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and renormalization group

Pierre M. Pfeuty
Laboratoire de Physique des Solides, Universite Paris —Sud, Centre d'Orsay, F-91405 Orsay, France

John C. Wheeler
Chemistry Department, University of California at San Diego, La Jolla, California 92093

(Received 7 September 1982)

Equilibrium polymerization is very different in one dimension than in higher dimen-

sionality. The transition that occurs in the limit of vanishing initiation equilibrium constant

(which is a critical point in higher dimensionality) becomes a first-order transition at non-

vanishing temperature in one dimension. A simple model of equilibrium polymerization

that has been discussed recently for higher dimensionality is solved exactly by the transfer-

matrix method in one dimension. The equivalent n~0 vector model of magnetism is also

solved exactly for all fields and temperatures by transfer-matrix methods and is analyzed by

an exact renormalization-group transformation. The renormalization-group analysis con-

tains several interesting features including the fact that the parameter space of the Hamil-

tonian must be enlarged to six dimensions, yet remains finite. The connection of the model

and transition treated here with the Zimm-Bragg model of the helix-coil transition and with

the one-dimensional Ising model of magnetism is discussed.

I. INTRODUCTION

Equilibrium polymerization is a general phe-
nomenon with examples in inorganic, organic, and
biochemistry. Examples include the polymerization
of liquid sulfur, ' "living" organic polymers such as
polytetrahydrofuran and poly-a-methylstyrene, and
the agglomeration of proteins such as actin and tu-
bulin to form large supermolecular structures.
When the initiation step is restricted, either because
of the small value of an initiation equilibrium con-
stant Ki for activation of monomers, as in the case
in sulfur, or because of a small concentration of an
initiator as can be the case with living polymers, the
transition from monomer to polymer is quite sharp
and exhibits features reminiscent of a thermo-
dynamic phase transition.

Recently, we have argued that equilibrium poly-
merization in these cases is a critical phenomenon
that is closely analogous to the behavior of a fer-
romagnet near its Curie temperature in a very small
magnetic field. We introduced a simple lattice
model of equilibrium polymerization and showed
that it is equivalent to the n-vector model of fer-
romagnetism in the formal mathematical limit
n ~0. The simple equilibrium-constant theory of
Tobolsky and Eisenberg is recovered as the mean-
field approximation to the n ~0 vector model. The
Tobolsky-Eisenberg (TE) theory expresses the prop-
erties of the system in terms of two equilibrium con-

Kp —1

Ep

1 —a

and the specific heat diverges proportionally to

stants, K~ &&1 for initiation and E& of order unity,
for chain propagation. Our model also expresses
the properties in terms of two equilibrium constants
K& (identical to TE's K&) and Ez (proportional to
TE's E& ). The polymerization transition is
mathematically sharp only in the limit K~~0. For
K& small but nonzero, the transition occurs over a
small temperature range, but no mathematical
singularity in the free-energy results. Incorporation
of nonclassical critical behavior into the n~0 vec-
tor model through the use of renormalization group
estimates for the critical exponents, and a simple
scaling law equation of state results in an improved
description of the transition in liquid sulfur and in
living polymers. The critical effects depend upon
the spatial dimensionality d. For sufficiently high
dimensionality (d & 4) the (mean-field) Tobolsky-
Eisenberg theory is adequate. Physical systems cor-
respond to d=3 or even to d &3 for constrained
geometries (d=2 for polymerization in a lamellar
structure and d=1 for polymerization in a tube) ~

Critical effects increase as the spatial dimensionality
decreases. In the vicinity of the polymerization
transition the fraction of monomer incorporated in
polymer varies as
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K —1K'
P

where a is predicted to be close to 0.23 in d =3 and
0.5 in d =2.

In this paper we obtain the exact solution in one
dimension of our model of equilibrium polymeriza-
tion and show that the transition becomes "first or-
der" in the sense that the fraction 4 of monomers
incorporated in polymers increases discontinuously
from zero to one as K~ increases through Kz' ——1, in
the limit K~ ~0. On the other hand, the transition
retains aspects of a critical point in that the free en-

ergy satisfies a scaling law equation of state in the
variables Ki and Kz —1. The formal value of a be-
comes a=1. As discussed in Sec. VI, this transition
is not a violation of Landau's argument' for the
nonexistence of phase transitions in one dimension.

We also obtain the exact solution in one dimen-
sion of the n~0 vector model of magnetism by an
independent transfer-matrix calculation and verify
the exact correspondence between the two models,
derived earlier by a high-temperature expansion.
The scaling form of the free-energy and correlation
functions is examined.

In addition, we carry out a renormalization-group
analysis of the n ~0 vector model in d =1 by an ex-
act decimation transformation analogous to that em-

ployed for the Ising model by Nelson and Fisher. "
Iteration of the transformation generates new cou-
pling constants in addition to the spin coupling J
and the field H. The parameter space of the Hamil-
tonian must be enlarged to six dimensions, but
remains finite. The fixed points (actually surfaces)
are identified and the critical exponents and the
scaling form of the free energy are recovered. The
exact solution of the one-dimensional n~0 vector
model in this six-dimensional parameter space is ob-
tained by transfer-matrix methods and is found to
be in agreement with the values obtained from
iterating the renormalization-group transformation.

The transition studied here is closely analogous to
that in a one-dimensional Ising ferromagnet' in the
limit T~O, where the magnetization jumps from
—1 to + 1 as H/kT varies from 0 to 0+, and this
analogy can in fact be made precise by an exact
mapping between the two problems in the limit
K& ~0. The transition is mathematically sharp only
for Ki ——0. For Ki small but nonzero the transition
is continuous but quite abrupt. It is then closely
analogous to the helix-coil transition in proteins,
studied by Zimm and Bragg, ' and again a quantita-
tive relationship exists. An outline of the paper is as
follows. In Sec. II we define and solve the model of
equilibrium polymerization, in Sec. III the exact
solution of the n~O vector model is obtained by

transfer-matrix methods. Section IV contains the
renormalization-group analysis and Sec. V the con-
nection with other one-dimensional models. In Sec.
VI we discuss our results and relate them to earlier
work. We also present there a simple heuristic ex-
planation of the very different behavior of polymeri-
zation in one dimension from that in d & 1, and
comment on the possibility of experimentally ob-
serving polymerization in one dimension.

