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Exact solution of the Dirac-Coulomb equation and its application
to bound-state problems. I. External fields
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An exact treatment of relativistic effects in bound-state problems in hydrogenlike atoms is
given. In this paper we discuss the Zeeman effect and the Stark effect for relativistically
bound electrons in a Coulomb field. For the Zeeman effect, the exact solution obtained by
Darwin is used, and results of Crubellier and Feneuille for the Breit-Margenau correction
are obtained in a simple way. For the Stark effect, the solution of Wong and Yeh is used.
The exact expression can be readily compared with that of the Pauli approximation, and all
correction terms can be identified. In the following paper we discuss interaction of the
bound electron with radiation in an exact relativistic way. In the evaluation of the radial r
matrix elements with n'gn, we present a closed-form expression as a sum over three param-
eters, derived from the method of the generating function of Laguerre polynomials.

I. INTRODUCTION

It is interesting to note that although nonrelativis-
tic treatment of bound-state problems in hydrogen-
like atoms has been developed in great detail, there
exists very little treatment of the relativistic case in
an exact may. One of the reasons is that the exact
solution of the Dirac-Coulomb equation given by
Darwin' and Gordon' is very complicated. So far,
an exact treatment of the bound electron in an exter-
nal field can only be found in the Zeeman effect,
leading to the Breit -Margenau correction. The
correction term has been evaluated by Crubellier and
Feneuille, with the simple result

J f„ijr dr = —,(1—e),

and f is the radial wave function for the "small
component" as given in Eq. (14.37) of Bethe and Sal-
peter. In most other cases, the Pauli approximation
is used, where the small component of the wave
function is neglected, and the radial wave function is
replaced by the nonrelativistic Schrodinger solution.

This situation is now remedied since we have
found a simplified solution to the Dirac-Coulomb
equation. This solution is very similar to the solu-
tion of the Schrodinger equation and leads directly
to the Pauli approximation if one (1) neglects the

small component and (2) replaces (I —o. Z )'~ by I.
Therefore instead of using the Pauli approximation,
we can now give an exact treatment of relativistic
effects by using the exact solution of the Dirac-
Coulomb equation. %'e find that our solution can be
applied to the Stark effect, mhich mill be treated in
this paper, and interaction of bound electrons with
radiation, which mill be treated in the following pa-
per.

In this paper we discuss the bound electron in
external fields, i.e., the ~man effect, where the
external field is magnetic, and the Stark effect,
where the external field is electric. In the following
paper, me discuss interaction of the bound electron
with radiation, obtaining transition probabilities and
sum rules in an exact, relativistic way.

In Sec. II we discuss the radial r matrix elements
which will be used repeatedly in subsequent sections.
For the case n'&n, we obtain a closed-form expres-
sion for the radial integral using the method of the
generating function for the I.aguerre polynomials.
In Sec. III me discuss the ~man effect and obtain
Eq. (1.1) in a simple way. In Sec. IV we discuss the
Stark effect, using the solution of %ong and Yeh
for the Dirac-Coulomb equation.

II. HYDROGENIC RADIAL r
MATRIX ELEMENTS

In this section we shall consider the integral

j R~rR t„rdr (2.1)
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where R„~ (or R„~ ) is a radial wave function con-
taining one term of a confluent hypergeometric
function. n and k need not be integers. In fact, they
are irrational in all the cases under consideration.
However, the radial quantum number

n, =n —A, —1 (2.2)

is always a non-negative integer.
The integral (2.1) can be divided into two parts:

(1) n =n' (2) n&n'. For n =n', the integral has
been evaluated by Pasternack and Sternheimer,
Armstrong, and many others. This integral is con-
nected with the group O(2, 1) or SU(1,1), and is, in
fact, reducible to the Clebsch-Gordan coefficients of
SU(1,1) obtained by Ui. ' For n&n', the integral
can be evaluated by using a recurrence relation ob-
tained by Gordon, "or by repeated differentiation of
a formula obtained by Menzel. ' A closed-form ex-

I

pression has been obtained by Badawi, Bessis, Bessis,
and Hadinger. ' We shall also give a closed-form
expression for the integral directly as a sum over
three parameters.

The radial solution we have obtained for the
Dirac-Coulomb equation can be expressed as

N( ~
[I (n +A+1)1 (n —A+1)]'/

I (2A, +2)

Xp e ~",F, ( —n+k, +1,2A, +2,p),

(2.3)

where N(co) is a normalization constant. We would
like to take this opportunity to point out that m and
E~/y in Eq. (3.45) of Ref. 7 should be interchanged.
Therefore N(co) should read

N(co)= (4p'/n)' [(n A+ , c—o , —,—)!(n——A+ 2
co —, )!—]

X [(n —A+ —,co ——, )(n —A, + z to+ —, )(Ett/y corn )+ (E—ir/@+tom )] (2.4)

(2.5)

p =2pf',

(m 2 E2)1/2

(2.6)

(2.7)

a'=o)(j+ —, ) =col ——, + —,a) .

