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An extensive computer simulation investigation of the time dependence of spinodal

decomposition in a two-dimensional, one-component Auid is reported. This investigation in-

cludes constant-temperature and constant-energy simulations, both of which are followed to

very long times. %e observe the detailed density morphology, finding different growth re-

gions for the average size of the formed liquid clusters. The late-time growth law for the

average cluster size is found to be t' for the isothermal and t ' ' for the constant-energy

simulation, respectively. The physical origin of these results is explained by asymptotic

analysis of the governing equations of cluster growth. A linear hydrodynamic theory for

the early stages of the separation process is also presented.

I. INTRODUCTION

The phenomenon of phase separation is a com-
mon occurrence in nature. In technological applica-
tions one often needs to Inix or unmix various sub-

stances (metalsgl, asses, polymers, and various other
chemical species). It is therefore of great impor-
tance to study in detail the properties and behavior
of a variety of systems undergoing phase separation.
The systems of technological importance are often
complex, whereas basic understanding is easier to
obtain from simpler systems. Because of the impor-
tance of this subject area there is a vast amount of
literature.

Our purpose here is to present an in-depth com-
puter simulation study of the dynamics of phase
separation for a two-dimensional unstable Auid. In
contrast to laboratory experiments, there is relatively
little work in the dynamics of fluid phase separation
using numerical simulation experiments, the excep-
tion being Abraham et a/. ' We use a molecular-
dynamics simulation method to study the time evo-
lution of a system which is initially quenched to the
unstable region of its thermodynamic phase dia-
gram. This is the relevant quench for the
phenomenon of spinodal decomposition. Our nu-
merical experiments are described in detail in Sec.
II. [Even though we have done some study of
quenches into the metastable region (nucleation) we
choose not to present it here. j The results of the nu-

merical experiments on spinodal decomposition are
described in Sec. III. These include (i) the configu-
ration snapshots, (ii) cluster distribution, (iii) time-
dependent radial distribution function, and (iv) the
structure factor, as they evolve in time. Laboratory
experiments on spinodal decomposition have

probed only the structure factor, and, in this respect,
numerical experiments certainly provide much

greater detail and finer description of the physical
phenomena. Laboratory experiments and numerical

simulations are also complimentary to one another
in regards to the time scales probed. In general, lab-

oratory diffraction experiments cannot probe very

short times and are therefore performed often in the
critical region of binary fluid mixtures, where

characteristic time scales are much longer compared
to the conceptually simpler, one-component fluid

system which is separating into liquid and vapor

phases. As can be seen from the results in Sec. III,
the characteristic time scale for the significant phase
separation in a two-dimensional, argon-like,
Lennard-Jones fluid is approximately several hun-

dred picoseconds; near its triple point by far the
most interesting features of the dynamic phenomena

already occur by 300 ps. For a one-component sys-

tem quenched to realizable distances very close to
the critical point, the time duration of the phase
separation is very short for a meaningful x-lay dif"
fraction experiment. Thus, none so far have been re-

ported to our knowledge. In Sec. IV we give the
theoretical analysis of the experimental results of
Sec. III. Our discussion of the characteristic time
scales given below in this section becomes more
meaningful from the linear stability analysis
described in Sec. IV C.

Since we present here numerical experiments on a
one-component, two-dimensional system, two fur-

ther remarks can be made: (i) Much of the theoreti-

cal analysis for binary mixtures as well as for one-

component systems (presented in Sec. IV) is in-

dependent of dimensionality. Advantage of the

present two-dimensional study is that the time evo-
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lution of the density fluctuation can be visually seen
directly from the configuration snapshots. (A movie
for quench A discussed in See. III has also been
made. ) With the advent of accurate experimental
and theoretical studies of monolayer rare-gas films
on graphite substrate (to which the film couples only
weakly), the present study is also quantitatively
relevant. (ii) Since, in the area of spinodal decompo-
sition, most laboratory experiments have been done
on binary mixtures and numerical experiments
presented here are for a one-component system, it is
also important to appreciate an essential difference
in the physics of these two systems. (For a detailed
discussion on this point, see Ref. 7.) For the fluid-
fluid phase separation in the binary fluid mixture
the relevant fluctuations are in the local concentra-
tion variable which, in a first approximation (at the
level of Cahn-Cook theory), decouples with the oth-
er hydrodynamic variables —there is only one con-
servation law. The fluid-fluid phase separation is an
instability driven via a negative thermodynamic
derivative of chemical potential with respect to con-
centration and one introduces a negative diffusion
coefficient phenomenologically. For the liquid-
vapor phase separation in a one-component system,
on the other hand, there are two conservation laws:
(a) Local fluid density, leading to the continuity
equation of hydrodynamics which couples to the
other conserved variable, the local momentum densi-

ty; (b) for the momentum density one may either
write the equation of motion at the level of Euler's
equations or the Navier-Stokes equation. Both con-
tain the reversible pressure gradient term which has
the negative iisothermal) compressibility, responsible
for driving the liquid and vapor phases to separate.
The essential change in the fluid hydrodynamic
modes (as compared to the single-phase regions of
the thermodynamic phase diagram) is that (provided
the quench is within the spinodal) during the

dynamic evolution of the phase-separation process,
Cz g C„(instability) and the sound speed co becomes
purely imaginary (negative compressibility); none of
the hydrodynamic modes are propagating (C& and
C„areheat capacities at constant pressure and con-
stant volume, respectively). The characteristic time
scale ~ is determined from the unstable mode (one of
the acoustic modes) in which the negative compres-
sibility enters: ~=icok where k is a typical wave
number for the unstable modes. For our numerical
experiments this is of the order of a picosecond, and
the maximum times to which the experiments were
done are 460 ps for the constant-temperature run
(quench A) and 300 ps for the constant-energy run
(quench C).

