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Radial and angular correlations of two excited electrons.
III. Comparison of configuration-interaction wave functions

with adiabatic channel functions in hyperspherical coordinates
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Department ofPhysics, Kansas State University, Manhattan, Kansas 66506

(Received 6 July 1982)

Wave functions for doubly excited states of helium ' S' states calculated in the
configuration-interaction (CI) method are examined in hyperspherical coordinates. It is
shown that these wave functions are essentially identical to the wave functions calculated in
the adiabatic approximation except in regions where the charge density is vanishingly small.
This comparison establishes the connection between the classification of doubly excited
states based upon the adiabatic approximation in hyperspherical coordinates and the classi-
fication of Herrick and Sinanoglu which is based upon the approximate CI wave functions.
It is also shown that states calculated from the CI method which have similar quantum de-
fects have the same correlation patterns except in regions where the charge density is small.
This establishes the approximate channel classification of doubly excited states as implied in
the adiabatic approximation in hyperspherical coordinates.

I. INTRODUCTION

In the last few years, many properties of doubly
excited states of H and He have been studied by
examining their wave functions in hyperspherical
coordinates. ' In these studies, an adiabatic ap-
proximation similar to the Born-Oppenheimer ap-
proximation in molecular physics has often been
used. If the hyper-radius is denoted by R and the
five angles are denoted collectively by 0, in the adia-
batic approximation the wave function for the nth
excited state in a given channel p is expressed as
F&(R)4n (R;0, ). By assigning a single angular
function 4„' (R;0) to all the states within a given
channel p, this approach emphasizes that states be-
longing to the same channel have similar correlation
patterns. Earlier studies have illustrated that this is
a good approximation for doubly excited states. In
recent studies, ' the correlation patterns for ' S'
states have been examined graphically by displaying

~ 4& (R;0)
~

on the (a, e&2) plane. These studies
revealed that different channeIs exhibit very distinct
correlation patterns.

While these earlier works have shown the useful-
ness of the adiabatic approximation in elucidating
many important characteristics of electron correla-
tions in doubly excited states, two important ques-
tions are still not adequately investigated: (1) How
good is the adiabatic approximation? (2) Do the
wave functions calculated in the adiabatic approxi-

mation in hyperspherical coordinates resemble wave
functions calculated using conventional approaches?

The validity of the adiabatic approximation is
often "justified" by the simple argument that the ki-
netic energy associated with the motion in R is
much smaller than that associated with Q. It can
also be argued from the relatively accurate eigenen-
ergies for doubly excited states calculated in this ap-
proximation. However, these explanations are often
not very satisfactory in view of the more"apparent"
explanations in molecular physics. In the Born-
Oppenheimer approximation, the wave functions of
molecules are expressed as the product of electronic
and vibrational wave functions. This quasiseparabil-
ity is conventionally attributed to the fact that the
mass m of the electron is much less than the mass M
of the nucleus with the result that the vibrational
motion of the nuclei is adiabatic in comparison with
the faster electronic motion. Such an explanation is
not substantially supported by the actual size of the
nonadiabatic coupling terms. These terms are pro-
portional to (m/M)' ——,, while the precise calcu-
lations ' for low-lying states of H2+ and H2 indi-
cated that nonadiabatic effects are only of the order
10 . Therefore there are other underlying dynami-
cal factors for the validity of adiabatic approxima-
tion in molecular physics. In the case for the ap-
proximate separability of wave functions in hyper-
spherical coordinates, the "mass ratio" between the
R and 0 motion is unity. Nevertheless, eigenener-
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gies of doubly excited states calculated in the adia-
batic approximation agree quite well with other
theoretical calculations and with experiments. It
might also be noted that the adiabatic approxima-
tion has also been used in the study of hydrogen
atoms in a strong magnetic field. " The mass ratio
in this case is also unity.

In this article we will illustrate the dynamical ori-
gin of the quasiseparability of low-lying doubly ex-
cited states. We will show that the configuration-
interaction (CI) wave functions of Lipsky et al. ' ex-
hibit approximate separability if their wave func-
tions are expressed in hyperspherical coordinates.
We will show that wave functions computed in the
two approaches are nearly identical in the important
regions where the probability density is large, but
deviations do occur in regions where the probability
density is small.

