
PHYSICAL REVIE% A APRIL 1983

Ensemble corrections for the molecular-dynamics ensemble
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Expressions are derived which relate the averages of a dynamical variable in the

molecular-dynamics ensemble and in the generalized canonical ensemble. Fluctuations in

the two ensembles are also related. These results make the full equilibrium theory of classi-

cal statistical mechanics accessible to evaluation by molecular-dynamics computations.

I. INTRODUCTION

For enseInbles composed of finite systems, the
same dynamical variable has different averages in
different ensembles. Specifically, for systems con-
taining S particles the average of a given intensive
variable is of order 1 in all ensembles, and differ-
ences among the various ensemble averages are of
order X '. On the other hand, an ensemble average
of the fluctuation squared of an intensive variable is
of order X ' (unless it vanishes identically), and
differences among various ensemble averages are of
the same order, namely, N '. These differences are
called "ensemble differences, " or "ensemble correc-
tions. " The general theory for ensemble corrections
was discussed by I.ebowitz, Percus, and Verlet. '

However, in applying the theory to the relation be-
tween molecular-dynamics and canonical ensembles
an error was made. ' In the present paper, expres-
sions are derived for the relation between averages in
the molecular-dynamics ensemble and averages in
the generalized canonical ensemble. This result
should enhance the usefulness of molecular dynam-
ics in equilibrium studies because it makes the full
classical statistical mechanical theory, including
fluctuations, accessible to evaluation by molecular-
dynamics computations.

In order to accomplish our objective a precise
specification of several ensembles is required. The
molecular-dynamics ensemble, and its difference
from the microcanonical ensemble, was described by
Wood. A helpful discussion of the generalized
canonical ensemble, a canonical ensemble with
nonzero average momentum, was given by I.ado. It
is necessary to use the generalized canonical ensem-
ble in the present theory because it is the ensemble
conjugate to the molecular-dynamics ensemble.

It should be noted that there are other finite-size
effects which are not considered in the present pa-
per. In a cluster expansion of the thermodynamic
functions, errors of relative order N ' appear for
sufficiently large clusters. ' Errors related to the

boundary conditions are presumably also present in
equilibrium molecular-dynaInics evaluations.

II. ORDINARY CANONICAI. ENSEMBLE

A system is a collection of N atoms (or ions) in a
volume V, and for simplicity, we take the atoms to
be alike, with mass m. The time-dependent position
and momentum of atom I. are xL and pL, respec-
tively, where I. =1,2, . . .,%. The total energy of the
system is

4 =Bi,;„+4=gp r. /2m+4,
I.

where Ek;„ is the kinetic energy and 4 is the poten-
tial, and the total linear momentum is

M=gpL .
L

(2)

Z(P)=a& I.. . Je ~ gdxL, dpL, ,

We assume 4 depends only on the relative atomic
positions and the volume, and that P is bounded
belo~. The phase of a single system at any time is
the set I xL, , pl j, and a dynamical variable is
represented by A =A( I xI, pl. j ). The ensemble is a
collection of systems with a prescribed statistical
weight function 8'(I xl, pL I); the corresponding
partition function is Z=Tr8', and the ensemble
average is (A ) =Z 'TrA W. The dynamical vari-
able representing a fluctuation is 5A =A —(A ). In
the present paper we consider only classical statis-
tics, so that noncommutation of operators is of no
concern and we consider only ensembles with con-
stant N and V, therefore, the notation of constant X
and V may be suppressed.

The canonical weight function is proportional to
e ~, defined through the parameter p=(kT)
where k is Boltzmann's constant and T is tempera-
ture. The partition function is
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where a~ is a normalization constant related to the
range of integration of the position variables. For
the example of a fluid or gas a~ ' ——¹!h,and the
dxL are integrated over the entire volume V. The
canonical-ensemble average of A is

(A ~P)=Z(P) 'a f fAe ~ gdx dp

(4)
and its derivative with respect to p satisfies the rela-
tion

Averaging functions of the atomic momenta gives
the results

&m, ~p)=0,

(M;MJ
~
p) =NmkT5;J,

(Ek;„ i p) = ,NkT, —

where subscripts i and j indicate Cartesian com-
ponents.

It is useful to make a unique connection between
thermodynamics and statistical mechanics by defin-

ing a single thermodynamic state function in a
specific ensemble. For this we take the Helmholtz
function E in thc canonical ensemble:

ThermodynaInic functions are then obtained in the
usual way from E, so that they are uniquely defined
and ensemble independent. The entropy is
S=—(BE/BT)z, the internal energy is U=E+TS,
and for the canonical ensemble we have

(
~ p)

8 lnZ(P)
B

The pressure is defined by P = —(BF/8 V)T, and for
the canonical ensemble this becomes

P =kTBlnZ(P)/BV.

