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Relativistic quantum states of a particle in an electromagnetic plane wave

and a homogeneous magnetic field
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The exact solutions of the Klein-Gordon and Dirac equations are found by purely alge-
braic procedures for a charged particle embedded simultaneously in a plane-wave radiation
field and in a uniform magnetic field which is directed parallel to the direction of propaga-
tion of the plane wave. Two cases of the solutions are considered: (i) the radiation field is a
classical external plane wave and (ii) it is a quantized field. The connection with less explicit
or more specific solutions of this problem known previously is established and possible ap-
plications are discussed.

I. INTRODUCTION

Magnetic and laser fields are frequently used in
the study of fundamental processes. These processes
include, in particular, different types of scattering of
charged particles in the presence of strong radiation
and/or magnetic fields. The recent interest in the
theoretical as well as experimental studies of
charged-particle scattering has been motivated by
the rapid developments in the production of strong
radiation fields by high-power lasers and of strong
magnetic fields for thermonuclear confinement.
Moreover, there are interesting applications to astro-
physical problems.

For the theoretical description of the basic phe-
nomena there essentially exist two approaches which
have been widely used in the past. For not-too-
strong fields, the initial and final states of the
scattering process are considered to be free-particle
states, and the influence of the fields is taken into
account by perturbation methods. For strong fields
a different approach has been found more appropri-
ate. The initial and final states are taken as those of
a charged particle embedded in the strong fields (i.e.,
the exact quantum states of a charged particle in-

teracting with these fields). However, with a few ex-
ceptions, this method was restricted to applications
in the nonrelativistic domain mainly due to the com-
plexity of the existing relativistic solutions. There-
fore the main aim of our paper is to present the ex-
act relativistic solutions in a relatively simple alge-
braic form particularly suited for practical calcula-
tions.

The study of exact solutions of relativistic wave
equations in the presence of external fields started
many years ago. The stationary states of an electron
in a homogeneous magnetic field were obtained by
Rabi. This solution was rederived later and dis-
cussed in detail by Johnson and Lippmann. A par-
ticular feature of these states was observed quite re-
cently by Bloch. The solution for an electron in a
plane electromagnetic wave was first given by Vol-
kov and, since then, it has been rederived several
times in connection with different applications
(bremsstrahlung, Compton scattering, etc.). The
combined action of homogeneous magnetic and
plane-wave radiation fields has been investigated by
Redmond for the particular case in which the mag-
netic field is directed parallel to the direction of
propagation of the plane wave (so-called Redmond
configuration). Seely has derived the corresponding
nonrelativistic solution together with an important
application to plasma heating by inverse bremsstrah-
lung. The difficulties with the solutions presented
in Refs. 5 and 6 rest in the fact that the expressions
for the wave functions are given in a form which is
not very transparent for their physical interpreta-
tion. Moreover, for the spinor part of the Redmond
solution a highly implicit form was chosen. We
found it convenient to put the solution of Ref. 6 into
a slightly different, purely algebraic form. This fa-
cilitated the calculation of the nonrelativistic brems-
strahlung cross section.

In order to achieve similar simplifications for the
relativistic theory of induced and inverse brems-
strahlung and other related phenomena, we shall in
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We consider a particle of charge e and mass m

which is interacting simultaneously with a magnetic
and a laser field. The fields are accounted for in the
external field approximation, and we therefore
describe them by classical electromagnetic potentials
in the Coulomb gauge. The magnetic field
B=(0,0+) is homogeneous and constant and is
directed along the z axis, which is also the direction
of propagation of the plane-wave radiation field.
The latter is consequently polarized in the x-y plane.