II. MODEL AND EXACT SOLUTION

We consider a chain of N cells centered on the
sites of a regular one-dimensional lattice, joined by
N —1 lattice bond or edges. Each cell contains a
monomer unit that can be in either of two states, ac-
tive (A) or inactive (I). Two adjacent active mono-
mers can be either bonded (b) or unbonded (u). Ad-
jacent monomers can be bonded only if they are
both active. Active monomers, either isolated or
joined together by bonds, represent polymers (con-
taining 1,2,. . .,n &N sites). A statistical weight of 1

is associated with each inactive monomer while sta-
tistical weight K& &&1 is associated with each un-

bonded active monomer unit, and weight (aKiK& )

is associated with each polymer of n & 1 sites. The
partition function for this chain of N monomer
units can be written as

Z~ —— g (aK)) ~Eq a
N1, Nb, N

X ~~'(N), Nb, N ), (2.1)

where I ~ (N~ +biz) is the number of ways to put

N& polymers, of which N& are one-cell polymers, on
a lattice of N cells with a total of Nb bonds (the
number of active monomers is %&+Nb). Of course,
the state of each monomer (A or I) can be associated
with the underlying site of the lattice and the state
of its potential bond with each neighbor (b or u) may
be associated with the corresponding lattice bond or
edge. For example, for a chain of N=13 lattice
sites a configuration is shown in Fig. 1 with an asso-
ciated statistical weight (K isa ).

This model corresponds to an equilibrium poly-
merization process with two distinct steps: initia-
tion, governed by the statistical parameter Ki, and
further growth, governed by K&. The extra parame-
ter a introduces a distinction between propagation of
one-cell and larger polymers: aK& for propagation
of one-cell polymers, K~ for propagation of larger
polymers. We have argued that a =2 is an appropri-
ate choice for a ring-opening initiation process such
as occurs in sulfur. It is also appropriate in the
case of certain living polymers. We have also
shown that a =2 results in an exact correspondence
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between Zz in Eq. (2.1) and the partition function
for the n —+0 vector model on a lattice of E sites.
Physically, E& and Ei are expected to depend on
temperature through relations of the type

Ez ——exp[(T ES&—~z)/RT]

K, =exp[(TASi —ELVA)/RT] .

To calculate Z~' exactly we first employ a recur-
sion method similar to that employed by Zimm and
Bragg. ' We then introduce the conditional parti-
tion functions ZM' and ZM' which are partition
functions for M sites with an edge added to the out-
side of the M'th site and specified to be (u) and (b),
respectively. Then ZM"+) and Z' +) can be ex-
pressed as linear combinations of Zg and ZM'

ZM+, 1+E, (aE,E,)'" ZM'

ZM&b'„- (.E,E, )~/2 E, ZM[b]

(2.2)

To get (2.2) we observe that a site that is unbonded
to either side can be either I or A and contributes a
factor 1+E& when added to the chain. We associ-
ate a weight (aEiE&) to a site that forms either
end of a chain, and a weight Ez with a site that is
interior to a chain. This corresponds to assigning a
factor (aEl, )' to each end of a chain and a factor
(E~ )'/ to each of the sites at the end of a bond. The
initial conditions are

Z[u) 1+E Z{b) (gE E )1/2

A, —A,(1+E)+Ep)+Kp+E)Ep(1 —a )=0

giving eigenvalues

Ao, A,
&

———,[1+Kt +K~

+[(1+K,—K~)'+4aK, K~]'~'j,

Equation (2.8) is valid for general E, both small and
large. For any finite X, the limit E[~0 forces
every monomer to remain inactive and, indeed, it is
readily verified that Z~~1 as E~ ~0. On the other
hand, if we take the thermodynamic limit %~00
for any nonzero E~, we obtain for the limiting ther-
modynamic potential

f'"( K),E~)= lim X 'lnZ~ —lnjo (2.9)

since A,p &pi, &. This "free energy" exhibits a singu-
larity at E~ ——0, E~ =1 corresponding to the abrupt
phase change from all monomers inactive for E~ g 1

to all monomers active and bonded for Ez p 1:

f=o, K, =o, K, (l
f=1nKp, K )

——0, Kp ) 1 . (2.10)

where A,o is the larger eigenvalue, corresponding to
the plus sign, and A,

&
is the smaller, corresponding to

the minus sign. The partition function can be ex-
pressed as

A,o(1+Ei —A, ))+A, ) (A,o—1 —E) )
(2.8)

It follows from (2.2) and (2.3) that we can write

1

Z~ —ZM ~ ——(1 0)M

where

(2.4)
Bf

8 lnE[ g
P

It is convenient to define the concentrations of po-
lymers and bonds as

(~, )
Xp = (2.11)

1+E)
( EE )1/2

(aE,E,)'"
Ep

(2.5)
(~, ) ()f

3 lnEp g
(2, 12)

This expression can be simplified by the standard
procedure of expressing Z~ in terms of the eigen-
values and eigenvectors of the matrix M. The secu-
lar equation is

FIG. 1. A configuration of a chain of X =13 lattice
sites with a statistical weight ElE~a . Small dots corre-
spond to lattice sites with inactive (I) monomers„ the
heavy dots correspond to active (A) monomers. Lines be-
tween heavy dots indicate bonded (b) adjacent monomers.

The fraction of monomers incorporated in polymers
{oflength & 1) is then

For Ei~0, xz is identically zero, but x~ and 4
change discontinuously from zero to unity as Ez in-
creases through one. There is thus a first-order
transition from an unpolymerized phase to a fully
polymerized phase as Ez passes through one. This
transition is analogous to the first-order transition in
a ferromagnet below T„where the magnetization
jumps from —M to +M as the magnetic field goes
through zero from 0 to 0+. The point E~=l,
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K&
——0 is analogous to h =0, T & T, . In fact, as we

show in Sec. V, there is an exact correspondence
with a one-dimensional magnet where T, =0 so that
Ki ~0 corresponds 'to T~O in the Inagnet. This
transition is also closely related to the d =1 helix-
coil transition, ' where xz represents the fraction of
helix, as shown also in Sec. V.

When K, is nonzero but small, P changes con-
tinuously but rapidly from 0(K&) to 1 —0(K&) as

E& passes through one. This is illustrated in Fig. 2
where P is shown as a function of Kz for K~ equal
to 10 and 10

The number concentration of polymers x& also
behaves very differently in d=l than in higher
dimensionality. According to both TE theory and
our earlier scaling theory in three dimensions, x~ is
predicted to vary proportionally to K~ for K& gK~
and proportionally to K ~

for K & K . This
~ ~ ~

1 p pc
behavior is verified by electron spin resonance (ESR)
measurements which are in good agreement with
estimates of K& from bond energies and entropies
above K~, and which indicate a precipitous drop in

x~ near K~. In one dimension, however, xz is
predicted to vanish proportionally to Ki for both

Kz & K~ and K& g K~. Only precisely at
K =K~ ——1 does x& vary proportionally to K~ for
small Ki. This behavior is illustrated in Fig. 3
which shows logi~& as a function of K& for K&

equal to 10 and 10
In the asymptotic limit of both Ki and K —1

very small, the free energy in Eq. (2.9) can be ex-
pressed in the scaling form

f=(K~ —I )gp
K)

fE~ —1/2

I I I I I I I I I I I I I I I I I I
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FIG. 3. Number concentration of polymers x as a
function of Kz. Note logarithmic scale. Curve a,
K» ——10 6; curveb, K» ——10

where

4@Ki
g+ ———, 1+ 1+

(Ep —1)
I

and the plus or minus sign is chosen according to
whether (K& —I ) is positive or negative. [Terms of
order Ki/(K& —1) have been neglected as necessarily
small compared to those of order K&/(K& —1) in
the asymptotic limit. ]

By analogy with the behavior in higher dimen-

sions we expect that f-(Kz —1)2, which leads to
the exponent o.=1. In d =1, self-avoiding polymers
are fully extended so that their mean length 8 varies

linearly with the mean number of monomers per po-
lymer P. The exponent v defined by R -I'" is thus

v=1, and the hyperscaling relation dv=2 —a is ver-

ified. For a =2 this identification of exponents can
be justified by correspondence with the n —+0 vector
model, as discussed in Sec. III.