To express I' as an ensemble average we take a
specific form of 4, namely, the general form
representing 8 pseudopotential metal, '

e=Q(V)+gP(r; V),

where Q(V) is a volume-dependent term (here in-
cluding the ionization energy), P(r; V) is a central
potential between two ions separated by 8 distance r,
and the sum is over all distinct pairs of ions.
Evaluation of P in thc canonical ensemble then gives

~V= — +NkT (~
~
P&, —dQ

d lnV

whcI'c M is thc gcncrallzcd virial funct1on

BP 1 B((

8lnV 3 Blur

which can be transformed to

. Z(P, b)=exp(Nmb /2P)Z(P) .

Thc 8vcI'agc value of thc dynaIIlical variable A is

&A ~P, b&

az f fA exp( —PM —b M )ffd xt, d pL

Thc avcragc of M] 1s found to bc

(~
~ p b) BlnZ(p b)

Bb;

showing that the mean velocity is u= —b/p, and
theaverageofA is

(M~ p b) BlnZ(p, b)
U

Nmb
'dp 2p'

where the internal energy U is introduced by (8).
For abbreviation, we use A to represent the gen-

eralized canonical average (A
~ P, b). Differentia-

tion with respect to ensemble parameters gives the
formulas

aA/aP= —(bA S~
~
P, b),

BA/Bb;= —(M ~; iP, b) .

(178)

Equations needed in establishing the ensemble
transformation in Sec. V then follow from
(15)—(17):

M BU Xm1
Bp Bp p'

Bm; Ãmb;

"db; BP p~

To construct a canonical ensemble whose average
value of the total momentum M is nonzero, we in-
troduce the additional ensemble parameter b and set
the weight function proportional to
exp( pH ——O'M). The partition function is then

Z(P, b)

=a~ f ' ' ' f exp( —PA —b'M)gdxLd pL,
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Xm
'dbj p

The average kinetic energy now contains the transla-
tional contribution:

(18c)

Eh„,—N—k—T+—,Nm(b/p)2 . (19)

Since 4 does not depend on the atomic momenta,

545Ei,;„——0, and with thc aid of (17a), we find

((5Ek;„)
~ p, b&= , N(kT—) +Nmb /p', (20)

&(5C P
~ P, b & =N(kr)'(c ',—)-, (21)

where c is the constant-volume heat capacity in
units of k per atom:

c =(Nk) '(5U-/ar), . (22}

For any function that depends only on the relative
atom positions and the volume, such as 4 and P, it
follows from (13) and (14) that the generalized
canonical average is the same as the canonical aver-
age: & ~l &,b &=& ~I &&. This is equivalent to
the statement BM/Bb;=0. This result helps in
transforming expressions for thermodynamic func-
tions, which are first obtained as canonical averages,
to generalized canonical averages. For example,

U=A +4,
(24}

where P" is the kinetic energy in the center-of-mass
frame,

and A = 2%kT.

IV. SUBCANONICAL ENSEMBLES

and the ensemble average is

f . fA5(A E)gdx dp—
&A (E&= f . . f 5(A E)gdxr, dpl—.

%e mant to construct explicitly the transforma-
tion between the molecular-dynamics and general-
ized canonical ensembles. It is helpful to begin with
the microcanonical to canonical transformation. In
addition to fixed N and V, systems of the micro-
canonical ensemble are restricted to a given value E
of the energy. The ensemble parameter is then E;
the weight function is 8'(E) ~5(A —E), the parti-
tion function is

Z(E) f f5(P —E)gdx dp

For both microcanonical and canonical ensembles
the systems are in contact with linear- and angular-
momentum reservoirs. Hence, to construct an ordi-
nary canonical ensemble, take a collection of micro-
canonical ensembles with statistical weight propor-
tional to e

It follows that

Z(p) ~ fZ(E)e s dE, (29)

f &A ~E&Z(E). "d-E
(A fZ(E)e I"dE- (30)

The canonical ensemble requires P ) —
~
6 ~, with

~
6

~
finite, which means the microcanonical func-

tions P (E) Z (E) and (A
~

E & aQ vanish for
E g —

~

6 ~, so the above integrals on E are formal-
ly unrestricted.

In a molecular-dynamics system the atoms move
according to the classical equations of motion, so
within the numerical accuracy of the computation,
energy and linear momentum are constants. The
boundary conditions need not be specified, except
that they should conserve the energy and linear
momentum of the system. In general, the total an-
gular momentum of a molecular-dynamics system
fluctuates about zero; we assume this fluctuation
represents the same angular-momentum reservoir as
exists in the generalized canonical ensemble. Hence,
there are two parameters of the molecular-dynamics
ensemble: E is the prescribed value of the energy,
and M is the prescribed value of the linear momen-
tum. The weight function is W(E, M)
~5(A —E)5(M —M), and the partition function
and ensemble average are given, respectively, by

(31)