The Klein-Gordon equation for the charged parti-
cle embedded in the two fields reads

I (i t) eA) «')(f—xo=0—. (2.1)

Here i B= [i B„)= Ii B/Bx"); e=ejkc and
&=mc/R. The scalar product of two four-vectors a
and b is defined as a b=azb"=g„„a"b". The
metric tensor is chosen to have the metric

1,—1,—1,—1, and all the other conventions also

agree with those of Bjorken and Drell. The vector
potential A is composed of two parts,

the following outline derivations of the exact solu-
tions of the Klein-Gordon and Dirac equations con-
taining a plane-wave radiation field and a uniform

magnetic field, choosing the Redmond configuration
for convenience. These solutions will be derived in a
purely algebraic manner, as a result of which they
can be written in a compact and transparent form.

We first investigate the case in which both fields
are classical. In Sec. II we present the solution for
the Klein-Gordon equation. It will be shown how
the problem can be put into a form which is identi-
cal with the nonrelativistic problem, the solution of
which has been presented in detail in Ref. 7. In Sec.
III the corresponding solution for the Dirac equa-
tion is dealt with. By analogy with the Volkov solu-
tion we introduce a transformation which reduces
the problem to the previous Klein-Gordon equation
pius the problem for a free bispinor. In Sec. IV we

briefly discuss how the foregoing results can be gen-

eralized to the case in which the radiation field is a
quantized plane wave. In See. V we summarize the
main results, discuss their connections with previous
calculations as well as their physical interpretation,
and also point out some possible applications.

II. KLEIN-GORDON EQUATION
WITH EXTERNAL FIELDS

A (u) =(O,ai(u), a2(u), 0)=(O,A(u)) (2.2b)

and A is the vector potential of the magnetic field

A (xi)=(0,8X /2, 8x'/2, 0)

=(O,A( x, ) } {2.2c)

pg ——( —i 8,—i By,0) (2.4)

Since the Hamiltonian does not contain the variable
v explicitly, we can look for solutions in the form
/=exp( ip„u)—g~ (u, x,). Furthermore, the term

with —~ can be eliminated if we put

fz (u, xq) =exp( ip„u—)4~(u, x~) with 2p„p„=~ .
Thus p„ is uniquely defined by p, and a. The equa-
tion for 4& then reads as

I i 8„—(1/2p„) [Pz —eA(u) —eA(x& ) ]

X+&(u, xz) =0 . (2.5)

If we now make the following replacements: u~t
and p„~m, then (2.5) is easily recognized to go over
into the (nonrelativistic) Schrodinger equation of a
particle in a uniform magnetic field and in a radia-
tion field where the latter is taken into account in

dipole approximation. The rdativistic problem has
thus been reduced to the much simpler nonrelativis-
tic problem which has been investigated in all details
in Ref. 7. In particular, {2.5) has to be compared
with Eq. (1) of Ref. 7, and with the above substitu-
tions both expressions are identical. Thus instead of
solving (2.5), we merely need to quote the result.
Let us denote the solution of the Schrodinger equa-
tion [Eq. (11) of Ref. 7] by 4, (t,x~). Then the solu-

tion for P~o of Eq. (2.1) reads as

QKo ——e '~"C,(t =u, x~)—

p=(p„,p„,o,o), p'=~' .

It is convenient at this stage to introduce lightlike
coordinates' u, v instead of x and x, and we intro-
duce the following definitions:

u =(xo—x }/V2, u =(xo+x3)/V2

Then we rewrite (2.1) in lightlike variables

[2(i B„)(i8, ) —[pj —eA(u) —eA(xj )]2

A(x)=A (u)+A (x])

~here A describes the radiation field

(2.2a) For the sake of completeness we write the result for

@,=CeD~
~
n, )

~
Ps)exp i I [co,(n, + —, )+Re(oa)—+(e~/2m)A (r)]dr
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where instead of (x,p„) and (y,p») the creation and
annihilation operators (at, a) and (bt, b) have been
introduced by the usual definitions aIld