The theoretical analysis sketched in See. IV also
includes the asymptotic analysis of cluster growth in

a one-component system (Sec. IV 8). This is similar
to that done by Lifshitz and Slyozov for binary mix-
tures. The asymptotic time dependency of the mean
cluster radius is found to be t' for the isothermal
time evolution and t' for the adiabatic condition.
The experimental results for quench A and C,
respectively (Sec. III), support this theoretical find-
ing. In Sec. IVA, we also present a calculation of
the coarse-grained radial distribution function and
its scaling properties using a simple model. The re-
sults show good qualitative agreement with the ex-
perimental radial distribution functions. The model
contains the essential ingredients of the dynamical
evolution and can be improved to obtain better
quantitative agreement. The linear stability analysis
used in Sec. IV C is similar to our earlier work for a
three-dimensional one-component system.

II. MOLECULAR-DYNAMICS
SIMULATION EXPERIMENT

A. Numerical method

In the molecular-dynamics method one solves nu-
merically Newton's equations of motion for a given
number of particles in a cell, which interact by a
specified interaction potential. Since this method is
described in various references, we do not discuss it
in great detail. As a result of the simulations, one
obtains the positions and the velocities of all parti-
cles as a function of time. Because the number of
coupled differential equations which can be solved
simultaneously on a computer is restricted by the
available computer time and storage space, one has
to deal with a relatively small number of interacting
atoms. These are typically several hundred up to a
few thousand. However, if one wants to simulate a
quasi-infinite system, one applies periodic boundary
conditions. This means, that the computational cell
is surrounded by identical cells with the same atom-
ic configuration. Each particle has its periodic im-
ages, all of which behave identically. If a particle
leaves the computational cell at one side, one of its
periodic images enters the cell from the opposite
site, so that the number of particles in the cell is
fixed.

Because one deals with a closed system in a
molecular-dynamics experiment, the total energy is
constant (within the numerical accuracy). However,
a constant-temperature experiment can also be per-
formed, simulating the physical properties of the
coupling of the system to a heat bath by simply re-
scaling the velocities of all atoms at every time in-
terval ~T, so that the mean kinetic energy corre-
sponds to the desired temperature T.
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B. Simulated system

In our experiments we deal with a two-
dimensional system of 5041 atoms which interact by
the Lennard- Jones potential

-
&2

-6-
0' 0

iti(r) =4e
I"

J

where r is the interatomic separation and e,o. are the
I.ennard- Jones parameters. This potential is
known' to be a fairly good representation of the in-

teratomic potential for the rare-gas atoms. Thus,
with appropriate parameters e,a our system is a
model of a physisorbed monolayer of, e.g., argon on
a structureless substrate (e.g., graphite). Since we
want to investigate the time dependence of phase-
separation processes in this system and are interest-
ed in the long-time behavior, we need a fast integra-
tion routine with high numerical accuracy. There-
fore, we use the fifth-degree Nordsiek-Geer algo-
rithm described in Ref. 11 and a very small integra-
tion time step of 0.01 ps. The physical parameters
which we have to specify for our experiments are
the temperature and the area; i.e., the density since

we are always dealing with a fixed number of atoms.
Information regarding these parameters is ob-

tained from the phase diagram of a two-dimensional
Lennard-Jones system, which was recently calculat-
ed and verified using Monte Carlo techniques by
Barker, Henderson, and Abraham. ' A cut through
this phase diagram in the temperature-density plane
is sho~n in Fig. 1. The solid lines are the phase
boundaries and the dashed line is the spinodal which
was calculated usin~ two-dimensional liquid-state
perturbation theory. '

1.0

Generally, our experiments on phase separation
are done by quenching the system from various ini-
tial configurations, in which we have a one-phase
situation, into the unstable region of the phase dia-
gram. These quenches are done by quasi-
instantaneous changes in the temperature and/or the
density of the system. A quench into the unstable
region allows us to study phase separation by the
mechanism of spinodal decomposition. " This is
the instability of a homogeneous fluid to infini-
tesimal fluctuations, which are sufficiently large in

extent, that the surface free-energy contribution is
always smaller than the volume free-energy contri-
bution. Thus„one expects to observe with increasing
time a decomposition process in which highly inter-
connected regions appear with densities slightly
above and slightly below the mean density. These
regions will break up into regions with high and low

densities, which eventually approach the equilibrium

liquid and gas density, respectively. Spinodal
decomposition has to be distinguished from nu-

cleation, which occurs if one quenches into the
metastable region of the phase diagram. Generally,
nucleation' is the instability of the homogeneous
fluid to density fluctuation with a large amplitude
and short wavelength, i.e., the creation of critical
droplets of liquid density. These droplets grow until

the equilibrium situation of liquid-gas coexistence is
reached. (See Fig. 2 for a pictorial description of the
two types of density fluctuations and the corre-
sponding phase instability phenomena. )
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FIG. 1. Phase diagram of the two-dimensional

Lennard-Jones system in the density-temperature plane.

