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Structure of reflection bands of Grandjean textures
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The characteristic exponents of the normal modes for light in the Grandjean texture of a
cholesteric film were calculated with values for the dielectric constants that are typical for
common cholesteryl derivatives. The reAection properties are discussed in terms of the

penetration depth given by the real part of the characteristic exponent. The results are
presented in graphs which give the structure and the reflection coefficients as a function of
wavelength and angle of incidence. It was found that there are unpolarized bands that are
missing in a stability chart published earlier.

I. INTRODUCTION

Cholesteric liquid crystals have a spontaneous
twist that results in a helical structure. A typical
texture of cholesteric films, known as Grandjean
texture, is characterized by a perpendicular align-
ment of the twist axis. Its most striking optical
properties are bands of selective reflection. The
bands have been studied in a number of theoretical
and experimental papers (for reviews, see Ref. 1).
The reflection is due to internal interference. There
is a sequence of reflection regions corresponding to
different interference orders. Accurate solutions of
the wave equation can be given in closed form only
for perpendicular incidence. For oblique incidence
approximate expressions or numerical approaches
must bc used. Taupin was thc fiirst to notice on
the basis of theoretical studies that, at least for suffi-
ciently oblique incidence, a triplet of bands belongs
to each reflection order. Theoretical and experimen-
tal studies at an angle of incidence of 45' have been
made by Bcrrcman and Scheffcr. The agreement
between experiment and theory is good. The ob-
served second-order reflcction consists clearly of a
triplet of separate bands. The first-order reflection
is strongly structured but Qot separated into a trip-
let. For vertical incidence only the first-order reflec-
tion is observed and in agrccmcnt with theoretical
predictions, it consists of a single band without
structure.

A general survey of the dependence of the reflec-
tion bands on wavelength and angle of incidence is
presented in the stability chart by Dreher and
Meier. The chart predicts, in contrast to other re-
sults, a doublet of bands for each reflection order at
oblique incidence, and therefore it is necessary to re-

check the derivations.
%c extend in this paper the earlier calculations

and confirm the existence of triplets of bands. The
two outer bands of each triplet give selective refIec-
tion of polarized hght, while the center band is un-

polarized. The first-order reflection shows a com-
plex dependence on the angle of incidence. It
changes from a single polarized band at vertical in-
cidence to two overlapping polarized bands at ob-
lique incidence, and only at very oblique incidence it
assumes the described triplet structure. %C recollect
and summarize in Sec. II relevant points of the gen-
eral theory and clarify the cause of the discrepancy.
Ncw results of numerical calculations are presented
and discussed in Secs. III and IV.

II. CHARACTERISTIC EXPONENTS
AND PENETRATION DEPTH

In the Cartesian coordinate system with the z axis
paraBel to the twist axis, the dielectric tensor for the
Grandjean texture may be written in the form

e =e 4-(e, I2) cosqz,

e~ =e—(e, /2) cosqz,

&zz =&2~

6~ =6~ =(Ep/2) singz,

&xz =&x =&ay =&yz =0

%C assumed that the local dielectric tensor has rota-
tional symmetry and set

e = (@i+e2)/2,

Eg =6)—62,
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where e~ and eq ——e3 are the principal dielectric con-
stants, and q =4m/p, where p denotes the pitch, i.e.,
the distance between planes of thc same director
orientation.

%'e are interested in modes that can be excited by
incoming plane waves that propagate in the x,z
plane. These modes are obtained by superposition of
normal modes of the form3

y( }
i)»»N —k„x)

gives the following set of related exponents:

a+ip, a i—p, a—+ip, —a —ip
They are usually pairwise equivalent, i.e., when o =0

1

or when P=O or —,.
In addition, the following general statements can

be made on the form of the exponents of the two
modes:

(a) Outside the reflection regions a =0 and

with k„=n,„(2~/A, )cosy, where n,„denotes the
external refractive index, y the angle of incidence,
and A, the vacuum wavelength. F(z} satisfies the dif-
ferential equations

d F„ k„
dz2

or

p))) =+)qp» )M)2) =+iqp2»

(b) regions with onc reflection band

p)))=+qa)+)n)q/» p)2)=+iqp2'»

Pi) ) =+'qp» P) 2) =+qa2+in2q/2 '

6g
X &F„+—(F„cosqz+F~sinqz)