Equation (2.4) with (2.5) can also be obtained us-

ing the transfer-matrix idea. If the state of every

edge (u or b) is specified, then the sum over states of
every site can be performed in closed form and its
contribution to that term in Z~ determined. If we
make the identification of statistical weights as men-
tioned above, and append sites 0 and %+1 which
are required to be in state I so that the bond joining
them to the rest of the chain must be in state u then
zCZz can be expressed as a sum over the state of every
bond, u or b, of a product of matrix elements joining
adjacent bonds, and the result is Eq, (2.4) with (2.5).

Finally, it is useful in making the connection with
the n ~0 vector model, considered later, to note that
if we associated the weight of a bond entirely with
the site to its left, rather than dividing it evenly be-
tween the adjacent sites, then the partition function
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would take the distinct but equivalent form

1

ZN ——Zw=N=(1 0)(M )

(1+E,) (aE, )'
r

)1/2g g

and

Z1, —1++1 Z1 (8+1) +p '

For completeness, we include here a brief treat-
ment of the consequences of periodic boundary con-
ditions on the correspondence between polymeriza-
tion and the n —+0 vector model. The conclusions
are as follows. The limiting free energies f=lnAO

are the same as for the open chain in each case
without any manipulation of either model. Howev-

er, for finite chains, the single term in the polymeri-
zation model partition function corresponding to a
ring polymer of length N (i.e., every site active and
every edge bonded) must be removed in order to re-
tain the correspondence as an identity for all X.
This is in keeping with the spirit of the correspon-
dence between our polymerization model and the
n~0 vector model in higher dimensions, namely,
that no closed rings are allowed. The term corre-
sponding to the closed ring of size N is automatical-

ly excluded in the n-vector model by the limit n ~0.

III. n ~0 VECTOR MODEL,
EXACT SOLUTION BY TRANSFER MATRIX

The n-vector model is a model introduced to
describe various interacting systems and study their
properties in the vicinity of a phase transition. It
has been applied in particular to magnetic systems.
To each site i of a chain of N sites we associate a
vector S; with n components S;, a=1,. . .,n, and
with norm or length n'~ . The energy is given by
the Hamiltonian

N —1~=—ass, ' —Jg s, s,„. (3.&)

The partition function of the system is written

The partition function for the polymerization model
on a ring of' X sites is most easily obtained by using
the transfer-matrix interpretation mentioned above.
For a ring, we need not add dummy sites 0 and
%+1, but rather simply connect sites 1 and N with
a lattice edge. Summing over the bond states of all
bonds (and subtracting Ep for the ring state) then
gives for the partition function on a ring

Z~"(Ep,E, ) =TrmN —X~~

=Xo+X, —X (2.19)

whcrc A,o and Ai arc thc cigcnvcctors of M in Eq.
(2.5) and are given by Eq. (2.7).

zg=Trexp( —pA )=(exp hxs +xg s, s,. +& )- (3.2)
l =1 i=1

hw«eP=1&kT, h =p&, and J=pJ, and where we have to take an angular avpragp over aQ thp possible orien
tations of the vectors S&,S2,. . .,S~. The exponential can be expanded and averages of the form (g; pf, . .,S'r ).
have to be done. In the limit n ~0, as shown in previous papers in more detail ' the only nonzero averages are
of the form ((S; ) )= 1, and Zz can be written

Z~ —— g (h2) ~(J) '2 'I ~'(N), Nb, Np), (3.3)
NI, Nb, N

where I'Jv'(N, +b +~) is the number of ways to put Nz polymers N~ of which are one-site polymers on a chain
of N sites with a total number of bonds Xb. This is identical to the partition function of thc polymerization
model introduced in Sec. II with the following relations between a, E1,E~, and h, J:

a=2, E1———,h, Ep ——J .
Exact solution by matrix method

The system being one-dimensional, we can calculate ZN exactly for any N by averaging step by step, first
over all orientations of S1, and then over S2, and so on up to SN. By integrating over S1 we get

N N —1

ZN —— cxp hS1+J S1 S2 s exp h S +J Si S;+1
i=2 t=2 S~ S3 '' s~

N —1= (1+—,h'+hZS2')exp h S,.'+J S, .Si+,
i=2 i=2 S2, - ~ ~, S~
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where we have made usc of the fact that, for n~0, only averages of (5; ) and constants survive. After in-

tegrating over S],S2,. . .,Sp, ZN takes the general form

N N —]

ZN (Ap + Jgp gp + J )exp h g + J S S + ]
i=p+1 i=p+1 S&+&, ~, S&

The coefficients Az+iPz+i are linear functions of
AzPz. This can be written in the matrix form

Ap~i Ap—M ~ (3.7)
p+] . . p.

with

{3.8)

where Q is the larger eigenvalue corresponding to
the plus sign and A,

~
is the smaller, corresponding to

the minus sign. The partition function can be ex-
pressed as

The initial conditions are

Ap ——1, Bp ——0. (3.9)

where M is given by Eq. (3.8).
As before, this expression can be simplified by ex-

pressing ZN in terms of the eigenvalues and eigen-
vectors of the matrix M. The secular equation is

A2 —A(ly —,h~~J) yJ ——,h2J=O,

which yields eigenvalues

The last average, over SN involves the exponential of
only hSN and gives

AN )(1yh ) gBN )h

which is of the form AN, calculated from AN

BN [ using (3.7). It follows that we can write

1

ZN ——Ap N ——(1 0)MN 0 (3.10)

(3.13)

f'"= lim (N '1nz~)
N-+ te

is given by

(3.14)

These results are identical to those obtained previ-
ously for the partition function of the polymeriza-
tion model in Sec. II [Eqs. (2.4)—(2.8)] if a =2, and
with E& ———,h and E~ =J. This result confirms the
correspondence between equilibrium polymerization
and the n~o vector model established through a
high-temperature expression. The validity and use-
fulness of the correspondence between the two
models has been previously demonstrated when we
showed that the approximate Tobolsky-Eisenberg
theory of equilibrium polymerization corresponds
exactly to the mean-field theory of the n ~0 vector
model.

