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Quantization of the damped harmonic oscillator
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By means of a canonical transformation that can be implemented as a unitary change of
representation, we show how to quantize the damped harmonic oscillator.

I. INTRODUCTION

There has been a revival of the problem of quan-
tizing nonconservative systems. See Refs. 1 and 2
and especially Ref. 3 which is an in depth review of
nonpotential systems. In this work we discuss the
quantization of the mechanical system described by

which yields the change of variables

g e2 t/2x,

p e
—A,t/2p + e Art/2x

2
0

and a new Hamiltonian given by

(2.3)

x+M+co x =0 . (F 1) H =H+ = —,p+ g
~F2 i 2 CO (A)

Bt ' 2
(2.4)

In Refs. 1 and 2 and in some of the references quot-
ed there a variety of methods of dealing with this
problem are given.

Here we treat (1.1) as a Hamiltonian system and
show that by means of a canonical transformation,
it can be reduced to a standard harmonic oscillator
with the appropriate frequency.

We then proceed to the quantum case by imple-
menting the canonical transformations between the
obvious observables, solving for the function deter-
mining the change of representation, and obtaining
as a result that the quantization of the system with
Hamiltonian

—A, f 2 2e p2+ ~x
eA

2 2
(1.2)

II. SOLUTION BY MEANS OF CANONICAL
TRANS FORMATIONS

Consider the Hamilton equations

x=e p, p= —co e x,—A,f ' 2 A,f (2.1)

associated with (1.2). In order to solve them, we
perform the canonical transformation given by the
generating function

corresponding to (1.1) can be done the standard way,
i.e., p ~p,~

= —i(t)/Bx), x ~x,~ (equals multiplica-
tion by x).

where co (A, )=co —A, /4. We should remark that
there is no generating function of the type F~(x,g)
yielding (2.3) and (2.4). Solving (2.1) is equivalent to
solving the Hamilton pair associated with (2.4), and
with the use of (2.3) obtaining the solution to (2.1).

III. THE QUANTUM CASE: it= 1

We shall follow Refs. 4 and 5 and say that corre-
sponding to (2.4) is the transformation

g e 2t/2x~,
(3.1)

—A,t/2~ ~ At/2~P=e p+ —e x,+2
where the caret denotes operators.

We shall find a transformation function of the
type (x (P), where P )P)=P (P) and x )x)
=x

~

x ). It is easy to see that the solution to

P(x iP)=(x iP iP)
T

=e ' i (x—
~
P) +—e"' x (x

~
P)a A

Bx 2

is given by

e At/4

(x ~P)= exp i xPe ' —x e"')—
(2) 4

(3.2)

p) xpe Ai/2

4
(2.2)

where the role of the normalization factor
e ' /(2m) is twofold. First, it ensures that
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f (P'
i
x )dx &x

i
P) =5(P' —P) (3.3)

holds, and second, that (3.6) is satisfied, which we
shall now make more explicit.

Let P(P, t) be such that

i (P, t) = —,[P —co (A.)]g(p, t),
Bt

(3.4)

i.e., P(p, t) denotes a possible curve of states for

H= —,[P +to (A, )Q ]

expressed in the momentum representation. Let

q(x, t)= f &x ~P)f(p, t)dp (3.5)

then P(x, t) satisfies

tap(x, t)

at
e ' Bg(xt) t0 2, 2.e 'X j(X,t)

ax

(3.6)

(with W the left-hand side and A the right-hand
side) and be careful when integrating by parts. One
obtains

which justifies the application of the standard
quantization rule to the Hamiltonian (1.2).

To verify (3.6) apply ia/at to both sides of

e x'/ exp(iM e '/4)g(x, t)

f exp(ixPe '/ )g(p, t)dp
(2 )3/2

g2 2 At—W=e 2'/4exp(ikx e~'/4) — p(x, t) — —g(x, t)+ (x, t)

(8 2,/4 . 2 x, e '5 coe '
iA~~~ A, x—SF=e ~'/ exp(iix2eX'/4) — + x g(x, t) (—x, t) e'Q—(x, t)

and by equating the last two, (3.6) is obtained.
It follows from (3.2) that

&x
i
Q)= f &x

i
P)(P

i Q)dQ

=ex'/ exp( i 4c e '/4)5—(Q —xe"'/ ). (3.7)

This last identity and (3.2) can be used to verify
that

f ~x)dx&x
~

=f ~
Q)dQ(Q

~

=f ~P)dP(P
~

=f l»dp&p I

and, therefore, if any of them is a spectral resolution
of the identity, so are the others. Also, a simple in-

tegration shows that

f &x
i

~

P)dP(P
~

x ) ei.t/25(xeit/2 x leit/2)

=5(x —x')=&x ~x')

which together with (3.3) amounts to the unitarity
of the transformation determined by (2.2). This im-
plies that

~
f(x, t)

~

is a genuine conserved probabil-
ity density.