In terms of the normalized Schrodinger solution R„~, we have

[(n A)I]l/2[(n A 1)f]1/2(2n)l/2(2p )
—3/2R

(2.8)

(2.9)

For the radial solution obtained by Darwin, each component contains the sum of two confluent hyper-
geometric functions. However, each term in the sum can be expressed in the form of (2.3) with appropriate
definitions for n and A.. Thus, for example, we can write

f=N(1 e)' [n'f—I +(N «)f2], —

g=N(1+@)' [—n'f~+(N ir)f2], —

where f~
and f2 are of the form (2.3).

Then for n'=n, we have

f r"R„~R„~r dr = (2p) A( —k —2,0,An
~

A' n) —,I (A+A'+k+3)[1 (2A+2)1 (2A'+2)n ]

A(k, q, An
~

A'n')= [I (2A. ,+2)I (2A'+2)1 (A'+n'+ 1).I'(n' —A')I (n A)/I'(n+A—.+ I)]'/

X5(n', q+n) g ( —1)~+'+" "[I(n A, t)I (A+A'+—q+—t+2)]

(2.10)

(2.11)

(2.12)

A, —A,
' —k —1 k —q

q+ A.—A, '+ t t (2.13)

For n&n, we wish to point out that the integral can be evaluated by the method of the generating function
for the Laguerre polynomials. ' Thus we obtain
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f „k~ ~ „2d 2k+k +'k+2(2+) —k —2/2(2+~)3/2(+/+~)k' i
(nn~) —&/2[1 (n g)l (n~ )i~)]&/2

X[1(n+){,+ l)1"(n'+A, '+1)]-'/21 ()i,+A, '+@+3)

( 1+ iy )
—n'+n 22—+p n -2r-k ——

2( iy 1 )n' —n 2, '+k—p+n—+2m( 1 )p+n-k —i

p p P P
0'pP, T

—~+~'+k +1 k —A, '+k +1 —A, —A,
' —k —3

—k —A,
' —k —~—3 —k —2A, —n'+n +p —o —2~—3

X n —n —A. +A, —p+0'+TI
n —A, —1 —o' —v' (2.14)

Equation (2.14) can be compared with the result of Badawi et a/. ,
' where the radial integral is computed for

the Schrodinger case.

III. ZEEMAN EFFECT OF THE
RELATIVISTICAI. LY SOUND ELECTRON

In the Zeeman effect where the magnetic field is
weak compared to the separation of neighboring
fine-structure levels, the unperturbed states can be
taken from the exact solution of the Dirac-Coulomb
equation. The magnetic field can be considered as a
perturbation. The perturbing term is —e a.A. This
case has been considered by Breit and Margenau.
For the relativistically bound electron, Margenau
obtained a correction to the Lande g factor
~j(a.+ —,). The relativistic Lande g factor is

f f r dr=% (1—e)

x n' f"f',r'dr

but f and g are normalized. Thus

f g r dr+ f f r2dr=l, (3.7)

2@foe (2j + 1) ce

CO fgr dr
fg 2J (J'+ 1) 0

(3.1)

K
1

4K f f2 2d
2]c—1

2

(3.2)

%e now give a simple proof of Eq. (3.3). First,
we write f and g according to (2.10) and (2.11).
Then, using (2.12) and (2.13), we can easily show
that

f, fif2r'«=0. (3.S)

Therefore

where f and g are given explicitly by Bethe and Sal-
peter, 6 in their Eq. (14.37).

Crubellier and Feneuille evaluated the radial in-

tegral in (3.1) and obtained a simple result for the
radial integral in (3.2), i.e.,

f f„&zr2dr = —,(1—e), (3.3)
0

where

(3.4)

Setting (3.8} into (3.6), we get

f f r'dr= , (1—e), —

Q.E.D.

IV. STARK EFFECT OF THE
RELATIVISTICALLY BOUND ELECTRON

In this section we consider the Stark effect of the
relativistically bound electron, where the electric
field is weak compared to the separation of neigh-
boring fine-structure levels. Then the unperturbed
states can be taken from the exact solution of the
Dirac-Coulomb equation, and the external electric
field can be considered as a small perturbation. As
far as we know, no exact treatment in the relativistic
case has been given. Bethe and Salpeter" discussed
this case in the Pauli approximation.

