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Soliton excitations in deoxyribonucleic acid (DNA) double helices
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%e present in this paper a soliton theory for the open states in deoxyribonucleic acid
(DNA) and synthetic polynucleotide double helices. Kink and antikink solutions for the

equation of motion of the sine-Gordon form correspond to the open states with positive and

negative helicities. The energy of open form and the length of the open configuration which

are theoretically estimated are in the same order with the values inferred from kinetic exper-

imental data.

I. INTRODUCTION

It has been known that hydrogens in deoxyribonu-
cleic acid (DNA) and synthetic polynucleotide dou-
ble helices exchange with solvent hydrogens under
conditions in which these molecules are in ordered
states. ' Recently, the existence of open states in
DNA and synthetic polynucleotide double helices
has been demonstrated by hydrogen-deuterium ex-
change measurements. However, there is no
direct information about the conformation of the
open form. Assuming a mobile open unit diffusing
along the double helix, Englander et al. concluded
from the data of kinetic and thermodynamic experi-
ments' that these open configurations can consist of
mobile segments on the order of 10 base pairs in
length. As a model for open configuration of the
double-helical polynucleotide chains, they proposed
two parallel rods on which pendula are attached and
suggested that the open state is consistently
described as a solitary excitation. In this paper we
present a soliton theory which describes the open
states in DNA and synthetic polynucleotide double
helices.

strands, and 8„' denotes the complementary base be-
longing to the other strand, and these form H-
bonded base pairs in an ordered state. The direc-
tions of B„and 8„' in the horizontal plane are speci-
fied by t e rotational angles e„and e„' around t e
axes P„and I'„' which pass through the points where
the bases B„and 8„' attach to the strands and are
parallel to the z axis, respectively.

The conformation and the stability of DNA and
the polynucleotide double helices are mainly deter-
mined by the energy of H bonds between interstrand
complementary base pairs and the stacking energy
between intrastrand adjacent bases. These interac-
tion energies consist of mainly the electrostatic, the
exchange, and the induction and dispersion interac-
tion energies. The molecular-orbital studies on the

II. HAMII. TONIAN AND EQUATION
OF MOTION

Pn-)

The 8 form of DNA and polynucleotide double
helices in the ordered arrangement of the %'atson-
Crick model is schematically represented in Fig.
1(a), where each arrow shows the direction of the
base attached to the strand, and the complementary
base pairs are indicated by the conjugated arrows ar-
ranged in horizontal parallel planes in a distance of
a=3.4 A. The z axis in the figure is a tenfold sere~
axis. In Fig. 1{b), each base is projected as a small
ellipse with an arrow in the xy plane, where 8„
denotes the nth base belonging to one of the two

)( ! I

(a)
FIG. 1. (a) Schematical representation of the %atson-

Crick model. (b) Horizontal projections of the comple-
mentary base pairs.
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hydrogen-bonding and stacking energies have been
carried out by many authors, ' ' and it has been
known from the results of the calculations that the
magnitudes of the average hydrogen-bonding and
stacking energies per base pair of double-stranded
DNA-like polymers are in good parallelism com-
pared with the melting temperatures of the poly-
mers, and the intrastrand stacking bases have the
potential minimum at the distances near 3.4 A, and
thc minimum of stacking cncI'gy of thc doublc-
stranded polymer for rotation of the base pair
around the helix axis exists near 36.' Although in
the above calculations they considered the relative
rotation of normally H-bonded base pairs around
the helix axis neglecting the constraint arising from
the strands, we consider here independent rotation
of the base 8 around the axis P which passes
through the point where the base attaches to the
strand and is parallel to the z axis [see Fig. 1(b)]
neglecting the torsional constraint of the strands,
since we can assume the free rotations around the
single bonds of sugars and phosphates constracting
the strands of DNA.

Assuming that the H-bonding and the stacking
energies, which consist of the electrostatic, the ex-

I

change, the charge-transfer, and the induction and
dispersion interactions, are roughly proportional to
the overlaps of molecular orbitals, the energy of H
bonds between interstrand complementary base pairs
may be represented as

g 8 [1—cos(8„—8„' —e )],

+5[1—cos(8'„—8'„ i
—ap)]], (2.2)

where ao ——36'. Here the mean energy of distorted
double and triple H bonds in A-T (adenine-thymine)
and 6-C (guanine-cytosine) base pairs is approxi-
mately represented in a similar form with the
Pople*s formula' for the energy of a distorted single
H bond. The zero level of the energies in Eqs. (2.1)
and (2.2) are taken for the 8 form of DNA and po-
lynucleotide duplexes. Then the Hamiltonian of
DNA and synthetic polynucleotide double helices is
written as

and the stacking energy between intrastrand adja-
cent bases may be written as

g [S[1—cos(8„—8„,—a, )]

H = g [ —,I[8„+8'„]+8[1—cos(8„—8„' —m)]

+S[1—cos(8„—8„~—ap) ]+S[1—cos(8„' —8'„&—ap) ]],
where the first term represents the rotational kinetic energy, in which I is the mean value of the moments of in-
ertia of the bases for the rotations around the axes P.