2 x

d Fy k„
FE

dz g c

E(g Q)
2

+—
z

(F„' cosqz F„sinqz), —
2

ik„dF„
Q) dz

The equations have four independent solutions, and
with the exception of singular lines in the y, A. plane
all four have the form

where p=q(a+i , p) is the characteristic exponent. p
is, of course, determined only up to an additive in-

1 1

teger. For uniqueness we require ——, &p& —,. It
can be seen that the solutions of (3) occur in pairs,
i.e., to each solution F(z)=(F,(z), F„(z), F,(z))
and the characteristic exponent p~, there exists a
second solution G(z) =( F„(—z), F„(—z—), F,( —z))
with pG ———p~. The second solution corresponds to
the reflected mode. The z component of its Poynt-
ing vector has the opposite sign. The forward and
reflected modes have, with the exception of the sign,
the same characteristic exponent so that for each k„
only two independent exponents and two indepen-
dent basic modes, which we denote in the following
as modes (1) and (2), exist.

In the absence of absorption there exist additional
relations between the exponents. In that case all e;~
are real, and therefore with p the conjugate complex

p is also a characteristic exponent. In sum this

(c) reyons with overlapping reflection bands.
Here two significantly different possibilities exist.
The first one is

p~ & ~
——+qadi+in ~q/2,

p(2) = +qQp+ leaf 2q /2.

The second possibility is

P(l) —'q(a)+)pl)» ) (2) 0'(ll

In the sets (7) and (8) n i and n2 are independently
either 0 or 1 so that for all sets except for (9},

0
p(p= —p(p or p&p=pip —~~q-

We call reflection bands for which p=O or —,

bands of the first kind and bands for which (9) holds
of the second kind. Assuming p to be a steady func-
tion of A, and y the boundaries of reflection bands
are given by the curves of double roots for p. These
are the singular lines mentioned before. Specifically,
we have at the boundaries of bands of the first kind
to regions without reflection for the exponent of the
corresponding mode

p=inq/2, n =0 or 1;

at the double boundaries of bands of the second kind
to regions without reflection

p))) =p)2) =+)qp

and at the double boundaries between a band of the
second kind to a region with overlapping bands of
the first kind

p))) p)2) +qa+inq/2, n——=0 ——or 1. (12)

The stability chart of the earlier study contains
only the curves @=0andiq/2. Pairs of curves
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were assigned as boundaries to reflection bands in a
self-consistent way and so that the case of vertical
incidence is given properly. The chart is incomplete
because bands of the second kind occur and the
boundaries given by (11) and (12) must also be in-
cluded. In the present study the characteristic ex-
ponent is calculated quasicontinuously as a function
of the angle of incidence, and uncertainties concern-
ing the assignment of boundaries to reflection bands
are avoided.

III. NUMERICAL RESULTS

It can be deduced from Eq. (3) that the reduced
exponent p/q =a+iP depends on three dimension-
less parameters, e.g.,

k„/q =n,„(p/2A, )cosy,

(2A, /p) /8, (13)

Eg /E.
We used, however, the natural parameters in the nu-

merical calculations with the following specific
values for the fixed parameter:

E'=2e27 0+0001/'s E'~ 0 16'

nex = 1 522' p =0 5p

The dielectric constants are the same as those used
in some of the earlier calculations and are typical
for common cholesteryl derivatives. A small ima-

ginary part has been added to e for technical reasons
as explained below.

The exponents for vertical incidence y=90' are
given by

r

1 N(a+i P)+ i & ———+e'
4 qc

2 '2' 1/2
l
2' (14)

At oblique incidence the exponents were calculated
using the iterative process described previously. '
Beginning from y=90', we decreased y by small
steps and extrapolated the exponents to obtain con-
sistent starting values for each iteration. In this way
two separate curves p~&~(y), @~2~(y) result for a
given A, /p, starting at

p~ ~ ~(90)=q(a+i P)+

and

p„~(90)=q(~+iP) .

In the absence of absorption, that is, for real
dielectric constants, the extrapolation procedures
may fail to give separate curves since there are
points where p(y) has unsteady derivatives and bi-
furcations. The inclusion of absorption leads to
steady derivatives and to separate curves even over
regions of bands of the second kind. In the calcula-
tions the increments of y were automatically re-
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FIG. 1. Reduced reflection coefficients of mode (1) as function of angle of incidence and wavelength.
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duced in the critic regions to a minimum of 0.001'
from the normal value of 0.1'. For the magnitude of
the imaginary part of F used in the calculations the
rounding by absorption is small but clearly notice-
able in Figs. 3 and 4. Figure 5 has been calculated
with a ten times smaller imaginary part.