Dashed curve indicates the spinodal separating unstable

and metastable regions.
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FIG. 2. Pictorial representation of the type of density
fluctuations that lead to nucleation in the metastable re-

gion and spinodal decomposition in the unstable region.
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C. Quenches to the unstable region
of the Amd phase diagram

We have performed several experiments (A—C) in
ordcf to obscrvc spinodal decoIQposition uQdcI' vafi-
ous experimental conditions. The experiments to be
discussed are as follows.

(A) The fluid is initiated by placing the atoms in a
triangular lattice of density po =0.325 with a
Boltzmann velocity distribution corresponding to a
temperature k~T/a=0. 45. ' Thus, the density is
the critical density for liquid-vapor coexistence and
the temperature is slightly above the triple-point
temperature. At each time step the atomic veloci-
ty distribution is renormalized in order to fix the
average temperature to k&T/a=0. 45. This initiali-
zation guarantees that we start with a uniform dis-
tribution of atoms in a very unstable part of the
two" diIQcnsioi181 fluid phase diagram.

(8) The system is equilibrated at a temperature
kgT/6=1. 0 and 8 density po =0.8, i.c., in thc
one-phase region of the phase diagram, Then a
quasi-instantaneous quench is performed to the
same point as in experiment A, i.e., the velocities are
rescaled to the temperature k&T/a=0. 45 and the
distances are rcscaled to the density po =0.325,
respectively. The comparison between experiments
A and 8 allows us to study the influence of the pre-
quench state on the experimental results after the
quench.

(C) The system is equilibrated at 8 temperature
k&T/a=0. 65 and a density po. =0.325. Then it is
quenched to the point kql/a=0. 42, po =0.325.
The velocities are rescaled to the temperature
k&T/@=0.42 for 2000 time steps (20 ps). From
then on, no velocity rescaling was done, i.e., the total

energy was fixed. This constant-energy experiment
allows us to study the latent-heat effects in spinodal
decomposition.

As a result of the molecular-dynaInics experi-
ments, one obtains the position of 811 atoms as 8
function of time. Using this information, one can
calculate various physically interesting quantities,
such as the time-dependent radial distribution func-
tion g (r, t)

g (r, t) cc ( Sp( r, t)5p(0, t) ) .

By Fourier transformation one obtains the time-
dependent structure factor

atomic configuration for various times. This creates
"snapshot pictures" and gives information on the
time evolution of the atomic density distribution.
From the atomic configurations one can also obtain
the cluster size distribution at various times. ' In
order to do this, one introduces a critical distance R,
such that all pairs of atoms with pair distance below
R, are counted within the same cluster. %'e will
now discuss our experimental results in detail.

III. EXPERIMENTAL RESULTS

A. Experiment A

Starting from a triangular lattice of density
pe =0.325 and k~ T/a=0. 45 we performed a
constant-temperature simulation. We ran this
simulation for a very long time to 45000 time steps,
i.e., 450 ps, because we mere also interested in the
late-time behavior and especially in scaling of g(r, t)
or S(k, t), respectively. The physical meaning of
"very long" is discussed in Sec. IV C.

Figure 3 shows a temporal sequence of atomic
configurations starting at 5 ps after the quench up
to one of the final configurations at 450 ps. Up to
20 ps, one clearly sees the wavelike decomposition

f 40 ps

S(k, t)cc fdr g(r, t)e'"'' .

Thcsc quRntitics can bc compared to thcoi'ctical fc-
sults.

Furthermore, onc can difcctly visualize thc
dynamics of the simulated process by plotting the

60 ps

FIG. 3. Snapshot pictures of the constant-temperature
simulation (k8 T/a=0. 45, pg2=0. 325) for various times
showa in picoseconds after the initiahzation (experiment

A, see text).
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process yielding highly interconnected regions of
high and low densities, respectively. Around 40 ps,
this regime, which may be characterized "wave
creation and growth, " changes into a regime, which
may be characterized as "wave necking" or breakup,
leading to the creation and subsequent growth of
atomic clusters. These atomic clusters grow until
only very few large clusters exist. From the cluster
distribution study, we find that the largest of these
clusters has -2500 atoms around 400 ps from the
total of 5041 atoms in the system.

Figure 4 shows the radial distribution function
g (r, t) for the same times at which Fig. 3 shows the
atomic configuration. The radial distribution func-

tion is numerically calculated by counting the num-
ber of atom pairs at distances between r and r +Dr.
The cutoff at large r is determined by the size of the
computational cell. Because we are dealing with a
large system of 5041 particles, we have on the order
of 12500000 pairs in our system. Therefore, we can
choose a very small hr in order to obtain the de-
tailed structures in the radial distribution function.
[We choose Ar such that we evaluate g(r) in 1000
"bins, " i.e., r,„/Dr=1000.] We note the short-
range liquid-state atomic order which is represented
in g {r) by the pronounced small period oscillations
for a radial distance of 5o, this order becoming time
invariant around approximately 40 ps. In addition,
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FIG. 4. A sequence of radial distribution functions calculated frorp the configurations shown in Fig. 3.
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comes 0.325. This experiment mas done in order to
investigate if and horn the prequench state of the
system influences the results after the quench.