Denoting by II„and II„' the conjugated momenta for 8„and 8„', respectively,

II„=BL /88„=J8„, 0„' =~3L /88„' =I8'„,
our Hamiltonian and the Hamilton equation of motion are written as follows:

H (8„,8'„;lI„,II'„)= g —(II„+II'„)+8[1—cos(8„—8'„—n )]

+ S [1—cos(8„—8„1—ap)]+S [1—cos(8„—8„)—ap)] (2.5)

8„=aH/an„=II„/J. ,

rl„=—BH/B8„= —8 sin(8„—8'„—e )—S[sin(8„—8„,—ap) —sin(8„+, —8„—ap)],
O'„=BH/BH„' =II'„/I,
II'„=—BH/B8'„=8 sin(8„—8'„—e.)—S [sin(8'„—8'„~—ap) —sin(8'„+ ~

—8'„—ap)] . (2.6)

Prom Eq. (2.6), we obtain a coupled set of equations of motion

18„+Bsin(8„—8„' —e )+S[sin(8„—8„~—ap) —sin(8„+ ~
—8„—ap)] =0,

~ ~

I8'„—8 sin(8„—8„' —e) +S[sin(8„' —8'„~—ap) —sin(8„'+ ~
—8'„—ap) ]=0 .

(2.7)
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Assuming the smallness of the angles 8„—8„~—ap
and 8„' —8„'

&

—ap, we may approximate

sin(8„—0„&—ap) —sin(8n+ J 8n ap)

=28„—8„+,—0„
(2.8)

sin(8n 0n —) ap) —sin(0„+ ~
—8„' —ap)

=20„' —8'„+)
—8'„

If 8„and 8„' do not vary too rapidly with n, we can
introduce the fields of rotational angles with contin-
uum approximation,

= +sing,
dg I

where

P= {1 —U2yU2)
—1/2

where we assume U g Up. %'e impose the boundary
condition

cosg=1 ($=2nn, n =0, +1, . . . )

(=+00 (atz=+00 for all t) .
0„(t)~8(z,t), 0„'{t) 8'{z,t),

and we may write

8
28 —8 )

—8 )
———a z'

2O 8'
20n 8n+1 8n —1 ~

2z'

Then Eqs. (2.7) reduce to

88 2O8I — —Sa +8 sin(0 —0' —m ) =0,
Ot Oz

O8' 2O0'I —Sa 2 —8 sin(8 —0' —m. ) =0 .
Ot Oz

(2.9)

(2.10)

{2.11)

%'ith this boundary condition, Eq. (3.2) is integrated
at once,

which gives

{3.6)

+(y/1)(g —go)=4 tan e {3.7)

l
2 sin

Then we have the solitary wave solutions of the
form

2
O2k O2rh

Sa ~ I =28 s—in/
Bz Bt

(2.12)

or

B4) 1 BP 1=—sing,
Bz Up Ot l

(2.13)

1/2 1/2
S 5

Up= Q, l =I ' 28
Q

It has the ground-state solutions

t))(z) =0, +2', +4m;. . . ,

which correspond to the 8 form of DNA.

(2.15)

Taking the difference of the two equations (2.11), we

obtain the sine-Gordan equation
The numerical results of the solutions are shown in
Fig. 2. The Lorentz-type contraction of a moving
soliton with a velocity U (U gup) is represented
through the parameter y which is related to the
velocity U. The upper limit of soliton velocity will
be estimated later to be Up-l. 1X10 cm/sec. Kink
(+ ) and antikink ( —) solutions represent localized
disturbances in the P field. The plus and minus
signs correspond to the two possible helicities of the
solutions. These kink and antikink solitons predict
the existence of the positive and the negative open
states in DNA and synthetic polynucleotide double
helices.

In order to obtain direct information about the
conformation of the kink and antikink open forms,
we consider static solitons by setting y=l in Eq.
(3.7). In the static case, Eq. (2.11) gives

III. SOLITON SOLUTIONS

If we look for the solution of Eq. (2.13) which de-
pends upon only a single variable

(3.1)

then Eq. (2.13) reduces to

-6-5-4 -3 -2 -t 0 I 2 3 4 5 6

FIG. 2. Kink and antikink soliton solutions.
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88 B
sini)) .