Cs e——xp[i8(a i» +ah )], 8= —~/4 (2.8a)

is the generator of a Bogoliubov transformation,
whereas

D =exp(aa —o~a);o+Eom, = —Ea~

denotes the generator of a displacement transforma-
tion. Moreover,

~
n, ) is a Fock state (number state)

of the a oscillator, while
~ Ps) is an arbitrary state

of the b oscillator. Finally, m, =eBlme is the cy-
clotron frequency and

a=@(fur, /2m)' [a, (u)+ia2(u)] (2.8c)

Thus we have found that the desired solution of the
Klein-Gordon equation has a very similar structure
as the one of the nonrelativistic Schrodinger equa-
tion. We may summarize the above correspondence
in the following:

Relativistic

The solution has free-
particle plane-wave structure
in the v direction.
The four-momentum of this
free-particle motion is on
the mass sheB (2p„p„=~').
The solution describes two
coupled and displaced har-
manic oscillators in the
x', x plane; the displace-
ment is a function of u

only.

Nonrelativistic

The solution has free-
particle plane-wave structure
in the v direction.
The energy-momentum rela-

tionship is that of a free-
particle motion (E =p, /2m).
The solution describes two

coupled and displaced har-
monic oscillators in the x,y
plane; the displacement is a
function of t only.

The analogy between the two cases is thus complete.
Moreover, gxo is the solution which in the nonrela-
tivistic limit exactly reduces to the solution of the
Schrodinger equation.

III. DIRAC EQUATION WITH EXTERNAL
FIELDS

The Dirac equation for a charged particle embed-
ded in a plane-wave radiation field and in a homo-
geneous magnetic field can be written as

{3.1)

The y matrices satisfy the usual anticommutation
relations, and we introduced Feynman's dagger no-
tation, i.e., 4=a.y. The other notations and con-

I

ventions are the same as in Sec. II. In particular, A

is given by (2.2).
The equation (3.1) can be rewritten in light-cone

variables to yield

[i B„y„+iB„y„+(p„—eA„)s')

+ (p» —eA» )s'2 —«]l(D ——0

(3.2)

This equation does not explicitly depend on U and
therefore possesses solutions in the form

QD =exp( ip„x)f—» (u, x~). If we recall the expres-

sion for the Volkov solution, we can make for the
solution of (3.2) the ansatz

g» (u, x~) = t I —[0/2(kp)][(p„—eA„)e ~+(p„eA» )s'q]—I 4&

%'ith some elementary algebra we find that the equation satisfied by 4 is

(p «+y„[iB„——(I/2p„)[(p, —eA„) +(p» eA»)2]+(eB/—2p„)o'I )4=0 .

(3.3)

(3.4)

This equation has the enormous advantage that 4
can be chosen to be an eigenfunction of the spin
component o along the direction of the magnetic

field with the eigenvalues s =+1. Then, apart from
an additional constant eBs/2p„, we realize that the
coefficient of y„on the left-hand side (lhs) of (3.4) is
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[p+k[eB/2(kp)]s —a] u, =0 (3.6)

For solving this equation we define a new four-
momentum q with nonvanishing components q„and
q„by setting

p =q —k [eB/2(kp)]s =q —k [eB/2(kq)]s

(3.'7)

since from k =0 follows p k=q k. Then (3.6)
reads as

(3.8)(q —ir)us, ——0

So q is on the mass shell, i.e., q =~ . Consequently
the four-momentum p is the sum of an on-shell
free-particle four-momentum and a lightlike vector
which arises from the interaction of the spin with
the magnetic field. We should like to mention at
this point that the term e8s/2(kp) can be eliminated
from (3.4) if we use a slightly different ansatz for 4,
viz. s

the Hamiltonian (2.5) of the transformed Klein-
Gordon equation in Sec. II. Therefore the solution
of (3.4) can be obtained with the further ansatz

4=4& (u, xj)u,

This means we can look for the solution of (3.4) in a
product forIn, where the first term is spin indepen-
dent and is a solution of the Klein-Gordon equation
(2.5), whereas the second term is independent of the
variables (u, xz) and is thus a constant bispinor
which satisfies the following equation:

IV. KLEIN-GORDON AND DIRAC
EQUATIONS WITH A QUANTIZED

RADIATION MODE AND A MAGNETIC
FIELD

The problem of the particle motion in a quantized
radiation field is an immediate generalization of the
situation analyzed by Volkov. It has been ad-
dressed first by Berson" who later on generalized it
to the case in which a constant magnetic field is also
present. The latter problem has then been reinvesti-
gated by Abakarov and Oleinik' with special em-

phasis on the evaluation of the spectrum and the
cyclotron-type resonance contributions to it. On ac-
count of thc nonalgebraic representation of the ab-
sorption and emission operators, ho~ever, the ex-
pression derived for the wave functions are much
too complicated and not sufficiently explicit to per-
mit direct applications to any physical problem.
Therefore we considered it necessary to derive these
solutions in a relatively simple algebraic manner.

Our starting point is again Eq. (3.1). The magnet-
ic part of the vector potential continues to be given

by (2.2c), whereas the radiation term differs from
(2.2b). For the sake of simplicity we consider a cir-
cularly polarized Inode so that

A =a(eae +e a e ) (4.1)

a and a~ are the usual absorption and emission
operators, obeying [a,a ]=1. e defines a complex
vector of polarization with

e =(1/v 2)(e' —ie )

@=exp[ iu (eBs/—2P„)]@~u, (3.5')

This immediately leads to (3.8), but the physical
meaning does not change. We again get an addition-
al four-momentum directed along k.

Reversing our steps we can consequently put the
solution of (3.1) into the explicit form

QD exp[
——i u (eBs—/2p„) ]

X [1 [ir/2(kp)]—(pi eg)]garou—pg

In other words, by means of the transformation
(3.3) and the ansatz (3.5) the solution of the problem
has been separated into two problems. The first
agrees with the solution of the Klein-Gordon (and
by analogy the Schrodinger) equation. The second
one is identical with thc equation for a constant
free-particle bispinor and thus can be easily solved.

e =e* =e k=0 e e*=—12 2

The particular expression for the constant a depends
on the choice of the system of units, e.g., in the
Gaussian systeID Q =(2~ /N V) . Given Eq.
(3.1) with the above vector potentials, we look for
solutions in the form g=exp[ikx(a "a+ —, )]4. If
we insert this into (3.1) we find the lhs to be in-
dependent of u and U. Therefore we take 4 to have
the form %=exp( —ipx)4& with p =(p„,p„,0,0).
Thc structure of thc equation satisfied by 4& is most
easily revealed if we introduce the creation and an-
nihilation operators b~, b] and b2, bz instead of x,
p„and y, p~ by means of the usual definitions for a
harmonic oscillator of frequency e8/2. Then 4z
obeys the equation

(p a k(a a+ —, )—[[g—a+—i (eB/2)'~ (b, +ib2)]e+[ga i (eB/2)'~ (b, —b—z)]e*])4z ——0 (4.3)
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where g =ea=(2nre /ficoV) '~2. 4z we now choose
to have the form

Pp C—e—'@p, Cs =—exp[i8(b ib2+bibi)]

Pq ——[1+(k/2kp)[(ga +V eB }e'

+(ga + t/eBbt)e']]X~ (4.'7)

and the equation for 7& reads as

[p ~ i/[~, (a'a—+ ,
' )+~,(b'—b+ ,

')-
+g'(abt+a b)+Boo ])X =0, (4.8)

where &o——(g'+~8)/2k, ~]——(kp+g')/(kp),
ai2=eB/(kp) alld g =g eB /(kp). The advantage
of the above transformation comes from the fact
that all the te rats containing the operators a and b
have the same common matrix coefficient lr. Furth-
ermore, the expression to be diagonalized is just the
same as in the corresponding Klein-Gordon prob-
lem.