In the Sec. IV, we shall see that the "dissipative"
behavior of the quantum case is rather analogous to
that of the classical case.

To finish this section note that

[P,Q]=[Px]
which implies that the commutation rules remain

I

the same in both coordinates. To analyze what hap-
pens with the uncertainty principle we proceed as
follows. Note that for H as in (3.6) or (1.2), the
quantum analog of (2.1) is

dt
i [x,H]=e —"'p.

If we let xphys x ~ Pphys (m =1)(dx/dt)
=e 'p, it follows that

[xh ph ] [xp]e
from which the standard computations would yield

-kt/2
LRLg phys gPphys

which implies that the uncertainty decreases ex-
ponentially with time. Those interested in why one
should consider Pphys mdx!dt and not P should
consult Ref. 3.

IV. COMPARISON OF CLASSICAL
AND QUANTUM CASES

We shall first examine the dependence on A, of the
motion of the system described by

P to (A)2+ 2

in the quantum and classical cases.
(a) co ()=co —k /4&0. In this case the classical
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orbits are closed in phase space and the standard
discrete spectrum and normalized bound states ap-
pear in the quantum case.

(b) cu (A, ) =O. Now both cases describe a free par-
ticle. The closed orbits and discrete spectrum
change into open orbits and continuous spectrum
plus unnormalized eigenstates, respectively.

(c) t0 (A, ) (0. In this case the potential is that of a
repulsive force, and an unbounded motion appears
in both the classical and quantum cases.

To compare further the classical and quantum
cases, note that if xo,po denote the initial data, the
solution to (1.1) is

x (t}=e '~ xocos[t0(A, )t]

Po+kxo/2+ sin[co(A, )t]

where the quantity in brackets is Q(t) for Qo ——xo,
Po =go+ A, /2xo.

When taboo, the particle ends up at x=O. An
analo~ of this can be obtained as follows. From
Q =e '~ x it follows that

(Q'
i f(x)

i g)=f(ge 'i')&(Q' —Q)

from which it follows that

f f(x) i g(x, t)
i

dx= ff(e "'~ Q) i g(g, t)
i dQ

(4.2)

which in the particular case f(x)=x reads as

f x if(x, t)
i

dx =e "' fQ if(g, t)
i

dg.

When m(A, ) p 0, stationary states are possible, and
a finer analog to (4.1) is obtained. Namely, assume

t»t lt((g, t) I'dQ= lt('(Q) I'dg and f lt{'«) I'dg
= 1, then taking limits as t~ oo in (4.2) we obtain

lim ff(x)
i P(x, t }

i
dx =f(0)

i.e., the particle distribution concentrates at x=O as
t~ (X).

We can also compute the expected value of the
mechanical energy

x NE= +- x
2 2

in a stationary state of the Hamiltonian —,[P
+to ()L,)g ]. A small computation shows that

+

where P„ is the eigenstate of —,[P2+t0~()(, )Q2] with
energy (n + 2 )c0()(,). Obse~e that as /~0

(g, i
E

i f, )~(tt + —, )te

as it should. Also, (t{„iE i
f„)-+0as t +oo, i-.e.,

mechanical energy is dissipated.

V. COMMENTS

We have shown that the standard quantization
rule can be applied to the system described by the
Hamiltonian (2.1) if it can be applied to the Hamil-
tonian (3.5), the two descriptions being related by a
unitary transformation.

If we take classical dissipativity to mean the fact
that, from any starting initial state, the particle ends

up at x =O,p =0, this is reflected in the quantum
case in the fact that in states stationary in the (Q,P)
representation, the particle ends up concentrated at
x =0 as described in the Sec. IV.

ACKNO%'I EDGMENTS

I would like to thank my colleagues Luis A. Her-
rera and Lutz Dohnert for stimulating conversations
on the subject of this paper.

'N. A. Lemos, Phys. Rev. D 24, 2338 (1981).
2N. A. Lemos, Phys. Rev. D 24, 1036 (1981).
3R. M. Santilli, Hadronic J. 5, 264 (1982).
~H. Goldstein, Classical MecIIanics (Addison-%'esley,

Reading, Mass. , 1962).
5M. Moshinsky and T. H. Seligman, Ann. Phys. (N.Y.)

114, 243 (1978).