In Fig. 9 me show, as an illustrative example, the
structure factor $(k, t) of our system at different
times. %'e see that S(k, t) in the prequench situation
has the typical shape of an equilibrium liquid with
one peak around ko=6.2. Immediately after the
quench, me see this peak shifting to lower k values
(due to the rescaling, i.e., expansion of the distances
in our system) and the peak amplitude decreasing,
while at the same time a "background" starts to
build up. By about 2.5 ps the memory of the pre-
quench situation at high temperature and density is
lost.

As a comparison, we have plotted in Fig. 10 the
structure factor for very early times for experiment
A. At 1 ps we see a lot of spikes, the memory of the
triangular lattice, the structure of which is a 5 func-
tion at k0.=3.85. These spikes vanish very rapidly
and by about 3—4 ps after the quench the memory
of the triangular lattice is lost. If me call this time
at which the memory is lost t =0, then at subse-
quent times experiments A and 8 show the same
behavior and yield the same (time-averaged) quanti-
ties. Thus, we conclude that our experiments are,
after a short initialization period, rather insensitive
to the prequench conditions.

0.55

0.50

0,45

100 150
Time (ps)

200 250 300

FIG. 11. Time evolution of the system temperature
k~T/» (averaged over 10 time steps) vs time for the
constant-energy simulation (experiment C; see text).
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C. Experiment C

In this experiment we equilibrated our system at
k~T/&=0. 65 and po =0.325, i.e., in the one-phase
region of the phase diagram but relatively close to
the phase boundary. Then we quenched it quasi-
instantaneously to kq T/a=0. 42, keeping the densi-

ty fixed. At this point me ran it for 2000 time steps,
i.e., 20 ps, as a constant-temperature simulation.
After that, me no longer rescaled the velocities, i.e.,
me performed a constant-energy experiment. Figure
11 shows horn the temperature of the system behaves
as a function of time. Approximately 60 ps after we
stopped the velocity rescaling, k~T/e approaches a
value at 0.5, and fluctuates around 0.5—0.505 during
the remainder of the simulation. This temperature
value is still mell below the critical temperature as
can be seen from Fig. 1.

Homever, if we had not fixed the temperature to
kqT/a=0. 42 for 20 ps, the system temperature
mould have increased very rapidly and exceeded T,
so that the system mould have gone again into the
single-phase region of the phase diagram. We
analyzed this experiment in the same way as experi-

5—
CI

FIG. 10. Experimental structure factor for experiment

A (see text) for very early times after the initialization,

shoring the loss of the memory of the initialization in a
triangular lattice.

5 10 20 50 100 200
Time {psI

FIG. 12. Cluster size R (t) as a function of time for the
constant-energy simulation (experiment C; see text).
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FIG. 13. Scaled radial distribution function G(X),
X=r/R(t) for the t ' scaling regime in experiment C
(see text) at 30, 50, 80, 120, 160, 210, 240, 270, 300 ps.

ment A. A comparison shows that the time evo1u-
tion is much slower than in experiment A. In order
to express this quantitatively, we plot in Fig. 12 the
average cluster size R(t) obtained from the coarse
grain g (r) in the same way as described earlier. Fig-
ure 12 shows that R(t) is only very weakly time
dependent for very early times up to 10 ps, followed
to a one-third power dependence for the remainder
of the simulation, i.e., up to 300 ps. This growth
law of t' for constant-energy simulation compared
to t' for constant-temperature simulation is under-
stood theoretically and discussed in Sec. IVB of this
paper. Figure 13 shows the scaled G(X) obtained
using Eq. (1). Again, we see very good scaling in-
variance during the times from 30 to 300 ps.

A. Mode1 calculation
for the pair correlation function

In Sec. III we showed that experimental coarse-
grain radial distribution function g(r, t) obeys very

good scaling invariance. The scaling was suggested
through the hypothesis that during the coarsening
process the density morphology remains topological-
ly invariant while the actual spatial variation of den-

sity domains expands as the typical cluster size
grows. In this section we discuss a very simple
model of the inhomogeneous density distribution for
the phase-separating system which contains the
essential ingredients of the dynamical evolution.
For the model we evaluate the radial distribution
function g (r, t), then show that it obeys scaling, and
compare the scaled distribution g {X)with the exper-
imental results shown in Fig. 8.

The model system consists of a "mother-cluster"

of size R i(t), surrounded by a shell of vapor concen-
tric with the mother cluster and of outer radius
R2(t), which in turn is surrounded by a uniform
fluid of mean density with which the system began
its time evolution {and which "macroscopically" is
always constant). For simplicity we assume that the
density variation in the model system is such that (i)
within the mother cluster the density is pI, the final
equilibrium density, (ii) the density in the vapor
shell is zero, and (iii) the density is p, the uniform
mean density in the outermost region. The conser-
vation of the total number of atoms in the system
implies that R2 ——(p~/p~ )'~ R &. The model is
schematically shown in Fig. 14. The center of the
mother cluster is at 0. In order to obtain the
coarse-grain distribution function g(r, t) we need to
average over the point Q around which a circular
shell of radius r to r +dr would be drawn to count
the number of atoms in this shell, i.e.,

g(r)= (g(r, XO))y

1
g (I',Xp)2~XpdXp .

@RE

The time dependence arises entirely from that of R &.