The real part of the characteristic exponent deter-
mines the reflection properties. %e will refer to it in
the following as a reAection coefficient. Its magni-
tude is equal to the inverse penetration depth
qa=1/5, where we define the penetration depth 5
as the distance from the interface at which the am-
plitude of an incoming mode has reduced to 1/e of
its starting value. The results for the reduced reAec-
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tion coefficients p/6 are summarized in Figs. 1 and
2. Outside the reflection regions p/5 is practically
zero. Figure 1 demonstrates how the first-order re-
flection band of mode (1) shifts to smaller angles as
the ratio A, /p decreases. At the same time the struc-
ture of the band changes. It begins to split and at
small angles of incidence separates completely into
two bands. For k/p = 1.54 or larger ratios no selec-
tive reflection occurs.

The second normal mode (Fig. 2) has a first-order
reflection band that reduces to zero width at vertical
incidence. At small angles it also consists of two
bands. One of these bands is of the second kind and
shared with mode (1).

There is a sudden change of the structures of the
reflection bands as obtained by our procedure in the
range of A, /p near 0.88. Figures 3 and 4 show ex-
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FIG. 3. Reduced reflection coefficients of modes (1)
and (2) as functions of angles of incidence at indicated
values of A. /p.

FIG. 4. Reduced reflection coefficients of modes (1)
and (2) as functions of angles of incidence at indicated
values of A, /p.
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tended plots of the structures of the bands of modes
(1) and (2). In Fig. 3(a) the two modes give overlap-
ping bands of the first kind. The band of mode (1)
begins to separate into a double. As k/p decreases
[Fig. 3(b)] the strength of band (2) increases, and at
the same time the doublet character of band (1) be-
comes more pronounced. Finally, the discontinuous
change in the band structures occurs near
)(,/p =0.8804 [Fig. 3(c)]. The maximum of band (2)
reaches the minimum in the depression of band (1),
and the curves can be reinterpreted so that a single
reflection band is assigned to each mode. In this
representation the shoulder of the original band of
mode (1) is incorporated into the band of mode (2).
%'ith decreasing A, /p the band structures become
again more complicated. A band of the second kind
interferes [see Figs. 3(d)—3(f) and 4(a)—4(c)]. In the
range of this band the two c m es fall practically to-
gether. (The small deviations are due to absorption. )

The band of the second kind becomes wider with de-
creasing A, /p ratio and finally forms a separate band.

In Fig. 5 the band of the second kind is complete-
ly separated. The first-order reAection ranges of
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FIG. 5. Reduced reflection coefficients of modes (1)
and (2) as functions of angles of incidence at, A, /@=0.3.
First- and second-order reflections are shown and the on-
set of the normal total reflection of mode (2) at y=13.46'.
The bands of the second kind are the same for both
modes.

modes (1) and (2} consist now of two bands each.
Mode (2) reaches the angle of normal total reAection
at @=13.48'. The second-order reAections are also
shown in Fig. 5. First- and second-order reAection
bands have at this wavelength similar triplet struc-
tures with center bands that are of the second kind.
Mode (1) has a relatively strong band of the first
kind on the low angle side of the center band, while
mode (2) has a weak band of the first kind on the
side of higher angles of incidence.

In contrast to the first-order reflection, the
second-order reflection remains a triplet of bands
over the whole y range. The width of these bands
and the reAection coefficients reduces, of course, to
zero as the reAection moves towards vertical in-
cidence. Our calculations indicate also that other
higher-order reAection bands have the same triplet
structure. At very small angles of incidence and
short wavelength the band structures are much more
complicated since, as indicated in the stability
chart, bands of different order overlap.

IV. CONCLUSIONS

The results demonstrate that the earlier stability
chart is incomplete because of the omission of the
boundaries of the bands of the second kind. It is
difficult to complement the chart because the miss-
ing boundaries are inconvenient to calculate. As far
as the higher-order reAections are concerned only a
center band has to be added, while more intricate
changes are necessary for the first-order reAections.

The unpolarized bands are of particular interest.
So far their existence has been clearly demonstrated
only for the second-order reAection. Good experi-
mental evidence is still lacking for the first-order re-
Aection. It has not been observed that the first or-
der indeed separates into a triplet of bands at small
angles of incidence.
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