%e find that this case can be treated exactly in a
relativistic way using the simplified solution of
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(u' ~!eFz ~u+), (4.1)

I

Wong and Yeh for the Dirac-Coulomb equation.
This treatment is much simpler with the Wong-Yeh
solution than with the Darwin solution, even though
in principle both solutions can be used. Moreover,
the Wong-Yeh solution leads immediately to the
Pauli approximation as we shall show later.

The perturbing term caused by the external elec-
tric field F in the z direction can be written as eFz.
Thus in the Stark effect we wish to calculate the
matrix element

where u+ is a 4)&1 column matrix with co=+1,
and u' is a lx4 row matrix with co= —1. u' is
the Hermitian conjugate of u

Therefore according to (4.1), we find

i (Elr/y m—p)' P!r! ~X „(+1)
u+) =N+

(4.2)

where we have used m to denote the magnetic quan-
tum number and mp to denote the mass of the elec-
tron with

u' =[ N i—(Ea/y mp)'—P!r!X „(—1), N(E—s/y+mp)' P!r! tX„(—1)],
where the + signs refer to Co =+1, respectively.

Finally, we find

(u* !,eFz,!u+)=eF f r dr N+N (E~/y mp)P—!r!P r! ~ f cosHX' „(—lip „(+1)de

—f r drN+N (mp~Es/y)P!&!P &! & f cos8X'„( —1)g„(~1)dc@

(4.3)

(4 4)

The angular integrals can be readily evaluated with the value m /[2j (j + 1)] for both terms. Before evaluat-

ing the radial integrals in (4.4), let us compare our results with the Pauli approximation. It can be easily seen
that, of the two terms in (4.4), the largest term is the second one since it contains the factor (m p+EK/y). The
radial functions

P~r~
and (()Ir! ~

reduce to R„~+~r2 and R„J ~r2, respectively, if one replaces ~y~
=[(j+—, ) —a Z ] r by j+—,. Thus the second term reproduces the Pauli approximation result [Eq. (55.2)
of Ref. 6]. The other term is a further improved correction over the Pauli approximation due to the small
component. The radial integral can be easily evaluated with the following result:

f r dr/!r! P!r! ~
———6(2p) [(n —

~ y~ )!][(n—
~ y~ +1)!]' [(n —

~ y( —1)!]' (n —y )' . (4.5)

The final expression for (4.4) is

(u'
~

eFz
~
u+ ) = eFN+N [m/j(j +1)](2P) 2mp6[(n —

~ y~ )!]

X [(n —
I y I

+1)ll'"[« —
I y I

—1)l]'"(&'—y')'"=& (4.6)

As we have pointed out in Sec. II, the terms
(n —

~ y~ ), etc., are all non-negative integers con-
nected with the radial quantum number n, . In fact,
in the present case, we have

n, (+)=n —
~ y~ —1,

n, ( —) =n, (+)+1,
(4.7)

(4.8}

(4.9)

Thus each fine-structure level is split by the electric
field into 2j + 1 equidistant terms labeled by
m = —j, . . . , +j. The separation of neighboring
terms is given by e /m as is (4.6).

where n, (+) and n, ( —) refer to the cases co=+1
and co = —1, respectively.

The eigenvalues of the perturbing energy are equal
to

V. CONCLUSIONS

We have shown that an exact treatment of rela-
tivistic effects for bound electrons in hydrogenlike
atoms can be carried out. In this paper, we have
discussed the ~man effect and the Stark effect,
where the external fields are weak compared to
fine-structure levels. We have carried out an exact
calculation in first-order perturbation theory. In
principle, this calculation can be carried out to any
higher orders. In the following paper, we shall dis-
cuss interaction of the bound electron with radiation
in an exact, relativistic way.

One interesting observation we would like to
make with regard to our work is that "relativity" is
not necessarily synonymous with "high energy. " In
our treatment of the bound electron, we have used
the manifestly covariant formalism required by rela-
tivity, which is the only exact way to deal with the
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spin of the electron, and yet the energy need not be
high at all. Moreover, the external fields, in either
the oman effect or the Stark effect, are "weak"
compared with fine structure, so that perturbation
theory can be used.

In our calculation for the Stark effect, me have
used the simplified solution of the Dirae-Coulomb

equation obtained by %ong and Yeh. This solution
has the advantage that it contains the Pauli approxi-
mation automatically, in the limit when (1}the small
component is neglected snd (2) (I' —a2Z')'r2 is re-
placed by I. Gur result for the Stark effect in (4.6}
shows that the exact calculation is just as simple as
the Pauli approximation.
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