In Fig. 14, for a typical Xp, a circle of radius r is
shown as the dashed circle P&P2P3P4P5. It is obvi-
ous that the integrand in Eq. (3) is given by

~5
g(r, XO)= p& f ds+p f ds, (4)

2&rp~

where the integration is along the dashed circle.
The geometrical problem is quite straightforward to
solve once it is treated as a superposition of two
simpler problems in which the density distributions,
as seen from the center of the mother cluster, are

pg(R) = p(, 0(R (R)
O„R&Ri (5a)

FIG. 14. Model for the theoretical calculation of the
coarse-grain radial distribution function (see text).
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p2(R) = 0, 0&R «R2

p, R yR2

respectively. The result is

g(r)=gi(r)+gi(i), (6a)
I

where g&(r) and g2(r) involve the following integral:

I(a,b, i),a)= f arccos x dx (61)
'g +x —cx

0 27/x

and are given by

1' +—[I( ~, 1,X, 1)—I (1—X, F,X, 1)]

gi(r)=. 2—5 I(X—1,1,X,1), if 1«X«2

if X)2

0,
I(5 X 1 X52)

if 0(X ((5—1}

if (5—1)«X «(5' —1)'"

g2(r)= 1 —Z + [I(5 X—,Z,X,5—) I(Z, l,X,—5i)], if (5 —1}'~2(X(5

1 ——I(X—5, 1,X,5 ), if 5«X «(5+1)

if X~(5+1)

where X=r/R&, F=(1—X )', 5 =pl/p, and
Z=(52 —X2)' 2. The result, as expected, depends
only on two variables: r/Ri(t) and pI/p . Thus,
for the model, the scaling as defined in Eq. (1) is sa-
tisfied when p~ and p are fixed given values. If one
performs a series of experiments with varying
quench depth, then the superposition of scaled G(X)
of the type shown in Fig. 8 will not hold. In the
model there are actually two length scales Ri and
R2. The number conservation relates these two:

Rz, (ii) approximating the vapor region by vacuum,
and (iii) approximating the second shell of clusters

by the mean density fluid which starts sharply at
R2.

1.6—

pI
I /2

RI —
&.2—

and the interrelation involves the quench depth.
Numerical integration of Eq. (6a) for pI

——0.71,
p =0.325 (conditions for the simulations discussed
in Sec. III) shows that as r increases, g (r) becomes
unity at r =1.25R&. Thus, in order to compare the
model result to the experimental distribution shown
in Fig. 8, we use R (t)=1.25R &(t). This comparison
is shown in Fig. 15. It is clear that the simple model
contains all the essential ingredients to understand
the experimental scaling. The quantitative differ-
ences between the model and experiment arise from
our assumptions of (i) sharp interfaces at R] and

1.0—

1 2 3 4

FIG. 15. Comparison between model-radial distribu-
tion function (full line) and experimental results (squares),
taken from Fig. 8(b).



2162 S. W. KOCH, RASHMI C. DESAI, AND FARID F. ABRAHAM 27

dR D a
dt R R

(7)

where D is the diffusion coefficient of particles
across the cluster boundary, 6 is the degree of su-

persaturation, and a is a parameter related to sur-
face tension. By supplementing this equation with
the matter conservation law and the equation of
continuity for the cluster distribution function,
Lifshitz and Slyozov not only show that R(t)-t'~
asymptotically but also explicitly evaluate the
asymptotic cluster size distribution. Recently,
Turski and Langer' have studied the dynamics of a
diffuse liquid-vapor interface for a one-component
system. Even though they applied hydrodynamics
only to evaluate early time nucleation rate and did
not investigate asymptotic cluster growth, they ob-
tain an equation [their Eq. (4.15)] for R (t) which is

identical in form to Eq. (7) above. In this analysis
the combination (Dh) of Eq. (7) is replaced by

(2A,o.T)/I nIR*),

where A, is thermal conductivity, o. surface tension, I
the latent heat, nI the liquid density at temperature
T, and R* the critical droplet radius. It is quite sim-
ple to start with such an equation for R (t) and ex-
tend Lifshitz-Slyozov analysis to one-component
systems to arrive at t' growth law for adiabatic
(constant-energy) simulation regardless of dimen-
sionality.

For our isothermal simulation of the one-
component, two-dimensional Lennard-Jones system,
we now briefly describe how a Lifshitz-Slyozov-type
asymptotic analysis leads to a growth law where
R(t)-t' . Our starting point is the rate equation
for the number of particles n in the cluster

B. Asymptotic analysis for cluster growth

From the constant-temperature simulation experi-
ment A, we showed in Fig. 7 that for large times the
mean cluster radius grows as t' . In contrast, for a
constant-energy simulation we find (Fig. 12) that
asymptotically the growth law is consistent with t'
with the exponent 0.33+0.05. In this section we

give an asymptotic analysis for these simulation re-
sults.

The classic work relevant to our analysis is that of
Lifshitz and Slyozov. ' They study the cluster
growth for a binary mixture and conclude that the
radius of the cluster R (t) would grow as t' for
large times. This result can be shown to be indepen-
dent of dimensionality and would hold in both two-
and three-dimensional systems. Their basic starting
equation for R (t) is

dn

dt
=g„—I„. (8a)

g„=n„(t)S( T/2mm) ' (8b)

where S =2mR is the surface of the two-dimensional
cluster and n„(t)is the vapor density at time t. In
terms of n„and the equilibrium liquid density nI the
supersaturation 4(t)=n„(t)/nI and the number of
particles in the cluster n is related to the cluster ra-
dius as n =n.R n~ if we assume that at late stages
the density within the cluster is nI. Then Eq. (8a)
becomes

l„2' =6(t)2'
dt 2am nI

(8c)