The thermodynamic potential

f"'(J,h)=ln( —, ({lyJ+—,h')+[(1 —J+ , h')'y4Jh']'—"I) . (3.15)

Near J=1 and h =0 this has the scaling form

hf(c) {J 1)g

where

(3.16)

which, with (3.16) and (3,17), implies

a=1,
(3.19)

g (x)= —,[I+(I/4x')' 2] . (3.17)
The zero-field susceptibility is readily found to be

This agrees with Eqs. (2.14)—(2.15) subject to identi-
fications (3.4). %'ith the usual definition of critical
exponents for magnetic systems, we would expect
the free energy to satisfy the scaling form

X(J,h-o)= '
Bh

(J&1)

(3.20)

f(J,h) =(J—J, )~ g~, (3.18) from which it follows that y=l. Applying the
standard scaling relations we then obtain
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a=y=P5=1,
P=2 —a —y=0,
5=p5/p= ao,

v=(2 —a)/d =1,
q =2—y/v=1,

(3.21)

which agree with the earlier perturbative analysis by
Balian and Toulouse. '

Despite the relatively straightforward identifica-

tion of the critical exponents from the above quanti-
l

ties, there are aspects of the behavior of the n~O
vector model that are highly unusual. %e have

pointed out before' that if the free energy of the n-

vector model is to satisfy both scaling, as in Eq.
(3.18), and the requirement that f{J,h =0) is identi-

cally zero for J g 1 [which Eq. (3.15) does satisfy],
then the magnetic susceptibility must necessarily be
negative for some values of J, h in the vicinity of the
critical point whenever yy1. Here y=1 and this

behavior is not required by our earlier argument.
Nevertheless, it does occur. The magnetization and

energy are given by

f N —1 yg(1)
Bh y

h[ 1+(1+3J+—,h )[(1—J+ —,h ) +4Jh ]

1+J+—,h '+ [(1—J+ —,h ')'+4Jh ']'~'

=N-' gS, S,„
BJ h

1+(J—1+-,h')[(1 —J+—,h')'+4Jh']-'"

(J+1+—,h')+[(1—J+—,h')'+4Jh']'~'

This gives the somewhat bizarre result that

limm(J, h)=0, /&1 {3.24)
h-+0

for both J& 1 and Jg 1, but

limm(J = 1,h )=sgn(Q) =+1
h-+0

when J=1. The behavior of m(J, h) is sketched for
several isochamps and isotherms in Figs. 4 and 5,
As we have noted before, ' the existence of negative

values of (imam/Bh)T for the n~O vector model has
no serious consequences for the physically relevant
polymerization problem. Indeed, the concentration
of polymers

xp ——(Np ) /N =
2

hm

is an increasing function of (2aE~)'~ =h for all
values of J=Ez.

The behavior of m(J= l,h) as h ~0, give»n Eq.

l.o

0.9
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0.0 I
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J-l

FIG. 4. Magnetization m(J, h) as a function of J for
various fields h. Curve a, h=0.001; b, h=0.02; c,
h =0.05; d, h =0.10.

I I I I I I I I

0.0 0.5 l.0 l. 5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

h

FIG. 5. Magnetization m(J, h) as a function of h for
various temperatures. Curve a, J=2.0; b, J=1.5; c,
J=1.2. Curve d corresponds to J=J,=1.0. Curve e,
J=0.8; curve f, J=0.4; curve g, J=0.1.
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(s,'s,') =

1
(1 0)m~-JT mj-'-'T m'-'

~ (3.28)
1

(1 O)M" 0

where M is given by Eq. (3.8) and where

h 1

J 0

T is the matrix that expresses A ' P" in terms ofA"-"P"-"where

(3.25), is in accord with the values of 5= ao ascribed
in Eq. (3.21). However, it should be noted that if in-
stead one chose the definition

lim -Ji' ' (J=l),
II 0 BA

then the behavior of m at J=1
rn(J= 1,h)=sgn(h)(1 ——,

I
Ji

I
+ . ) (3.27)

mould give the conclusion 5=1. Similarly, since
m(J, h=0)=0 for Jg1, no direct evaluation of the
exponent P is possible.

Spin-correlation functions

The spin-correlation functions can also be calcu-
lated by standard transfer-matrix methods. For
l ~j, onc finds

«
I j—i

I
)=Ti2T2i-

iII 0

from which wc obtain the usual identification

—1

ln(i, i/A, o)
'

(3.3S)

(3.36}

The last result can be refined by retaining the
lowest-order terms in III. The result is, for h & 0 and

where g is the correlation length in units of the lat-
tice spacing. The lack of any dependence upon
(j—i) except through e 'J "~~ implies that
d —2+/=0 or /= 1, in agrccmcnt with the scaling
result in Eq. {3.21). The dependence of Q and A, i on
Jwhen h~0 yields

1
(Ji =O,J=1) (3.37)

from which follows v=1, again in agreement with
(3.21).

The zero-field spin-corrdation function can be
calculated from (3.33) for all values of J by taking
the hmit Ji 0. It is found to be, for

Ij i
I
y—o,

C( Ij i
I
)=—JIJ 'I (J&1)

J I
J-'

I (J& 1)—

=0 (J=1). (3.38)

&(a"-"+a"-"S,')S,'exp(is, S,„+JS,')&-,

=(A"'+8"'S+i) . (3.30)

lj —II

c(
Ij i

I
)=( —,—Ji ) 1+6

(3.39)

Similarly, for the average (S ) =m one finds

1
(1 0)M" 'TM'

(3.31)

The magnetic susceptibility and spin-correlation
functions are related by the fluctuation relation

= lim X-'g g(&S,'S'& —(S &(S,'&)
BA T X~ no

1
(1 0)M"

O

Applying the matrices U" and UL=(U") ' of left
and right eigenvectors in (3.28) and (3.31) we obtain,

for the spin-correlation function,

c{
Ij i

I
) = (s,'s—J') —(s ) (sJ'), (3.32)

thc standard result (j p ~ )

(3.33)

=((S -&S,'&)'&+2 g ((S,'S,'„)
-&s &&s„)),

where, in the second line, i is a "typical" interior
spin, infinitely distantly removed from the ends of
the (infinite) chain. For both J~1 and Jg1, the
average (S ) is zero for h =0. For J& 1, it is easily
established that ((S ) ) =1 for h=o, so that the
thermodynamic average of (5 } is identical with its
angular average. For J~ 1, however, one finds that,
for a spin j sites removed froxn the end of the chain,

T=U'T U'

near the critical point (3.33) can be written

(3.34) &(s')'&=J- (J =0)

so that, for a spin in the interior of an infinite chain,
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=1+2 g JJ= (J(1)
Bh

=2 g J J= (J&1) . (3.43)J—1

When J is exactly one, the it ~0 limit of ((S ) & is
—, for a spin far removed from the end of the chain

so that

((s,')'& —~'= ——,
' .