Bz Sa
(3.8)

+(z —zp)/I
p =tan e (3.10)

Inserting Eq. (3.7) into Eq. (3.8) and using Eq. (2.14)
we obtain

and considering the boundary condition, Eq. (3.19)
is integrated

a'e 1 . , +(z zp)/I
sin(4 tan e '

) .z'

Setting

(3.9)
ae &o 1 .

&
+(z —zp)/1=—+—sin(2 tan e ' ),

Bz a I

which gives

(3.11)

(z —zp)/I
Qp z 2 tan 'e ' (for kink)8=— dz+ —(z —zp)/I

2tan '(e '
) —m (for antikink) .

(3.12)

On the other hand, Eq. (2.11) gives the similar equation for 8 with that for 8 in the static case

3 g 1 . i +(z —zp)/I
sin(4 tan e ' ),

Bz' 21'

which is integrated to give

ae ~o 1 . , +(z —zp)/I=—+—sin(2 tan e ' ),
Bz a I

(3.13)

(3.14)

(z —zp)/I
+p ' 2tan 'e ' (for kink)0'= —~+— dz —.

2tan '(e ) n(for ant—ikink) .
(3.15)

Then, from Eqs. (3.12) and (3.15), we have

4tan 'e (for kink)
—1 (z zp)/

4 tan (e ) —2n. (for antikink) .
(3.16)

8, 8', and P fields are shown in Fig. 3, where the
positive and the negative open states which have dif-
ferent helicities are denoted by (+ ) and ( —) signs.

In order to visualize the conformation of the open
state, we denote the bases belonging to one strand by
the numbers 0,1,2, . . . , and the complementary
bases belonging to another strand by the numbers
0', 1',2', . . . . If we suppose the positive static open
state which is centering at the base pair 5-5', the z
coordinate of the base pair 5-5' corresponds to zp in
the horizontal coordinate (z —zp)/I of Fig. 3. As-
suming I =0.5a, the horizontal coordinate of the nth
base is written as (z„—z5)/I =2(z„—z5)/a. Then,
the direction of the arrow attached to each base in
the open region which deviates from that in the or-
dered state can be obtained for each strand graphi-
cally by using Fig. 3. The directions of the bases in
the positive open state thus obtained are described
for each strand separately in Figs. 4(a) and 4(b) in
horizontal projections. The dotted lines in Figs. 4(a)
and 4(b) indicate the directions of bases in an or-

———2TTt

8-', J d

2

8' -gj'dz

277

(+) kink

i 2345

(-)antikink

0-5-4 -i I 234 5

(+) kink

(+)kink

0
2 34 5- (Z ZQ)/(

(-)ant ik ink

FIG. 3. ~ soliton in fields 0 and 8', or 2n. soliton in

field P.

I

dered state. Using these directional arrows in Figs.
4(a) and 4(b) and considering low-energy arrange-
ments of complementary base pairs, we can describe

the directional configuration of 2n soliton of field P
or ir soliton of fields 8 and 8' in Fig. 4(c). This fig-

ure [4(c)] is the theoretical representation of the

model of the open state of DNA proposed by Teitel-



The dispersion relation of the phonon mode is ob-
tained as

(b) (d]

FIG. 4. Directionals only of the bases in the static pos-
itive open state are described for each strand separately in

{a)and (b). In (c), these directional arrows of both strands
are described together in the same horizontal projection,
considering lour-energy arrangements of complementary
base pairs. Model of open state of DNA proposed by
Teitelbaum and Englander is shown in (d).

baum and Englander, s which is schematically shown
in Fig. 4(d}.

Returmng to Eq. (2.11), if we take the sum of two
equations of (2.11),we obtain a wave equation

BEp 1 8 f' =0 (3.17)
BZ Uo Bt

Ouf theory contains two parameters 8 Rnd 5.
Thcsc pafRIDetcf values can bc estimated by using
the results of the molecular-orbital (MO) studies on
the hydrogen-bonding and thc stacking interaction
energies. In the calculations of Devoe and Tinoco'
Rnd of Clavcfic, Pullman, Rnd Caillct, ionization
potentials of polarizabilitics werc used ln the calcu-
lation of the induction and dispersion energies. Rein
and PoHRk calculated these energies by the
Pariser-Parr-Pople (PPP) Inethod, and Bertran' by
the complete neglect of differential overlap (CNDO)
method. Fujita et aI. ' performed more detailed cal-
culations by CNDO and PPP methods Rnd reported
that the hydrogen-bonding energies in the 8 form
were —0.48 eV (CNDO) and —0.39 eV (PPP) for
the 6-C base pair, and —0.076 eV (CNDO) and
—0.070 eV (PPP) for the A-T base pair. Then mean
value is —0.28 eV (CNDO} and —0.23 eV (PPP).
The mean stacking energy between base pairs in the
8 form is calculated froIQ their results to be —0.15
eV (CNDO) and —0.05 eV (PPP). Therefore two
parameters in the Hamiltonian (2.3) can be estimat-
ed by using these values (in eV)