For the loss term, we can use the classical nucleation
theory, where the competition between the surface
and volume energy terms enables the droplet to
grow or shrink. The total loss rate from the cluster
surface S can then be written as

I„=Ase-&/ e ' (8d)

where A is a proportionality constant, P the volume
energy, and a/R the surface contribution. In a
similar context (but for a different system) these
ideas have been used to analyze the finite lifetime ef-
fects in electron-hole droplet formation. ' There the
loss term would arise due to thermionic emission-

type result given by the so-called Richardson-
Dushman equation in which P would be the elec-
tronic work function and the constant A would be
given by (4mmT )/h . In the asymptotic analysis,
the explicit expression for A is irrelevant; it is only
the form of the equation for R (t) that matters. One
gets

dR T Ae=b(t)
dt 2m.m nI

a/8 (9

For large time a/R is rather small and it is ap-
propriate to write e =)+a/R which leads to

dR a a
dt R (t) R

(9b)

The right-hand side of this equation, the particle
current at the cluster boundary is the difference be-
tween a gain term due to the monomers impinging
from the low-density vapor at temperature T and a
loss term from the cluster due to evaporation at the
surface. We have made a movie of the atomic tra-
jectories in our isothermal simulation. From this,
we find that the motion of atoms in the vapor phase
is kinematic (nondiffusive). Thus, we use the kinetic
theory to write the gain term as
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where a critical droplet radius R,(r) can be defined
from Eq. (9a) by setting dR/dt =0. The remaining
proportionality constant b provides for the scaling
of time t. It is convenient to render Eq. (9b) dimen-
sionless by introducing the following quantities:
R,o, the initial value of the critical radius which
mould depend on the initial supersaturation ho, a
scaling time T =R,z/ba and dimensionless supersa-
turation x(t)=R, (t)/R, o,

' the variables R and t are
changed to p=R /R, o and t'=t/T. Then we get

Gap 1 p
, —1

dt' p x (t')

which is one of the starting equations for the
asymptotic analysis. To a good approximation, the
quantity x (t') is 6o/b, (t) and becomes large at large
times since h(r) approaches zero. Once Eq. (10) is
established the remaining details of our asymptotic
analysis are trivial extensions of the work of I.ifshitz
and Slyozov to two dimensions. This is described
elsewhere. The area distribution of clusters is ob-
tained from such an analysis. When expressed in
terms of reduced variables z =p /x (t') and
r=ln[x (r')], the distribution is

n(~)p(z, yo), z&zo ——4
P(z, r) = .

0, z&zo

where the number of clusters per unit area is

and the probability that a cluster will have reduced
area between z and z +dz is

~(z ro) = e &/Uz(z, yo) z &zo =4
0, z)zo .

4(»)'o=4)= I,
=21 1—=21n 1—

2 —vz '

and

gs'[ —, —e E,(2)]

=0.287
R'o

p (~~ ro)=p(z 'Yo), /2 .

where ir =rrR, o/Qo and Qo is the rota/ initial super-
saturation. Since z is reduced area, it is of interest to
find the cluster size distribution

no(r) = P(z, r)dz—=/1 e
0

p~(vz, yo)=

0, Vz&2.
2

vz exp —vz/ 1—vz
2

, vz&2

This is shown in Fig. 16. In the analysis we also
find that

(p)=x(&')= (r')' '
2

Zo
((z' —1)) = J p (z, yo)(z

' ' —1)dz =0,

i.e.,

(18)
in conformity with the results of numerical simula-
tion shown in Fig. 7. The cluster size distribution in
Eq. (17) cannot be verified from our molecular-
dynamics simulation experiment since the actual
number of droplets in late states of the simulation is
quite small.

(z 1/2) P
x(t') (19) C. Linear stability analysis

We also obtain the asymptotic growth law as
In this section we use a linear stability analysis for

a two-dimensional fluid in the unstable region of the
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the low-density values of the shear viscosity and
thermal conductivity, respectively, Y'=y/( —,mpoo' ),
and F is the factor by which the binary-collision fre-
quency is increased in the Enskog theory. This fac-
tor is usually determined from the knowledge of the
equation of state p (p, T):

1
3' E

poky T BT

0,0 )

0.0 0.5 1,0 1.5 2.0
~z

FIG. 16. Cluster distribution function as calculated
from the asymptotic analysis of equations for isothermal

nucleation theory.

%C use 8 two-dimensional liquid-statc perturbation
theory to obtain the equation of state p (p, T) and
hence (Bp /BT)z and (Bp /Bp)r. In addition, we
need to specify only the nonlocal driving term W(k)
which appears in the linear theory. Traditionally,
one would use the square gradient theory which was
1Iltroduccd by vRQ dcl %881s to dIscUss thc 11quld-
vapor interface Rnd by Cahn in thc study of spino-
dal decomposition of solid solutions. This would
imply

liquid-vapor ph8sc diagram. Thc 8nalysis is com-
pletely analogous to that in Sec. II of Ref. 7„sowe
only give the results. BrieAy„wc use the linear hy-
drodynamic equations which include the stochastic
Auctuatlons In thc stIcss tcnsofs Rnd the hcRt Aux.
The Qonlocal driving force arising from density in-
homogeneities is specified by the van der %'Rais

prescription Rnd is accounted foI' through thc pIcs-
sUrc gradient In thc dyn8micR1 equations. Compar-
ison of the time-dependent structure factor S(k, t) is
made with our molecular-dynamics computer exper-
iments. Detailed expression fof S(k, t) is given in
Ref. 7.