The present study also serves to illustrate the con-
nection between the classification of doubly excited
states by Herrick and Sinanoglu' with the classifi-
cation based upon the adiabatic approximation in
hyperspherical coordinates. Doubly excited states
classified in the group-theoretical method by Her-
rick and Sinanglu are approximate CI wave func-
tions. The graphical display of the more accurate
CI wave functions of Lipsky et al. in hyperspherical
coordinates serves to compare the two classification
schemes. On the other hand, the adiabatic approxi-
mation in hyperspherical coordinates also em-
phasizes the similarity of correlation patterns of
states belonging to the same channel. Such a con-
cept is absent in the group-theoretical approach.
The CI and other better wave functions have also
been displayed graphically in terms of the conven-
tional coordinates (r2, 8iq) with fixed ri. In those
works the similarity of the states belonging to the
same channels had not been illustrated.

extend to higher values of R.
Adiabatic approximation was not assumed in the

conventional approaches for calculating doubly ex-
cited states. Most of these calculations are varia-
tional in nature in that the wave functions of doubly
excited states are expanded in a truncated basis set.
For example, in the CI approach of Lipsky et al. ,
the wave functions are expressed as

t('r ——g C;P;(ri, r2),

where

f;=
~

n i l i n 212LSrr MI Mz )

0.6

0.4—
e '

is the properly symmetrized two-electron wave func-
tion constructed from the product of hydrogenic
wave functions. For doubly excited states of helium
with given L, S, rr, ML, , and Ms, tf; is constructed
from the

~
niltmi ) and

~
n2!2m2) hydrogenlike

wave functions of He+. The CI coefficients C; are
obtained by diagonalizing the two-electron Hamil-
tonian in a chosen truncated basis. The accuracy of
this approach and other similar approaches is limit-
ed by the flexibility of the chosen basis set. This
type of calculation gives the energy E& and wave
function fr without correlating the properties of
different doubly excited states within a certain ener-

gy range. States with nearly identical quantum de-
fects are assigned to belong to the same channels.

The CI wave functions are often expressed in
terms of the spherical coordinates (ri,gi, 8i) and

II. METHODS OF CALCULATIONS

The methods of calculating doubly excited states
in hyperspherical coordinates in the adiabatic ap-
proximation have been described previously. ' For
each set of quantum numbers IL,S,rrI, the wave
function for the nth excited states in channel p is ex-
pressed as F„"(R)4„'(R;0). In this approximation,
4& (R;Q) is obtained by solving a partial differen-
tial equation in 0 with R treated as parameters.
The eigenvalues Uz(R) are then used to calculate
the radial wave functions F„"(R). These radial wave
functions F„"(R)have very simple nodal structure-
the lowest state within each p is nodeless and the
higher states have increasing number of nodes and
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FIG. l. R-weighted radial wave functions [see Eq. (3)
of the text] of the three lowest CI states of the p=2a
channel for 'S' symmetry of helium atoms. The curves
are shown in solid lines in regions where the angular part
of the CI wave function has large overlap integral
( & 0.95) with the adiabatic channel function. If the over-
lap integral is small ( &0.95), the curves are shown in
dashed lines (see text).
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y„'=gC, y, (r„.r2)

—:F~(R}4~(R;a,8)2) . (3)

(rq, (()q, 82) of the two electrons. For '3S' states, the
CI wave functions for the nth state of channel p can
be rewritten in hyperspherical coordinates as

By requiring that @„"(R;a,8~~) be normalized on
the hyperspherical surface R =const, this equation
serves to define F„'(R) and 4„"(R;a,8&2) uniquely.
In (3},we do not assume that 4„"behave identically
for different n states within the same channel p, nor
do we assume that 4" evolve adiabatically with R.

7lIn the next section, we compare 4„(R;a,8&2) mth
4„' (R;a,8)2).
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FIG. 2. Comparison of the adiabatic channel function with the angular part of the CI wave functions of the p, =

h 1 f 'S' f h l' . Shown along the first column are the surface charge-density plots at select v ues of R
calculated in the adiabatic approximation. The surface charge-density plots for the three lowest states o e p=
channel are shown along each column. Notice that the CI results agree with the adiabatic ones at values of R where
i F2,(R) i is large (as shown in Fig. i).



