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Variational scattering theory arith functionals of fractional form
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The recently proposed functional of Takatsuka and McKoy, derived from the Schwinger-type

Newton functional, is shown to follow from the usual Hulthen-Kohn variational principle. A

generalization of their method becomes obvious in this approach and its better convergence is

demonstrated on a simple example.

In a recent paper' Takatsuka and McKoy use the
Lippmann-Schwinger equation

y=S+Gp Vy

to obtain the stationary functional of fractional form,
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simply from the standard Hulthen-Kato identity,

—,'x=-,' xi+(eilHlyt)-(e -vlHlei-e&, «)

where p is the desired exact solution of KItl =0 with

P —S+A.C, where

C —(p, /k)' cos(kr ——, lm)

from the Schwinger-type stationary functional
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Fp=
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If we ~rite

(7)

and A=tang. Pi is a comparison function such that

In the above, as elsewhere in our Comment, we use
the notation of Takatsuka and McKoy and consider,
initially, the single-channel problem. Thus
H =E —H, where H = Hp+ V is the Hamiltonian and
E the total energy of the system, S is the regular
solution of Hpu =Eu such that

S —(p,/k)' 'sin(kr ——,
'
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Gp is the Green's function associated with Hp, while
C - Gp VP = P —S. In a companion paper' Takatsuka
and McKoy apply the many-channel generalization of
(2), viz. ,

pi =S+a$i (8)

2
it[$1] =
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becomes

—,
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where a is an adjustable parameter, then the station-
ary Hulthen functional

Fm. = (c.l vis„) (s.l vl c„)
&c.lHI c„&

to a coupled —square-well example. In (4),

v= g lx. ) v.„(x.l,

(4) Extremizing this stationary functional with respect to
the linear parameter a gives

—,
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where
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and
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We wish to point out that the functional F] follows

If we now identify api with C, then (10) is just the
result of Takatsuka and McKoy' [cf. their Eq.
(4.11)],since the functional on the right of (10) is

just their functional Fi [cf. their Eq. (2.15)]. X[$1],
as given in (10), is of course stationary with respect
to further variation of Pi, i.e., of $i. Also, it is obvi-
ous from (8) that there is no restriction on the
asymptotic form of Pt (i.e., $1 —Xi C, but Xl can be
taken to be zero). The functional in (10) is evidently

of fractional form, i.e., independent of the normaliza-
tion of Pt, (or, equivalently, C) since an optimiza-
tion with respect to the linear normalization parame-
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ter a has been carried out (note that the optimal
value of a is just (ptI VIS)/($&IHIpt) ).

The method of Takatsuka and McKoy is thus just
the usual variational method in which an optimiza-
tion with respect to a linear parameter (the normali-
zation of C = P —S) has been carried out. Any
difference between the standard and the Takatsuka-
McKoy methods must, therefore, be due to differ-
ences in the trial function Qt (i.e. , Qt) used. It may,
nevertheless, be useful in some applications to do the
variation (optimization) of the adjustable features of
different parts of a trial function independently.
Thus one could write the trial function in the form
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Then, instead of (10) one obtains
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corresponding to the optimized value

a = (p& I ~ VI j)/(y, I HI yf)

where AVis defined by Hp= A VIti.

The functionals in (12) are stationary with respect
to independent variations of P and @] and, again, @]
can but need not have the asymptotic form A. ~C, i.e.,
$t can be an L2 function. Thus, if one has already
obtained an approximate solution P to P (P can, of
course, be variationally obtained, or by any other
method), then a variation correction Pt to P [cf. Eq.
(11)]can be obtained by extremizing (12) with

respect to $~, for the given p.
In order to demonstrate that the use of the func-

tional (12) will lead to better convergence than the
functional of Takatsuka and McKoy [Eq. (2)], that is,
if P is chosen to be a better approximation to p than
the Born approximation, we consider zero energy
scattering by a square well as an illustrative example:
The exact result for the scattering length (in units of
the well width) is a =1 —tanKp/Ep, where

E$ =2mvpR2/g', and where Vp and R are the well

depth and well width, respectively. We take for P the
simple form

FIG. 1. Square-well scattering length for 2mR Vo//tl = 1.
a,„: exact result: aH~. Hulthen-Kohn value using the trial

function (13) with trial value a. Triangles: present results
with $~ as in Eq. (14). Squares: the same calculation, but
with Q=r only,
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asymptotes at Ep ——m/2, 3m/2, 5rr/2, etc.) Note that
the Born approximation —

3 Ko gives a reasonable

value at Ko = 1 but is of the wrong sign at Ko = 2.
The figures illustrate the convergence of the approxi-
mate value of the scattering length obtained from the
functional (12) with the number of short-range terms
in (14), using the P as given in (13), as well as for

&=r —a(1 —e s') (13) 2.8—

where a and P are determined variationally. For this
given P we take
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and determine the parameters y and o.„by extremiz-
ing (12).

Figures 1 and 2 show the results for two different
well strengths, namely, K0=1 and 2, which are,
respectively, below and above the first "resonance"
in the exact scattering length (which has vertical
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FIG. 2. Square-well scattering length for 2mR Vo/f =4.
The legend is as in Fig. 1.



P = r, for which (12) reduces to the method of
Takatsuka and McKoy (2). It is clear that the con-
vergence improves substantially with the more realis-
tic Q.

For actual physical applications we note that the
functional (12) offers the opportunity to improve
upon a given elaborate calculation by simply adding
to it appropriate correction terms PI that are then in-

dependently varied. For example, for the description
of inelastic many-particle processes, ]II] might be a
close-coupling expansion over the open channels
while $t could be taken to be an I.' algebraic expan-
sion, including correlation terms.

For the many-channel case, the Hulthen stationary
functional for the E matrix is

2 Ks[Q ] = T~Itv+ (Q; ]HAJJ )

~here the trial solutions IIj
—S +CE, with

S = S,5~, E r= [E~]

etc. If the trial solutions are written in two parts,

then extremization of (15) with respect to the linear
parameters a& yields

t ~H[yr] 1 ItH[4 ]

If f; are taken to be simply the undistorted waves
(5), then the functional on the right-hand side of
(17) is identical with Takatsuka and McKoy's func-
tional Fs [Eq. (4)]. C1eariy any difference between
the standard variational methods based on the
Hulthen functional (15) and those based on the func-
tional (4) can come on1y from differences in the trial
functions that are used, since (4) is just (15) after
optimization with respect to one linear parameter for
each channel trial function has been done.
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