%'ith Eq. (3.39), this gives for the zero-field limit of
the susceptibility at T„

J

lim ——, +2 g ( —,h)
1 —h

(3.44)
Q —+Q ~ ) 1+6

in agreement with (3.27). Thus, the value ——, for
the zero-field limit of the susceptibility at T, is due
entirely to the (j—i)=0 term in the correlation
function and is not related to the divergence of the
correlation length at all.

The analysis of the scaling form of the correlation
functions is facilitated by the transformation to the
parametric variables r and 8 defined by

2h =r sin8,

1 —J=pcos8 . (3.45)

In these terms, and to first order in r, the matrices
M and T can be written as

1

2 r sin8

((s,')'&=o (J& l, i =o) .

Using these results, we easily verify the fluctuation
relation (3.40) both above and below T, [cf. Eq.
(3.20)]:

This gives, for the thermodynamic potential (to
lowest order in r ),

f=InAO-r sin (8/2), (3.50)

Bm 2cos 8
Bh J

{3.52)

in agreement with the identification y= 1 in (3.22).
Thus, the scaling part of the susceptibility is non-

negative, but vanishes on the line cos8=0, corre-
sponding to J—1. It is the smooth background term
and higher-order terms in r that are responsible for
the negative susceptibility near T—T, .

For the correlation length we obtain

g=r '[1+O(r)] (3.53)

and, for the spin-correlation function, to lowest or-
der in r and for

~j —i
~

&0,

C( [j i
[ )=—cos 8 exp( —

)j —i
[

/g') . (3.54)

The sum of C( ~j i
~

) o—ver i and j gives as the
dominant scaling part of the susceptibility

2 cos'8
(3.55)

N,.)
in agreement with (3.52).

It is also possible to calculate the transverse corre-
lation functions

which, with (3.45), is precisely equivalent to (3.16)
with (3.17). For the magnetization m we have, ei-

ther by differentiating (3.50) or from (3.22),

m =sin8+O(r),

in agreement with the assignment P=o in (3.21).
Similarly, for the susceptibility, one obtains

M=
—,r sin8 1 —rcos8

1

—,r sin8 1

1 —rcos8 0, 'T=

(3.46)
for +~i. The procedure is analogous to that
described above except that the term S; as weil as
S and 1 must be kept track of, with the result that
M and T and therefore U~ and U~ must be aug-

mented to 3 X 3 matrices. The result is that, for jQi
and u&1,

The matrix of normalized eigenvectors of M is, to
the same order,

cos(8/2) —sin(8/2)
sin(8/2) cos(8/2)

and the eigenvalues are readily found to be expressi-
ble in the form

A,o= 1+K sin (8/2),

A,
~
——1 —r cos (8/2) .

C (~j i ~) Jlj —I (J&1 h 0

-0(h ) (Jp1,h —+0)
IJ —'

I

1 1

1+h
{J=1,h~0) .

(3.57)

Note that, while for T& T, the zero-field behavior
of the longitudinal and transverse correlations is
identical, for T g T, the behavior is very different,
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while for T=T, the behavior is qualitatively similar
but quantitatively different.

Solution on I ring

On a closed ring of N sites the n-vector model is
represented by the Hamiltonian,

N N

P = Hg—S —JgS; S+1, (3.58)

with the periodic boundary condition SN+] ——S].
I

The partition function

Z~' ——(exp( —PA ) )

can be calculated by the same method as for the
chain. The difference is that S~ is con~led both to
S2 and to SN and the integration over S] introduces

1new terms such as SN and S2 SN. The integration
over Sq will introduce terms of the type S3 SN so
that after integrating over S], then S2, . . . , Sp, the
partition function takes the form

N N —1

ZN Ap +BpSp+ ] +(Cp +DpSp+] )SN +EpSN Sp+ ] exP h S +J S; S;+ 1

p+] p+] (S +), . . . , S~)

The coefficients Ap+], Bp+],Cp+],Dp+],Ep+] are linear functions of Ap Bp Cp Dp Ep.

(3.59)

Ap+1

Bp+]

Cp+1

Dp+1

Ap

Bp

=M Cp

Dp

Ep

(3.60)

with

1+—,h h 0 0 0

hJ J 0 00
0 01+—,h hh

0 0 hJ JO
0 0 0 0 J

(3.61)

The initial conditions are

Ap = 1, Bp =Cp =Dp =0

and Ep ——J. The last integration step is as follows:

Z~' ——(Ag )+By )S~+(CN )+D~ )Sg)S~+Eg 1 l
S„ I

exp(hS~—)), s (3.62)

This yields

ZN' ——AN 1(1+—,h )+BN ]h

+CN ]h +DN

so that ZN' can be written in the form

0
ZN' ——((1+—,h ) h h 1 0)M ' 0

0

J

(3.63)

(3.64)

I

where M is given by {3.61).
This expression can be simplified by the standard

procedure of expressing ZN' in terms of the eigen-
values and eigenvectors of the matrix M. The secu-
lar equation factorizes to give a linear equation and
two quadratics that are the same as for the chain
[Eq. (3.11)]. The eigenvalues are equal to Ao and A, ,
in Eq. (3.12), each with degeneracy 2, and to J. A
straightforward but somewhat tedious calculation
with the matrices of right and left eigenvectors veri-
fies that the partition function can be written exact-
ly as
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Z(r) gN+ gN JN (3.65)

Thus, with a =2, Ei ———,h, and Ez ——J, we recover

the result obtained previously for the partition func-
tion of equilibrium polymerization on a ring [Eq.

(2.19)],where closed polymers were excluded by fiat.
Here the exclusion of the closed ring of X bonds,
corresponding to the term J, is accomplished au-

tomatically by the limit n ~0.

IV. n —+0 VECTOR MODEL
8Y RENORMALIZATION-GROUP ANALYSIS

%e have shown in the preceding sections that the one-dimensional n ~0 vector model exhibits a phase tran-
sition. It is interesting to analyze the model from a renormahzation-group approach. %e apply a decimation
transformation which has been applied previously to the one-dimensional Ising model. " By decimating every
other spin along the chain we generate a renormalization-group transformation with a change of scale
I'/I =b =2. In this method new operators are generated through the renormalization-group transformation, as
we shall see later, and we have to study a more general n~0 vector model with the following reduced Hamil-
tonian:

N N —i

X=— = g [hS +L(S ) ]+ g j JS; S;+)~hS S+)+K(S;)'(S;+))'

+M[S (S+))'+(S )'(S+))]]+g C .

Exact solution of generalized model

Before applying the decimation method we shall first calculate the exact partition function of this general
n-vector model in the limit n ~0, using the same matrix method as in Sec. III. %e integrate, to calculate the
partition function, over Si then over S2 and so on up to S~. By integrating over S] the partition function is ex-
pressed as

Z„'= (e~) -, -, ,
= ( j (1+—,h' i-L)+[h(1+6)+M]S,'

+(K+ , 5 +Jh+—hM)(S2) Iexp@(S2, . . . , S~))~ s s ~exp(XC)

and after integrating over Si,S2, . . . , S&, the partition function can be expressed in the form

Z~ ——([A +8 S +~+C (S +~ )']exp/8(S, , . . . , S ) )- - exp(XC),
p+1* ' .V

where the coeffliclents A~+ i,8@+1,cp+ i are 11neaI functions of Ap, 8p, cp.'