27 RADIAL AND ANGULAR CORRELATIONS OF TWO. . . .III. . . . 25

III. RESULTS AND DISCUSSION

We first examine 'S' doubly excited states of heli-
um that converge to the He+(N=2) thresholds.
There are two channels converging to this limit. In
the notation of II, these two channels are identified
as [N, A, )=[2,1] and [2,2]. In the notation of Lip-
sky et al. , these two channels are identified as p =2a
and 2b. For our purpose here, the states are identi-
fied as (2a, n } and (2b,n) with n =1 corresponding
to the lowest state of each channel.

The R-weighted radial wave functions E&(R} [cf,
Eq. (3)] calculated in the CI approximation are
shown in Fig. 1 for the n =1, 2, and 3 states of the
2a channel. These functions behave like typical ra-
dial wave functions computed from a given local po-
tential with the number of radial nodes nz given by
n~ ——n —1. These nodal behaviors are similar to the
radial wave functions calculated in the adiabatic
approximation. "' In Fig. 1 the R-weighted radial
wave function for each state n is plotted partly in
solid lines and partly in dashed lines in order to il-
lustrate the degree of overlap between @q,(R;a,8iq)
and 4i, (R;a,8ii) at fixed values of R. If the over-
lap is greater than 0.95, then in that region F~(R) is
shown in solid lines. If the overlap is less than 0.95,
then that region is shown in dashed lines. We notice
that the overlap is large ( &0.95} if

~
Fi,

~

is large.
In other words, the angular wave functions 4„" cal-
culated from the CI approximation differ from the
adiabatic ones only when ~Fi (R)

~

is small. This
occurs at small and at large values of R and for R
near the nodal points of the radial functions.

To illustrate the comparison in greater detail, in
Fig. 2 we show the surface charge-density plots of

and
~
4i,

~

on the (a,8,i) plane for n =1,
2, and 3 at R = 1, 2, 3, 4, 5, 7, 9, 11, and 13 a.u.
Each graph is normalized to the same maximum
height. Except for a few graphs to be discussed
below, there is a general agreement between the adi-
abatic channel function and the angular functions
calculated in the CI approximation. In other words,
we observe the channel characters of CI wave func-
tions when these wave functions are expressed in
hyperspherical coordinates. We also observe the
adiabatic evolution of these functions in certain
ranges of R even though quasiseparability was not
assumed a priori in the CI calculation.

In Fig. 2 we also notice some discrepancies among
the surface plots at the same R. At R = 1 and 2 a.u.
the plots from the CI calculation for the three states
are identical to each other but differ from the ones
calculated in the adiabatic approximation. At R =3
a.u. ,

~
Fi, (R)

~

is large for all three states, and all
four graphs are identical. This shows that at this
value of R the angular wave functions from the CI
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FIG. 3. Similar to Fig. 1 except for the p=2b channel
of 'S' states.

30

calculation for states belonging to the same channel
agree with the adiabatic channel function. For the
higher values of R shown, except for R =11 and 13
a.u. , the angular functions for the state (2a, 1)
ble the corresponding ones from the adiabatic calcu-
lation. The large discrepancies between the adiabat-
ic and the CI's (2a, 1 ) state at R = 11 and 13 a.u. are
most likely due to the truncation of the basis set in
the CI calculation. The rapid variation of the angu-
lar function in the CI calculation here does not ap-
pear plausible since at such large values of R the two
electrons stay away from each other, and a drastic
redistribution of charge density is not expected.
Since the radial wave function is very small in this
range of R, this limitation in the CI expansion has
essentially no effect on the eigenenergy determined.
For the states (2a, 2) and (2a, 3), we notice that
there are substantial discrepancies with the adiabatic
ones at R =5 and 7 a.u. In particular, at R =5 a.u. ,
the shape is not even siinilar. For the state (2a, 3)
we notice additional discrepancies at R =11 and 13
a.u. All these discrepancies occur at values of R
where R is close to the nodal points of the radial
wave functions where the volume charge density

~
Fi, (R)@i,(R;a,8ii)

~

is small.
The R-weighted radial wave functions for the

three 'S' doubly excited states (2b, l), (2b, 2), and
(2b, 3), of helium are shown in Fig. 3. Similar to
Fig. 1, the radial wave functions are shown in solid
lines if the overlap integral of @zs(R;a,8ii) with
4qq(R;a, Hid) at that R is greater than 0.95 and in
dashed lines if the overlap is less than 0.95. We no-
tice that the overlap is small when ~Fz&(R)

~

is
small.