0.28 (CNDO)
023 (PPP)

(3.18) 0.15 (CNDO)
0.05 (PPP) . (4.1)

Then wc can scc that thc upper lllmt of thc velocity
of the P (=8 8' n) s—olit—on i—s given by the velocity
Uo of thc wave equation fof +(=—8+8 +"F).

Vfe add here the consideration about small oscilla-
tions around /=0 which correspond to the phonon
mode. Assuming f is small, we obtain for Eq. (3.2)

(u 2/uo —1)

d(2 12
(3.19)

In the case of U ~ U„ the solutio~s are sm811 oscilla-
tions in the form

Then we can estimate the values of I and Uo by Eq.
(2.14),

9.37m (CNDO)
0.24m (PPP)

' 1/2
S 8

Uo= Q = —=0.8
E.

P =A sin[q (z —ur)+8]

=A sin(qz —a)t +8),
where A Rnd 8 afc constants, and g ls given by

2 2
U /Uo —l

$2
U QUO ~

(3.20)

where we used M =130m& and 8=4.0 A as the
mean mass of the four kinds of bases and the Incan
fRdlus of gyf ation of thc bases fof thc fotatlon
around the axes P, respectively.

The length of the open configuration in the case
of 8 slo%' moving of static sollton ls estiIQatcd ffoIQ
Fig. 2, where static kink size is given by hg/I
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=la/i=14; then the length of the open state is es-

timated as follows by Eq. (4.2):
S

U 0 I
1/2

a=1.1X10 cm/sec, (4.7)

5.2a (CNDO)
3.4a (PPP) . (4.3) &=14l=7a;

For the purpose of approximate estimation of the

energy of the open form, we consider slow moving
or static solitons, where (g—go)/1=(z —zo)/I, and
we can neglect the kinetic part of solitons. The en-

ergy of the static soliton is calculated as follows by
using Eqs. (3.7) and (3.11),

'2
dz d8 +0

E~ = f —8(1—cosP)+4Sa'
a dz a

I a=4B—+2S—
a I

(4.4)

and is estimated (in eV) by using Eqs. (4.1) and (4.2),

0.41 (CNDO)
0.21 (PPP) . (4.5)

2B=0.10, 4S=0.10 . (4.6)

Then the I value, Uo, and the length bz of the open
configuration may be about

'2

l = a=0.5a,S
2B

If we consider the fact that the energy calculated
by the CNDO method is usually overestimated
about two times and the fact that the absolute values
of 2B or 4S correspond to the difference of the in-
teraction energy between complementary bases or in-
trastrand bases and the interaction energy between
bases and solvent molecules, including distorted
hydrogen-bonding interactions with solvent mole-
cules, then the absolute values {in eV) of 2B and 4S
are inferred to be reduced to about

then, the energy (in eV) of the static open state Ez
reduces to

(4.8)Ep 0.20 .

On the other hand, Englander et al. and Nakan-
ishi and Tsuboi estimated the energy of the open
state from the kinetic experiments. They wrote the
scheme for conformationally limited chemical ex-

change, when a deuteron is exchanged for a proton,
as follows:

OP chem
2 2 1

closed ~ open ~ exchangeds +eq op /kcl
k, l

in which the conformational rate constants k,p
and

k,l represent opening and closing rates, and k,h, is
the chemical rate constant for transfer of an NH
proton from a nucleotide in the open state to the sol-
vent. From the studies of the temperature depen-
dence of K~, they estimated the formation enthalpy
LH

p
for opening to be 6 kcal/mol (0.26 eV) and 8.1

kcal/mol (0.35 eV), respectively. Thus the length
of the open configuration and the energy of open
form which are theoretically estimated are in agree-
ment in order with the values estimated from the ki-
netic experimental data. In this paper, we neglected
the constraints arising from sugar-phosphate strands
of DNA and neglected the coupling with the longi-
tudinal motion (accordian motion) of the bases, and
have considered only the horizontal motion of the
bases in order to extract a solitary wave solution in
DNA by a highly simplified model. More detailed
treatment will be developed in the future.
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