Ap+ i Ap

8p+i ——M 8p

C~+i

with

1+I.+ —,h' II l

h(J+6)+M /+5 0

E+—,4'+ Jd +Mh M 0

The 1n1tlal condit1ons aI'e Ao = 1 8O =Co =0 and from Eq. (4.3) we obtain

where M is given by (4.5). This expression can be simplified by expressing Zz in terms of the eigenvalues and
eigenvectors of the matrix M. The secular equation is
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h2
A, —A, (J+6+1+—,h +L)—A, E+2hM+ —,6 +Jh+(J+5) —1 —L

+(J+b)(E+Jb+ —,6 )—M =0 (4.7)

giving eigenvalues Q, A, ~, Aq, where Q is the maximum eigenvalue. In the limit N~ ao we obtain the free ener-

gy per site

f= lim (N '1nZ~) =Ink, c . (4.8)
N~ co

Renormalization-group transformation

In the decimation transformation a central spin S coupled to the two neighboring spins S1 and S2 is replaced
by a single bond joining the two "external" spins. The transformation is effected by taking the trace over the
internal degrees of freedom of the system, and one is left with a conditional partition function P(S~,S2) which
can be expressed as

g(S, ,S,)= (exp[ hS'+L(S')'+ J S (S,+S,)+M'(SI+ S,')+K($')'[(S I )'+(S,')']

+MS'[(SI) +(Sp) ]+M($')'(SI+$2)] )(s) . (4.9)

By expanding the exponential and taking the average over S in the limit n ~0, retaining only nonzero aver-
ages ((S ) ) = 1, we obtain

f(S),S2)= 1+L+—,h +(J) S).S +(b, +2bJ)SISp+[h(b+J)+M]($1 ~$2)

+ ( —,6'+J6+ K+ hM )[(S', )'+ (S,')']+M'(S,'S,')'

+M(h, +J)[(S,')'S,'+S', ($,')'] . (4.10)

We must now express 1((S~,Sq) in the exponential form exp[p(S~, S2)] in such a way that, for any function

f(S~,S2), the equality

(f(S&,Sz)f(S&,S2)) s s =(f(S&,Sz)exp[p(S, ,Sz)]) s s (4.11)
1 2 1 2

is satisfied. We also want p(S1,Sq) to be of the same form as the original Hamiltonian:

p(S»S, )= h"(S', +Sz)+L "[(S,')'+(S,')']+J'S, S,+6'SIS,'+K'(SI)'(S,')'

+M'[S I ($2 ) ~ (S I ) $2]+C' . (4.12)

We expand exp[p(S~, Sq)] and retain only the terms which, when multiplied by any function of S~,S2 and
1 3averaged over S,,S2 in the limit n ~0, give nonzero contributions. For instance, a term (S, ) can never give a

nonzero contribution when multiplied by any term of the form (S~ )P(Sq)~ (for p, q &0) and is thus not re-
tained. We get the following expression:

exp[p($~, $2)]= 1+h "(SI+$2)+(L"+ —,h )[(SI ) (S2) ]+J'(S~ Sq)+(b, '+h")SIS2

Ilg

+E'+ —,(6) +J'6'+L +2M'h'+h" +5'+J'+L" (S~S2)

It2

M'+h' L "+J'+5'+
4

[(SI ) $2 +S I ($ q ) ] expC' . (4.13)

Imposing the condition (4.11) determines the cou-
pling constants in (4.13), as given in (4.15), below.
The following renormalization-group equation for
ZN then follows:

with

N/2 —1 N/2

p(SJ, SJ+()+ g [hSJ'+L(SJ') ] (4.14)

Z~ = (exp') = (exp' ') so that A ' has the same form as A with new
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parameters (h ',L ', . . . ).
From the equations (4.10)—(4.13) the recursion re-

lations between the parameters h ', L', J ', 6', E', M',
C' and h, L, J, 5, E, M, C are deduced and writ-
ten in terms of

towards J= oo which is another stable fixed point.
Thus, J=1 corresponds to a crictical point. The
linearized recursion relation (J'—1)=2(J—1) leads
to a critical exponent

v '=(In2/lnb)=1
A =1+—,h'+L,
x=J+6,
y

—=E+JA+ —,5

The set of recursion relations is given by

h'=h+2h",
where

h" =(hx+M)/A,

L'=L+2L",
where

L"=(y+hM)/A,
J'=J /A,

x'=x /A —h
I lg

M'=Mx/A —h" L"+ +x
4

h"
y'=M /A —L" —2M'h" +x+L"

4

and
C'=2C+lnA .

(4.15)

(4. 16)

which says that in one dimension the radius of a po-
lymer of N monomers with excluded volume
behaves like R -N"= '. Renormalization-group
transformations allow one, in principle, to calculate
the free energy f(J). When J is less than 1 the suc-
cessive iterations relate f(J) to f(0) as shown by Eq.
(4.18) and f(J) is then equal to 2 &f(0)=0. At
J=1, f(J)=2 J'f(1) and thus f(1)=0 Fo.r J&1
we have f(J)=2 I'f(J ) from which we can con-
clude that f(J)=A lnJ. To determine f(J) com-
pletely it is necessary to calculate f(J,h) and then
take the limit h ~0.

We now consider the more general case where the
parameters are nonzero. Even when we start with
only h and J nonzero (which, incidentally, corre-
sponds to the physical situation of equilibrium poly-
merization), all the parameters take nonzero values
after a few iterations. In the full five-parameter
space there are three fixed manifolds P], Pz, and
p4

P
~ (x =0, y =0, M =0; h, L arbitrary)

Pz (h =0, y=O, M=0, x=00, L arbitrary)

P3 (x=A, y=Ah, M= —Ah; L, h arbitrary) .
We see that the recursion relation for J is discon-

nected from the others, which reflects the fact that
the free energy depends only on x, y, h, L, M as can
be seen from the exact solution [Eq. (4.7)]. In the
thermodynamic limit N~ Do, the renormalization-
group equation [Eq. (4.14)] can be rewritten in terms
of the free energy per site f(h, L,x,y, M, C),

f(h, L,x,y, M, C)= , f(h', L',x',y', M—',C'), (4.17)

where the primed variables are given in terms of the
unprimed by (4.16).

P& is a "high-temperature" fixed surface, Pq is a
low-temperature fixed line, and P3 is a (doubly)
unstable fixed surface responsible for the critical
behavior of the model.