In order to apply the result of linear hydrodynam-
ics to the specific situation of spinodal decomposi-
tion, wc have to specify the prescription for the
cquatlon of st8tc Rnd various tlansport coefficients.
LIquId-state pcrturbatlon thcorIcs hRvc bccn sUcccss-
fully applied to the study of the thermodynamics of
8 constrained single-phase system within the two-
phase coexistence region. " (Such thermodynamic
quantities are denoted by a dagger. ) The reference
system in thcsc theories is onc with haI'd-sphcI'c in-
teraction. In our dynamical calculation it is there-
fore appropriate to use similar ingredients.

From the Enskog theory of dense fluids, ' we

have the following expressions for the three trans-
port cocffliclcnts:

q =go(1+y+0.8729y )/X,

/=go(1. 246y )/1',

where go —0.511v T /m' and )co=2.05gv T/~ are

In any extension of van der %Rais theory, one has to
explicitly or implicitly specify the direct correlation
function c(k). An approximate prescription of c(k)
used by Abraham et a1. ' gives the generalized van
dcr %Rais theory for W(k). In two dimensions it
I'Cad s

Ws„dw(k)=2 J [cos(kx) —1]QO(x)dx (23b)

where the pair-corrdation function g2 is calculated
for the Lennard-Jones fluid using the two-
dimensional liquid-state perturbation theory. %c
have Used in OUr computations both thc prescrip-
tions (238) and (23b) to see how sensitive the qualita-
tive features of S(k, t) are to the choice of W(k).
Thc dispersion of hydrodynamic modes cf;(k) can
also bc found in 8 manner 8nalogoUs to that in Rcf.
7.

In Fig. 17(a) we display o,;(k) for van der %Rais
ansatz and in Pig. 17(b) the same for generalized van
der %Rais prescription for k~ T/m=0. 45 and
po =0.325. As expected, both of these agree for
small k and the general qualitative features are also
identical for all k values. For the range of k values
shown we get one real and a pair of complex roots
which turn into three real roots for large k (not
shown in the figures). The real root [always denoted
by a&(k) In the subsequent discussion and by a solid
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(a) van der Waais

(h) Generalized

In Fig. 18(a) the experimental structure factor
(quench A) is replotted for several times after the
quench (compare Fig. 5). For small times (lowest
curves), theory and experiment agree quite well. For
later times, linearized hydrodynamic theory clearly
overestimates the absolute S(k, t). Nonlinear contri-
butions will slow down this growth rate.

In order to make a sensitive comparison of our
theory with the molecular-dynamics experiment, we
deduce an "effective growing mode a,~~" from the
experimental time-dependent structure factor
S,„p(k,t). The manner in which this is done is
described in detail in Ref. 7. For our two-
dimensional Quid, we follow an identical procedure.
In Fig. 19 we present the comparisons for both
prescriptions, and for several times after the tem-
perature quench. These times are the earliest mea-
surements in the simulation experiment (after the
memory of the prequench situation is lost) where
linear behavior is most probable. It is very gratify-
ing that the effective amplification factor a,~~ is of
the same qualitative magnitude as the a~ for each

-0.6
0.0 1.0

FIG. 17. Dispersion of the hydrodynamic modes
within the unstable region of two-dimensional Lennard-
Jones liquid-vapor coexistence (per =O.32S, kq T/e
=0.45) using (a) van der %aals theory, and (b) general-
ized van der %aals theory.

line in Figs. 17(a) and 17(b)j is positive up to some
critical wave number k, and negative thereafter.
Thus, for k g k„wehave a growing mode which is
related to the hydrodynamic instability in the
phase-separation process.

Using the hydrodynamic modes a; of van der
Waals (vdW) and generalized van der Waals (gvdW)
theory, we numerically obtain the time-dependent
structure factor. The results are plotted in Figs.
18(b) and 18(c) for different times after the quench.
For S(k,o) we use the experimental data at t =4 ps
(since by this time the memory of initial triangular
lattice is lost; see Fig. 10 and Sec, III) to be able to
compare the theoretically predicted time evolution
with experiment. Figures 18(b) and 18(c) show a
very similar overall behavior of S~„dw and S„dw.
The structure factor in generalized van der Waals
theory is broader than S„dw because the critical
wave number k, (gvd%') is larger than k, (vNV).
The faster growth of S(gvd%) reflects the greater
positive values of a &(gvd%) in comparison to
a&(vd%).
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FIG. 18. (a) Experimental structure factor (experiment
A) in comparison vnth theoretical structure factor using
(b) van der %aals and (c) generalized van der %aals
descrIptlon.



S.%.KOCH, RASHMI C. DESAI, AND FARID F. ABRAHAM

0.60
(a) van der Waals

~4-sp

0.60
(b) Generalized van der Waals

/
/

0.36—

-0.12—

-0 36—

-0.60
0.0 0.4

ko

prescription, even though the theory has no adjust-
able parameters. Quantitatively, both the general-
ized van der Waals and the van der Waals descrip-
tions yield a& and a,g that are in reasonable agree-
ment with experiment. Qualitatively these two-
dimensional results are very similar to our three-
dimcnslonal results.

