s and 0.0„varies in the range of
162 to 172 m/s.

4. Krypton

Here, results never allow one to suppose that the
distribution of ions is Gaussian, even for points
very near to the origin (a =0, q=0.05 for instance).

3. Argon 8. Physical parameters

With this buffer gas, fo is Gaussian only in a lit-
tle region close to origin. In this case, o.o, lies be-

For a better understanding of these results we cal-
culate spatial dispersions and ionic temperatures



F. VEDEI., J. ANDRE, M. VEDEI., AND G. BRINCOURT

az

I

ic,p

limit of th
Gaussian happ

lh

I ~ L

with the formulas (3.4)—(3.7). This illustration of
the previous section is made only in the case of heli-

um.
VAthin the frame of adiabatic approximation, the

temporal variations of the statistical parameters can
be easily estimated with approximate relations such
as

FIG. 4. Variation of the parameters o0, and oQ„of the
distribution law of the ions in the case of Gaussian pat-
tern (3D model) in the stability diagram. (The uncertain-

ty can be found from the envelope of the curves

represented in Fig. 3.) The buffer gas is helium.

0 (mrn)

1.0

0.5

T (K)

1200

T,(t)=—0. ,(1+2sin Qt) .

In this case ~„=u,/2 and o.o„oo„ then
o. (t)=2o (t) and T„(t)=T,(t).

Outside this domain, it is difficult to foresee the

magnitude and the shape of these variations. In

Fig. 5 we represent o~(t), o~(t), T,(t), and T„(t}
computed for a given working point. Actually, the

shape of this curve varies very little in the stability

diagram. o (I;) and o (t) oscillate once during the

period T and are in opposite phase. T,(t) and

T„(t) oscillate twice during the same duration and

are almost in phase. The relative amplitudes of
o. (t) and o (t) are of the order of q, those of T,(t)
and T„(t) are near 3 and 2, respectively. In the re-

gion where fo is quasi-Gaussian, the minimal

values of T,(t) and T (t) are always approximately

equal to 180 and 220 K, respectively. The max-

imums depend on the working point and can reach
12000 and 10000 K for each one.

The average values are drawn in Fig. 6. Note
that o. and o are strongly dependant on the driv-

ing frequency (since co=PA/2). The contour line of
o (respectively, cr ) roughly follows the isobeta P,
(respectively, P, ) except when the Mathieu coeffi-
cients vary in the opposite direction of the funda-
mental frequency, i.e., when a, is positive (respec-

800

az

O, t

0 0

400

FIG. 5. (a) Temporal variation of the spatial disper-
sion o (t),a~(t) and (b) of the pseudotemperatures T,(t)
and T (t) of the stored population.

FIG. 6. Variation of the temporal average of the spa-
tial dispersions o and o of the stored population in the
stability diagram when the buffer gas is helium.
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FIG. 7. Variation of the temperatures T, and T„of
the stored population in the stability diagram when the
buffer gas is helium.

tively, a„) and the absolute value of q is sufficiently
great. These parameters must be infinite when

P,=O (respectively, P, =O), i.e., when the confine-
ment is null. Therefore, they must increase strongly
when one approaches these boundaries as can be
seen in Fig. 6. Figure 7 shows the contour lines
corresponding to the temperature T, and T, . These
temperatures also reach great values for regions
near the limits. For a given working point the tem-
perature following x is less great than that follow-
ing z, except near the isobeta P, =0.1. Generally,
T„varies less than T,.

These results allow us to specify the optimal
working conditions. For instance, the space charge,
all things being equal, increases when the spatial
dispersions decrease. It seems well advised to
choose a working point where spatial dispersions
are not very small. On the other hand, we can see
that the ionic temperatures are smaller near the axis
a =0 and for q &0.4. In this case, T„(t) is practical-
ly smaller than Tg(t) and it can be useful to know
this for optical measurements, for instance.

The values of these parameters are smaller than
the experimental ones. 6' Several reasons can ex-
plain this difference. Space charge tends to heat the
ions. Collisions with heavy ions are possible. De-
fects of the trap device also increase the ionic tem-
peratures. Moreover, the experimental depth of the
confinement was weaker than the theoretical one
and measurements could be done before the asymp-
totic regime was reached.

VI. CONCLUSION

We have presented a method based upon a realis-
tic model (3D model) which permits us to find the
form of the spatial and energy distributions and to
evaluate their parameters when the distributions are

Gaussian. We have shown how the properties of
these distributions evolve within the stabihty dia-
gram. Qualitatively these results corroborate anoth-
er previously obtained by the authors' ' with ap-
proximate models. However, the quantitative
differences show the need of the present study. We
delimited the regions where the ionic density is
quasi-Gaussian according to the buffer gas and
computed the statistic parameters with reasonable
accuracy.

This method can be extended for non-Gaussian
repartition by generalizing the 3D model with
several parameters.

This work was done by neglecting space charge
(number of ions being of the order of 10 ). Howev-
er, it is also interesting for the study of nondilute
confined population. Actually we have established,
on the other hand, a formalism which permits one
to evaluate the space-charge effect and for which it
is necessary to know the energy and spatial parame-
ters in absence of space charge. With this formal-
isrn, it is possible to take account of these collective
phenomena when fo is Gaussian (the evaluation of
the disturbing term in the motion equation being
too long in the opposite case to be in our model).
Therefore, the present estimate of the parameters
will allow us to systematically study the characteris-
tics of the movement in presence of weak space
charge and to check that some properties of the
motion remain realistic when the number of ions is
increased. If this is so, it will be possible to know
the energy and spatial properties, particularly the
form of the distribution and to calculate the spatial
dispersion and the ionic temperature in the whole
stability diagram without neglecting the space
charge.
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APPENMX

Let so ——(to„xo)/[1+3„(0)] and so ——xo/[1
+D„(0)];to and to are the corresponding values for
zp and ip and let y(sp, sp, tp, tp ) be the representation

of a function g ( xp, xp). Setting

fo(xo(so ),xo(so), 0,0,zo(to ),zo(to ) )=q&(so, so, to, to )

(2.4) allow us to write

y'(s p, sp, tp, tp )4P(Sp, sp, tp, tp )ds pds pdt pdt p

=IY(sk st 4 4')%(so so to to)dsodsodtodto
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Choosing a function y such as
«

so
f(so,so, to, to) =exP l (A,o,ko)

so

then

So

fexp i(Q, A0)
so

y(so, so, to, to)dsodsodtodto

sk
=fexP i(ko&Ao) rP($0«so«to«to)

which imphes that the Fourier transform of this re-
lation is given by

y(Q, Ao ) =y(A t, )L, ) ),

where k~ and I,
&

are obtained from ko and A,o by a
rotation of the angle —~„kT . Since co„T is an
irrational number, this means that j is isotropic,
i.e., @ is function of (A,o+ ko )

'~ . Therefore,
y(so, so, to, to) is also isotroPic and

Xdsodsodtodto . (A1) P($0«$0«to«to) Pl(($0+$0) «to«to)

From (2.6) the vector (; ) is deduced from ( ) by a

rotation of the angle co„kT:A'(e„kT ) and (A1)
become

The same considerations are applied to q~, for
a function y depending on to and to, to give

So
exp / (ko, Q ) . +($0,$0, to, to )dsodsodtodto

so
r

So
=f exp i(A,o,g)A'(ro„kT~)

so

(so so to to)dsodsodtodto

'pl(($0+$0) «to«to) (p2(($0+$0) «(to+to) )

and finally, from (2.7),

%2((so+so) «(t02+to) ) =tp(u„, u, ) .
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