In the vicinity of any point on the fixed point
manifold P], characterized by a choice of h and L,
if we expand the recursion relations in the small ex-

cursions from the chosen fixed point, 5h, 5L, 5x, 5y,
5M, then the linearized recursion relations may be
expressed in the matrix form

J =J (4.18)

Analysis of the recursion relations

We first consider the simple case where initially
h =0, x =J&0, and y =L =M =C=0. When we
iterate the renormalization transformation, all
parameters stay zero except J, which obeys the sim-

ple recursion relation

5h'

5L'

5y'

5M'
0 0 0
0 0 0
0 0 0

2h 2
1 0 — 0

A

2 2h 5L
0 1 0

5x

0 0 5y0,5M

0 0

(4.19)

so that if J=1 it stays equal to one. This fixed
point is unstable so that when J~1 the successive
values of J go towards J=0, which is a stable fixed
point, and when J&1 the successive values of J go

J

where A =1+L+—,h . The eigenvalues are easily
seen by inspection to be 1, 1, 0, 0, 0.

No meaningful linearization is possible in the vi-
cinity of the low-temperature fixed point manifold
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Pq (at least not in terms of the variables h, L,x,y, M).
Near Pz the recursion relations can be conveniently
expressed to lowest order in the form

2(hx+M)
1+L

5L =5L+ 'y
1+L '

x =x

f, (J l, h—,h)= —f, [2~(J—l),2~h, h] . (4.23)

By choosing p large enough and (J—1) and h small
enough, we get the following scaling form for
f,(J,h, h) =f,(J—,h):

f, (x —1 L——y, M+h, 2M+h ) .

After iterating the transformation a large number of
times (say p) the following equation results:

hx
1+L

—hx

1+L '

Mx+hx
1+L f,(J,h )=(J—I)g+ (4.24)

where we have neglected terms higher than first or-
der in h, 5L, y, M that do not contain factors of x.

In the vicinity of P3 the recursion relations be-

come

5h'

5y
5M'

1
A

2 0

0 0

2h 0

2
5h

2h

5x

0 5y

—2h

0

(4.21)

where A =1+L+—,h . The eigenvalues are found

to be 2,2, 1,1,0, independent of h and L. We shall
concentrate here on the fixed point of interest for
the simple Hamiltonian introduced in Sec. III and
for equilibrium polymerization: h =L =M=y =0,
/ =x =1. A more complete study in the full paraIn-
eter space will be presented in a future publication.
Close to this fixed point the linearized recursion re-
lations can be expressed in the form

(x' —1 —L' —y') =2(x —1 —L —y),
h'+M'=2(h+M),
h'+2M'= 1(h +2M ),
L '+2y'= 1(L+2y ),

h
(4.25)

We know that

f(h'~' L'I" e& eq, e3,C'~')-lnA'~'+0( &)

with

(4.27)

C'&'=2& 'lnA' '+2& lnA"'+ . +lnA

(4.28)

Equation (4.24) is of exactly the same form as (3.16),
obtained from the exact solution, and gives
a = 1,6,= 1. The decimation renormalization-group
transformation in which the "spins'* are not renor-
malized leads to the consequence that the correlation
function (S,'S~') at the critical point J= 1 does not
depend on distance i —j which corresponds to a crit-
ical exponent g=1 as shown in Sec. III from the
analysis of the exact solution of the one-dimensional
n —+0 vector model.

The renormalization-group transformation can
also be used to calculate the free energy from any
value of h, L,x,y,M. Starting with the initial values
h'"=h, L"'=L, x"'=x, y'"=y, M"'=M, the re-
normalization trajectory approaches, after several
iterations, the stable high-temperature fixed surface

Pi with x =e&, y =eq, M =e3, where e; is very small
so that

f(h, L,x,y, M, C =0)

,f(h'&—',L'&', ~„e„e„c'~'). (4.26)
1

Thus, if we make a small change that keeps
M=L=y=0, but makes h and/or J—1=x—1

nonzero, then L and y remain zero, as does 5, so
that J=x remains true, but x' —1, M', and h' are all
nonzero. It is convenient to express the dependence
of the singular part of the free energy in terms of
the scaling variables in (4.22):

and from Eq. (4.26) we obtain

&-' lnA'"' lnA'&'
f(h, L,x,y,M, C =0)= g „,+

This formula is approximate because of the
corrections of order e in (4.27), but gives reasonable
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results. To calculate f exactly we have to iterate up
to p= 00, where c;=0, so that f is expressed as an
infinite sum

Ap(kl —1 —Kl )+A, ) ( —AP+1+Kl )
ZN

Al Ap
(5.2)

to l~ (n)

f(h, L,x,y, M, C=O)= g
n=0

with

(4.30)
where Q and A, ~ are the larger and smaller roots of
the equation

g (n) 1+ &

(g (n))2+I (n) (4.31)

The expression (4.29) has been applied with p =20
and for J '=J=0.18, h' )=h=0. 1 with the result

f(J=0.8,h =0.1)=0.0378135 .

The exact value given by Eq. (4.8) is 0 037 814
also obtained another check, namely,

f(h =0.1,L =O. l,x =0.85,y=0. 14125,M =0.1}

=0.2587943

when the exact value given by Eq. (4.8) is 0.258 795.

V. CONNECTION %'ITH
THE ZIMM-BRAGG MODEL

AND WITH THE ISING MODEL

W'e introduce a second model of polymerization
in one dimension (model II) which corresponds ex-

actly to the Zimm-Bragg model' of the helix-coil
transition for their parameter p equal to one. In this
model (model II) the N sites of a chain can be in two
possible states, active or inactive (helix or coil), and
adjacent active sites are necessarily bonded and form
"polymers" [in the Zimm-Bragg model a one-

dimensional polypeptide is made of helix portions
(polymers) separated by coiled portions (nonpolym-
erized monomers}]. To a polymer of n sites we
associate a weight K&E~ (for correspondence with

Zimm-Bra~g model K, =rrs+z ——s). The partition
function ZN is written

ZQE „K,)= gE, 'K, 'I ~'(N, ,N, ), (5.1)
Nb, N

where I N' (N&, Nz) is the number of ways to put Nz
polymers with N~ dosed bonds on a chain of N sites
and ~here two one-site polymers cannot be adjacent.
The partition function can be calculated exactly by
the matrix method, as done by Zimm and Bragg,
with the resu1t

In the large N limit the thermodynamic potential

1nZN

is deduced from Eqs. (5.2) and (5.3), and is equal to

f=Ink. s
T 2

' l/2
(1+K@)=1n' +

2

(1—Ep )

2

(5.4)

The two polymerization models (model I introduced
in Sec. II and model II) lead to similar expressions
for the partition functions Zz and ZN [see Eqs.
(2.6)—(2.8) and (5.2) and (5.3)]. The expressions for
the two partition functions ZN and ZN become iden-
tical if the following relations between K~ +&, a and

K&+ z are satsified:

K ) K( K)Kp——(1—a—),
Ep ——Kl+Kp . (5.5)