We have used the technique of molecular-
dynamics simulation to study the dynamics of phase
separation of a one-component, two-dimensional

FIG. 19. Comparison of the theoretical growing mode
aI (solid 4ne) predicted by (a) van der %aals and (b) gen-
eralized van der %Rais theory with the effective amplifi-
cation factor a,ff (dashed lines) obtained using experimen-
tal structure factor measurements for experiment A.

I.ennard-Jones fluid into liquid and vapor phases. A
variety of quenches have been made within the coex-
istence curve of the system and these are described
in detail in Sec. II. Specifically, two of the quenches
(A and C) have been made to evolve for quite a long
time. The isothermal simulation of the quench A to
an initially unstable state was run to 460 ps and a
similar adiabatic quench C to 300 ps. In contrast to
laboratory diffraction experiments these numerical
experiments have provided with detailed informa-
tion about the system trajectories, cluster distribu-
tion functions at various times, and the time evolu-
tion of the radial distribution function in addition to
the structure factor. We have analyzed these results
theoretically in Sec. IV. Both g(r, I;) and S(k, t)
obey scaling relations. A simple model discussed in
Sec. IVA describes the observed scaling of g(r, t)
quite well. Thc mean cluster radius is found to
grow as t'~ for the isothermal simulation (quench
A} and as t'~ for the adiabatic simulation (quench
C). These results are explained by our asymptotic
analysis for cluster growth given in Sec. IVB. In
Sec. IVC we discussed the linear stability analysis
for a one-component, initially unstable fluid using
equations of Auctuating hydrodynamics. Quahta-
tively, the structure factor given by the linear theory
is found to be of the same order as that found in nu-
merical experiment even though one knows that the
nonlinearities are essential in the phenomena of spi-
nodal decomposition. However, the coarsening
behavior is found to be in the experimental structure
factor even at the earliest of time (approximately
1—2 ps}; this is absent in a linear theory and we con-
clude that there is (quantitatively), strictly speaking,
no linear regime in our numerical experiment.

There are important differences, both in detail
and in computational concepts of spinodal decom-
position in one-component systems like the one
studied here and for Auid-fluid phase separation in
binary systems for which many experiments exist.
Thcsc werc discussed in detail in the Introduction
and also in Ref. 7. There are still many aspects of
the experimental results described in Sec. III which
require a greater theoretical understanding. At the
present time a complete nonlinear theory for spino-
dal decomposition in a one-component system does
not exist even though a useful beginning has been
made.

'Present address: Institut fur Theoretische Physik,
Universitit Frankf'urt, D-6000 Frankfurt am Main 90,
Federal Republic of Germany.

Permanent address: Department of Physics, University
of Toronto, Toronto, Ontario, Canada M5S 1A7.

~F. F. Abraham, Phys. Rep. 53, 95 (1979), and references
therein.

2J. %. Cahn, Trans. Metall. Soc. AIME 242, 166 (l968),
and references therein.

3J. S. Langer, M. Bar-On, and H. D. Miller, Phys. Rev. A



DYNAMICS OF PHASE SEPARATION IN TWO-DIMENSIONAL. . .

11, 1417 (1975), and references therein.
"W. I. Goldburg, in Scattering Techniques Applied to

Supramolecular and Xonequihbrium Systems, edited by
S. H. Chen, B. Chu, and R. Nossal (Plenum, New

York, 1981),pp. 383—409, and references therein.
5J. L. Lebowitz, J. Marro, and M. H. Kalos, Acta Metall.

30, 297 (1982), and references therein.
K. Binder, in Fluctuations, Instabilities and Phase Tran-

sitions, edited by T. Riste (Plenum, New York, 1975},p.
53.

7S. W. Koch, R. C. Desai, and F. F. Abraham, Phys. Rev.
A 26, 1015 (1982).

SSee, e.g., J. Kushick and B. J. Berne, in Statistical
Mechanics, Part 8: Time-Dependent Processes, edited

by B. J. Berne (Plenum, New York, 1977), Chap. 2; A.
Rahman, Phys. Rev. 136, A405 (1964); L. Verlet, ibid.
159, 98 (1967).

9H. C. Andersen, J. Chem. Phys. 72, 2384 (1980).
~OJ. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molec-

ular Theory of Gases and Liquids (Wiley, New York,
1964).

A. Nordsiek, Math. Comp. +, 22 (1962).
~2J. A. Barker, D. Henderson, and F. F. Abraham, Physi-

ca (Utrecht) 106, 226 (1981).
~3D. Henderson, Mol. Phys. 34, 301 (1977), and refer-

ences therein.
'~J. %.Cahn, Acta Metall. 9, 795 (1961).
~5F. F. Abraham, S. %'. Koch, and R. C. Desai, Phys.

Rev. Lett. +, 923 {1982).
~ S. D. Stoddard, J. Comput. Phys. g7, 291 (1978).
~~I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids

Q, 35 {1961).
~SL. A. Turski and J. S. Langer, Phys. Rev. A 22, 2189

(1980).
'9H. Haug attd S. W. Koch, in Dynamics of Synergetic

Systems, edited by H. Haken (Springer, Berlin, 1980), p.
57.

2OR. C. Desai, S. W. Koch, and F. F. Abraham, Physica
(Utrecht) (in press).

2~D. M. Gass, J. Chem. Phys. 54, 1898 (1971).
22See, e.g., the translation of the 1893 work of van der

'Waals: J. S. Rowlinson, J. Stat. Phys. +2, 197 (1979).