The expression in (4.8) representing the coefficient
of k can be easily diagonalized with the help of the

The operator C~ has the property

Cg 6 i Cg =6 i cosO+ lb 2 sing

By means of (4.4) and (4.5) with the particular
choice 8=(3n /4) we obtain for P~

[p —ir —k(ata+ —, )—[(ga +v eBb)e

+(gat+v eBbt)e*]]$~=0 (4.6)

with b:b2. T—he solution of (4.6} can again be
found with the Volkov ansatz

transformation

X~ = V 'X~ V =exp[ P—(abt a—tb)];

for if we choose P such that

tan2$ = —2g'/(coi —co2)

then we get from (4.8)

[P & k—[~—i(a a+ , )+~—;(b'b+, )—
+Boo'] IX~ =0 (4.11)

i.e., q is on the mass shell and since as before
p.k =q k, p can be entirely expressed in terms of q,
viz. ,

(4.15)

Finally, repeating the steps which have led to (4.14)
in opposite order we may thus write the solution g
of Eq. (3.1) with the radiation field (4.1) in the form

with cubi, 2=(aii+coz)/2+[(e)i —co2) /4+g l . Xp
may again be represented as a product of a bispinor
and a spin-independent part. The spin-independent
part reads as

In, & Ini, & (4.12)

wh«ea'a Inc&=no Inc& b'b
I
nb&="b

I nb& The
spinor part uz~ is determined by

(P —a —kA, )up g
——0

with k, =co'](n, + —,)+~2(nq+ —,)+Sos. If we

again introduce p —A,k=q as a new four-vector,
then

/=exp[ ipx+ikx—(ata+
2 )]Ca[1+(k/2kp)[(ga+v eBb)e'+(ga +~eBb )e"]I Vti I

n, &
I

nb &uq

(4.16)

This comparatively simple formula for the wave
function together with the expression (4.15) for p al-
lows for a particularly transparent interpretation ac-
cording to which the four-momentum of the total
system is composed of four parts, viz. , (i) a free
motion of the particle on the mass shell in the v

direction (q =x ), (ii) a free propagation of the
mode (nk), (iii) the interaction of the electromagnet-
ic mode with the motion in the magnetic field

1

k [cubi(n, + —,)+co2(nb+ —,)], and (iv) the interaction
of the particle spin with the magnetic field (kBs).

V. DISCUSSION

In Secs. II and III we have derived the solutions
of relativistic wave equations for a charged particle

I

embedded in a plane-wave radiation field and in a
homogeneous magnetic field. The solutions were
derived by purely algebraic procedures and were
presented as very compact algebraic expressions in
closed form. In previous investigations these solu-
tions were found in less transparent form, and con-
sequently their application in the investigation of
particular physical problems turned out to be very
complicated. We expect our solutions to be given in
sufficiently tractable form, in order to permit expli-
cit applications, mainly to scattering problems in in-
tense fields.

We have presented, in particular, the solution of
the Klein-Gordon equation. By introducing light-
like coordinates the problem has been essentially re-
duced to the solution of the corresponding nonrela-
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tivistic problem, which has recently been derived in
its algebraic form in Ref. 7. In the case of the Dirac
equation we have introduced a suitably chosen
transformation of the wave function which allowed
for a separation of the solution into a bispinor and
an amplitude function. The equation for the ampli-
tude emerged as the previously treated K.lein-
Gordon equation while the bispinor satisfied a free-
particle equation. In Sec. IV we finally demonstrat-
ed that the solution can still be found if the classical
radiation field is replaced by a quantized radiation
mode. While the solution of the resulting equation
is not very useful for practical applications, it per-
mits a particularly sixnple interpretation of the dif-
ferent factors of the resulting expressions in terms of
free-photon momenta and free-particle momenta.

In closing, we mention that the method of solu-

tion outlined in Sec. IV can be generalized to the
treatment of many radiation modes propagating in
the same direction. In forthcoming work the solu-
tions presented here will be applied, e.g., to the study
of charged-particle scattering in the presence of in-
tense fields and to the investigation of photon statis-
tics of a free-electron laser.
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