The polymerization model II corresponds exactly
to the one-dimensional Ising model of magnetism. "
On a chain of X sites a spin S,'=+1 is associated to
each site and the energy associated to a configura-
tion of 1 spins is given by the Hamiltonian

N —l N~=—J g s,'s,'„—H gs,'. (5.6)
i=1 i=1

There is an exact mapping of the states of the Ising
model with the states of the polymerization model if
we suppose that the sites with spin + 1 are active
and the sites with spin —1 are inactive. To a state
with a given assignment of up and down spins is as-
sociated a set of polymers of one or more sites, con-
sisting of the blocks of up spins, dissolved in a sol-
vent of inactive monomers, corresponding to the
down spins. The weight associated to a polymer of
n sites is equal to exp( 4pJ+2npH) an—d the parti-
tion function ZN(Ising) is written

Z~(ising)=exP[(N —1)PJ NPH) g [exP( 4—PJ+2PH)] I'[e—xP(+2PH)) I ~(Ns, N&), (5.7)
N, Nb

where we have neglected the edge effects which are absent for a ring, and where I'N(Xb, N&) has been defined
previously.

We see that
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Z~"""s'(PJ,PH ) =expN(PJ P—H )ZQK1,K& )

for N large with

K, =exp( 4P—J+2PH),

Kz ——exp(+ 2' ),
and we recover, using Eq. (5.4), for N large the Ising ~odel free energy per spin

1/2
F H . 2 H 4J]'kT

N
—=f= J k—T I—n cosh + sinh +e

kT kT

(5.9)

(5.10)

Prom the connection with the Ising model we understand better how the first-order polymerization transition
when K~ goes through one for K& ——0 is analogous to the first-order transition in a one-dimensional magnet at
T=0 or J= ~ when the magnetic field goes from 0+ to 0

VI. DISCUSSION

In the limit of zero initiation constant K~~0,
equilibrium polymerization exhibits a phase transi-
tion in any dimension. This transition is "critical"
in the sense that at the transition very long polymers
appear with critical scaling properties' with a mean
radius which varies as a function of P like R -P .
The exponent v depends on dimension (v=0.6 in
d=3, while v=0.75 in d =2, and v=1 in d =1).
The departure from the random walk behavior
R -P' is greater at lower dimension. The critical
effect becomes so important at d =1 that the poly-
merization transition, which is "second order" for
d =2 and d =3 in the sense that the fraction 4 of
monomers incorporated into polymers is continuous,
becomes 'first order" with a jump in P at

Kp ——Ep ——1.
Although the transition studied here occurs at

llollzcI'0 tc111Pcratllrc (Ep = I), lt ls not a violation of
I.andau's argument' for the nonexistence of phase
transitions in one dimension because the limit

Ki ~0 corresponds, for nonzero T, to an infinite en-

ergy for activation of the monomer. It is well
known that phase transitions can occur in one-
dimensional systems in which infinite energies are
allowed for some states.

The reason for the qualitative difference between
d =1 and d g 1 can be understood in terms of sim-

ple Plory-Huggins' -type arguments. It is well

established that the number of polymers with n

bonds and one end fixed at the origin of an infinite
lattice has the asymptotic form

@tl (6.1)

for n large, where p is a number characteristic of the
lattice, surely lying in the range —,q to q —1, where q
is the coordination number of the lattice. Thus, the
statistical weight of all polymers with n bonds and
one end fixed at the origin at

8'„=(K„p,)",
from which it clearly follows that

Epp= 1

(62)

(6.3)

%hen K&p~1 chain propagation proceeds until a
nonzero fraction of all the sites on the lattice are po-
lymerized. If p' is the effective value of p at a
given value of 4, then polymerization stops when

[K~p' f(4)]= 1. The Toboisky-Eisenberg theory
corresponds (for K —0) to the Plory estimate
p' =(1—4)p. The crucial difference of the one-
dimensional problem is now easy to see. For d =1,
@=1, and K& ——1 is larger than for d=2, 3, etc.
However, if a polymer propagates to fill a nonzero
fraction of the lattice, this does not reduce its effec-
tive p below unity in one dimension, since there is
no way for the polymer to fold back and encounter
itself. As a result, propagation proceeds until the
entire lattice is occupied by polymer.

Some early works can be mentioned in relation to
the present one. The analogy between equilibrium
polymerization and the helix-coil transition has been
mentioned by Oosawa in the context of equilibrium
polymerization of proteins into filamentous struc-
tures. Tobolsky" has introduced a one-
dimensional model for liquid sulfur polymerization
identical to our model I. Balian and Toulouse'
studied the n-vector model in one dimension with
similar results to ours n ~0. The importance of the
effect of dimensionality on equilibrium polymeriza-
tion makes clearer the fact that equilibrium poly-
merization can be viewed as a critical phenomenon.
Earlier, before the widespread acceptance of this
point of view, Tobolsky, ' after introducing and
solving the one-dimensional model of sulfur poly-
merization, tried to match the final expressions with
the expressions he had obtained previously through
the approximate Tobolsky-Eisenberg theory. %'e

have shown that these two theories cannot be
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matched, as they describe polymerization in d =1
and in d p4 dimensions and the transition is first
order in d =1 and second order in d ~ l. (%c have
shown that Tobolsky-Eisenberg is 8 mean-field
theory which becomes adequate for sufficiently high
dimension d p 4.) The n-vector model was originally
studied as a function of n by Stanley. The connec-
tions of the n —+0 limit with the statistics of poly-
mers and polymer solutions were first pointed out
by de Gennes ' and Des Cloizeaux, respectively.
Additional references to the n ~0 vector model and
polymer statistics can be found in Refs. 6 and 16,
Recently, Gujrati has also considered the n —+0
vector model and polymerization with conclusions
similar to our own. The work of Rys and Helfrich
should also bc noted.

Although the study of equilibriuIQ polymerization
in one dimension may seem somewhat academic, it
is not out of the question that such a process might
actually be realized experimentally. Polymerization
rcact10ns have bccn carried Out 1Q Uiea Rnd thiourca
clathr ates which conta1Q long, onc-di1Tlcnsional
channels that are sufficiently isolated from one
another to prevent cross linking. These reactions
were carried out far from equilibrium, and there is
some question whether appropriate host lattices can
be found for polymers which are in chemical equili-
brium with their monomers. The recent polymeriza-
tion of 4-bromostyrene monomers in clathrates of
tris-(o-phenylenedioxy)cyclotriphosphazene~~ is an

interesting development view of the known equilibri-
Um polyIQcrization of tile liv1ng polymer ct-

methylstyrene and the potential for adjusting the
channel size in the spirocyclotriphosphazenes by
varying the spiro side groups. Although somewhat
speculative, the possibility is intriguing, and the
dramatic difference between the behavior in one and
three dimensions would IQRkc 8 bonafidc cxaIQplc of
equilibrium polymerization 1n onc-d1IQcnsional
chRnncls of considerable 1ntcx'cst.
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