(A iE,M&

f . fA5(A E)5(M —M—)gdx d p

f . f5(m E)5(m —M)gd—x,d p,

To construct a generalized canonical ensemble from
a collection of molecular-dynamics ensembles, intro-
duce two parameters, P conjugate to A and b con-
jugate to .W:

Z(E, M)

~ f . . f5(M—E)5(M M)ffdxld p~—,



DUANE C. WALLACE AND GALEN K. STRAUB

IV(p, b) ~ f f W(E, M)exp( p—E b—M)dEdM,

Z(p, b) ~ f fZ(E,M)exp( pE— b—M)dEdM,

f f(W ~
E, M&Z(E, M}exp( —PE —b M)dEdM

(~ ~P, b}=
f fZ (E,M )exp( PE—bM—}dEd M

I

Again the integrations on E,M are formally unre-
stricted, though the functions W(E,M), etc., vanish
for certain ranges of the variables.

V. RELATIONS BET%'EEN ENSEMBLE
AVERAGES

where the correction terms are of relative order X
and the ellipsis represents terms of higher order.
Similarly, for the ensemble averages of Auctua-
tions,

(u 5a ~X;~, )

With the transformation between ensembles con-
structed, we can now use fluctuation theory to relate
different ensemble averages of the same dynamical
variable. In the generalized canonical ensemble the
intensive parameters are P, b, and the average
(A

~
p, b) is denoted A. In the molecular-dynamics

ensemble the extensive variables 4 and M; are held
constant at the values E and M;, with i =x,y, z, and
the average (A

~

E=X,M; =M; ) equals the corre-
sponding canonical average A, plus fluctuation
corrections. Specifically, 9

{a~X,m, )=w+-
2dPBX

=53 58+ +g +, (37)
BA 38 BA M

8P'; 5b& BM;

where the correction terms are now of relative order
1, and the ellipsis represents terms of higher order.
It is useful to eliminate the extensive quantities P
and M; on the right sides of (36) and (37); so the
correction terms can be expressed entirely in terms
of the ensemble parameters P and b;. This is done
by inverting Eqs. (18), and the results are

(w ~X,~, )=J— u —NJ+ uJ
2% c C

p 5'J

{5g5a
~
X,m,. ) =5a 58 ——(~—&)(~&)+—g1 p2 — — p BA dB

X c ~~i

where & is the differential operator

b; ()

BP,. P Bb;

and where in (39) & does not operate through the

round brackets. These equations correct the corre-
I

sponding results, Eqs. (3.4) and (3.5), of Ref. 1.
Equations (38) and (39) hold for all p~ 0 and b t &0.

As an example of the ensemble corrections, con-
sider the total kinetic energy defined in (1). Evalua-
tion of (38) for the molecular-dynamics average ki-
netic energy per atom gives

{Ekin ~~~~i} l
1

1 3 1 Blue ntb
N 2c 2c BlnT 2p~

The last term is the kinetic energy due to the mean
translational motion. The term in X ' expresses
the fact that the molecular-dynamics average of the
kinetic energy in the center-of-mass frame is not
precisely the temperature. Evaluation of (39) for
(5E1,;„), with the aid of equations from Sec. III,
gives for any value of b

{(5E„;„)'
~
X,m, }= —,(kT) 1——

2c
(42)

This is the result Lebowitz et al. ' obtained at
0 11

Concerning the pressure, the common procedure
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in molecular dynamics is to compute the average in-
dicated in Eq. (24} ':

PVMD —— +( —,Xi"—3
i A,M;) . (43)

d lnV

Equation (38} gives for the ensemble correction, at
any value of b,

I'VMD ——I'V —kT 1 ——,y+—
2 Blnr

where y= V(BP/BU)r is the Griineisen parameter.
Since I'V is of order N, the ensemble correction is of
relative order N '. Equation (44) differs from vari-
ous expressions found in the literature. ~' '3 The
difference from Lado is presumably due to the fact
that I.ado uses a different definition of I', namely,
PP =B lnZ/B V in all ensembles, together with
P=B lnZ/BE in all ensembles. While ensemble-
dependent definitions of thermodynamic functions
are legitimate as long as the definitions agree in the
thermodynamic limit, the varying definitions give
rise to essential differences in ensemble corrections
and also in the mean values of fluctuations. %'e fi-

nally evaluate the correlated fluctuation 5%"54
from Eq. (39), at any b:

&smM ~~~, )

N

This again is the result obtained at b=0 by Le-
bowitz et al. '"

Note added in proof. If we use PV =NkTf(V),
where f ( V) is a function of volume, and U = , Nk T—,

for hard spheres in the canonical ensemble and if we
also use Eqs. (41}and (44} and observe that Ei,;„and
P" are constants of the motion for hard spheres in
the molecular-dynamics ensemble, then we can
indeed obtain Eq. (3.27) of Ref. 2, or the equivalent
Eq. (40) of Ref. 13.
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