Surface plots of
~
4g(R;a, 8iq) ~

and
zs(R;a, 8ii)

~

for n =1, 2, and 3 are shown in
Fig. 4 for several values of R. We again notice that
the CI results agree very well with the results from
the adiabatic approximation whenever the magni-
tude of the radial wave function is large, and



26 C. D. LIN 27

Adiabatic 2b (2b,2) (2b,5)

i„k
$j 'll,

FIQ. 4. Similar to Fig. 2 except for the p =2b channel of 'S' states.

discrepancies occur when the magnitude of the radi-
al wave function is small.

The above conclusion is not limited to 'S' states
only. In Fig. 5 we show the radial wave functions of
the first three states of the p =2a and 2b channels of
helium S' states. Each radial wave function is
shown in solid lines if the overlap of the angular
function with the adiabatic channel function is
greater than 0.95 and in dashed lines if the overlap
is less than 0.95. We notice again that the overlap is
small whenever the magnitude of the radial wave
function is small.

To show the great variety of correlation patterns
for other high-lying doubly excited states, we illus-
trate in Fig. 6 the radial wave functions for the

lowest state of the p=3a, 3b, 3c, and 4a channels
for the 'S' states of helium calculated from the CI
method. Notice that none of the radial wave func-
tions shows any nodes. The corresponding surface
charge densities for each state are shown in Fig. 7 at
values of R where the radial wave functions are near
the maximum. These correlation patterns are simi-
lar to the ones displayed in I calculated in the adia-
batic approximation.

IV. CONCLUSIONS

The comparison shown in this article clearly es-
tablished the quasiseparability of doubly-excited-
states wave functions in hyperspherical coordinates.
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at small R, as can be seen in Figs. 2 and 4 at R =1
and 2 a.u. Thus we tend to believe that adiabatic
approximation does not represent the wave functions
in the small-R region very well. To represent this
region more accurately, a Fock expansion is neces-
sary. On the other hand, these small-R regions do
not have significant effects on the channel charac-
ters of the states.

The validity of CI approximation is also question-
able in certain regions of R. It is not expected that
CI approximation is very accurate in the small-R re-

gion. The basis set used in the calculation by Lipsky
et al. does not allow much flexibility for r&, r2 &1
a.u. It also does not have the (lnR)-type terms in
the expansion. The validity of the CI wave func-
tions in the region where

i
F„"(R}

i
-0 is also open

to question. How much of the CI results in Figs. 2
and 4 are due to the artifact of basis truncation is
not clear without a systematic study. In the CI or
other variational calculations, the accuracy of the
wave functions in the region of small volume charge
densities is determined by the fiexibility of varia-
tional parameters. Since these regions do not have
much effect on the variationally determined ener-

gies, the wave functions in these regions are not ex-

pected to be very accurately determined.
We have not and do not intend to pursue the de-

tailed comparisons of wave functions calculated us-

ing various approximations. Instead, we conclude
that adiabatic approximation does provide a first-

order approximation to the channel classification of
doubly excited states. Wave functions from other
accurate theoretical calculations should also exhibit

quasiseparability if expressed in hyperspherical
coordinates. Such quasiseparability is often hidden

in the numerical calculations without being exploit-
ed. One exception is the classification scheme pro-

posed by Herrick and Sinanoglu' where doubly ex-

cited states are classified in terms of an approximate
SO(4) symmetry group. Their wave functions are
equivalent to approximate CI wave functions. Al-

though angular correlations are explicitly included
in their wave functions, radial correlations are only

approximately accounted for in their approach. '

In summary, we have shown that the CI wave

functions for doubly excited states exhibit

quasiseparability in hyperspherical coordinates ex-

cept in regions where the volume charge density is
small and where the radial function iF„"(R}

i
-0.

We have also shown that the angular functions cal-
culated from the CI approximation are essentially
identical to the adiabatic channel functions in the
important regions of R where

i
F„"(R)

i
is not small.

We thus conclude that wave functions of doubly ex-
cited states exhibit channel characters which can be
unraveled in studying the wave functions in hyper-
spherical coordinates in the adiabatic approxima-
tion.
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